
CHAPTER 3

Surfaces: Further Topics
The first section is required reading, but the remaining sections of this chapter are independent of one

another.

1. Holonomy and the Gauss-Bonnet Theorem

Let’s now pursue the discussion of parallel translation that we began in Chapter 2. LetM be a surface
and ˛ a closed curve in M . We begin by fixing a smoothly-varying orthonormal basis e1; e2 (a so-called
framing) for the tangent planes ofM in an open set ofM containing ˛, as shown in Figure 1.1 below. Now
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FIGURE 1.1

we make the following

Definition. Let ˛ be a closed curve in a surface M . The angle through which a vector turns relative to
the given framing as we parallel translate it once around the curve ˛ is called the holonomy1 around ˛.

For example, if we take a framing around ˛ by using the unit tangent vectors to ˛ as our vectors e1, then, by
the definition of a geodesic, there there will be zero holonomy around a closed geodesic (why?). For another
example, if we use the framing on (most of) the sphere given by the tangents to the lines of longitude and
lines of latitude, the computation in Example 3 of Section 4 of Chapter 2 shows that the holonomy around a
latitude circle u D u0 of the unit sphere is !2! cos u0.

To make this more precise, for ease of understanding, let’s work in an orthogonal parametrization2 and
define a framing by setting

e1 D
xup
E

and e2 D
xvp
G
:

Since (much as in the case of curves) e1 and e2 give an orthonormal basis for the tangent space of our
surface at each point, all the intrinsic curvature information (such as given by the Christoffel symbols)

1from holo-+-nomy, the study of the whole
2As usual, away from umbilic points, we can apply Theorem 3.3 of the Appendix to obtain a parametrization where the u- and

v-curves are lines of curvature.
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is encapsulated in knowing how e1 twists towards e2 as we move around the surface. In particular, if
˛.t/ D x.u.t/; v.t//, a " t " b, is a parametrized curve, we can set

"12.t/ D
d

dt

!

e1.u.t/; v.t//
"

# e2.u.t/; v.t//;

which we may write more casually as e01.t/ # e2.t/, with the understanding that everything must be done in
terms of the parametrization. We emphasize that "12 depends in an essential way on the parametrized curve
˛. Perhaps it’s better, then, to write

"12 D r˛0e1 # e2 :

Note, moreover, that the proof of Proposition 4.2 of Chapter 2 shows that r˛0e2 #e1 D !"12 and r˛0e1 #e1 D
r˛0e2 # e2 D 0. (Why?)

Remark. Although the notation seems cumbersome, it reminds us that "12 is measuring how e1 twists
towards e2 as we move along the curve ˛. This notation will fit in a more general context in Section 3.

Let’s now derive an explicit formula for the function "12.

Proposition 1.1. In an orthogonal parametrization with e1 D xu=
p
E and e2 D xv=

p
G, we have

"12 D
1

2
p
EG

!

!Evu
0 CGuv

0".

Proof. The key point is to take full advantage of the orthogonality of xu and xv .

"12 D
d

dt

#

xup
E

$

#
xvp
G

D
1
p
EG

!

xuuu
0 C xuvv

0" # xv

(since the term that would arise from differentiating
p
E will involve xu # xv D 0)

D
1

2
p
EG

!

!Evu
0 CGuv

0";

by the formulas ($) on p. 58. !

Suppose now that ˛ is a closed curve and we are interested in the holonomy around ˛. If e1 happens
to be parallel along ˛, then the holonomy will, of course, be 0. If not, let’s consider X.t/ to be the parallel
translation of e1 along ˛.t/ and write X.t/ D cos .t/e1C sin .t/e2, taking  .0/ D 0. Then X is parallel
along ˛ if and only if

0 D r˛0X D r˛0.cos e1 C sin e2/

D cos r˛0e1 C sin r˛0e2 C .! sin e1 C cos e2/ 0

D cos "12e2 ! sin "12e1 C .! sin e1 C cos e2/ 0

D ."12 C  0/.! sin e1 C cos e2/:

Thus, X is parallel along ˛ if and only if  0.t/ D !"12.t/. We therefore conclude:

Proposition 1.2. The holonomy around the closed curve C equals # D !
Z b

a
"12.t/dt .
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Remark. Note that the angle  is measured from e1 in the direction of e2. Whether the vector turns
counterclockwise or clockwise from our external viewpoint depends on the orientation of the framing.

Example 1. Back to our example of the latitude circle u D u0 on the unit sphere. Then e1 D xu and
e2 D .1= sin u/xv . If we parametrize the curve by taking v D t , 0 " t " 2! , then we have (see Example 1
of Chapter 2, Section 3)

r˛0e1 D r˛0xu D .xuv/
k D cotu0xv D cosu0e2 ;

and so "12 D cos u0. Therefore, the holonomy around the latitude circle (oriented counterclockwise) is

# D !
Z 2"

0
cosu0dt D !2! cos u0, confirming our previous results.

Note that if we wish to parametrize the curve by arclength (as will be important shortly), we take
s D .sinu0/v, 0 " s " 2! sinu0. Then, with respect to this parametrization, we have "12.s/ D cot u0.
(Why?)

For completeness, we can use Proposition 1.1 to calculate "12 as well: With E D 1, G D sin2 u,

u D u0, and v.s/ D s= sin u0, we have "12 D
1

2 sin u0

#

2 sin u0 cosu0 #
1

sinu0

$

D cotu0, as before. O

Suppose now that ˛ is an arclength-parametrized curve and let’s write ˛.s/ D x.u.s/; v.s// and T.s/ D
˛0.s/ D cos $.s/e1Csin $.s/e2, s 2 Œ0; L%, for a C1 function $.s/ (cf. Lemma 3.6 of Chapter 1), as indicated
in Figure 1.2. A formula fundamental for the rest of our work is the following:
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e2

FIGURE 1.2

Proposition 1.3. When ˛ is an arclength-parametrized curve, the geodesic curvature of ˛ is given by

&g.s/ D "12.s/C $ 0.s/ D
1

2
p
EG

!

!Evu
0.s/CGuv

0.s/
"

C $ 0.s/:

Proof. Recall that &g D &N # .n % T/ D T0 # .n % T/. Now, since T D cos $e1 C sin $e2, n % T D
! sin $e1 C cos $e2 (why?), and so

&g D rTT # .! sin $e1 C cos $e2/

D rT.cos $e1 C sin $e2/ # .! sin $e1 C cos $e2/

D
!

cos $rTe1 C sin $rTe2
"

# .! sin $e1 C cos $e2/C
!

.! sin $/$ 0.! sin $/C .cos $/$ 0.cos $/
"

D .cos2 $ C sin2 $/."12 C $ 0/ D "12 C $ 0;

as required. Now the result follows by applying Proposition 1.1 when ˛ is arclength-parametrized. !
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Remark. The first equality in Proposition 1.3 should not be surprising in the least. Curvature of a
plane curve measures the rate at which its unit tangent vector turns relative to a fixed reference direction.
Similarly, the geodesic curvature of a curve in a surface measures the rate at which its unit tangent vector
turns relative to a parallel vector field along the curve; $ 0 measures its turning relative to e1, which is itself
turning at a rate given by "12, so the geodesic curvature is the sum of those two rates.

Now suppose that ˛ is a closed curve bounding a region R & M . We denote the boundary of R by @R.
Then by Green’s Theorem (see Theorem 2.6 of the Appendix), we have
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0
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by the formula (') for Gaussian curvature on p. 60. (Recall from the end of Section 1 of Chapter 2 that the
element of surface area on a parametrized surface is given by dA D kxu%xvkdudv D

p
EG ! F 2dudv.)

We now see that Gaussian curvature and holonomy are intimately related:

Corollary 1.4. When R is a region with smooth boundary and lying in an orthogonal parametrization,
the holonomy around @R is # D

’

RKdA.

Proof. This follows immediately from Proposition 1.2 and the formula (') above. !

We conclude further from Proposition 1.3 that
Z

@R
&gds D

Z

@R
"12ds C $.L/ ! $.0/

„ ƒ‚ …

#$

;

so the total angle through which the tangent vector to @R turns is given by

#$ D
Z

@R
&gds C

“

R

KdA:

Now, when R is simply connected (i.e., can be continuously deformed to a point), it is not too surprising
that #$ D 2! . Intuitively, as we shrink the curve to a point, e1 becomes almost constant along the curve,
but the tangent vector must make one full rotation (as a consequence of the Hopf Umlaufsatz, Theorem 3.5
of Chapter 1). Since #$ is an integral multiple of 2! that varies continuously as we deform the curve, it
must stay equal to 2! throughout.

Corollary 1.5. If R is a simply connected region lying in an orthogonal parametrization and whose
boundary curve is a geodesic, then

’

RKdA D #$ D 2! .

Example 2. We take R to be the upper hemisphere and use the usual spherical coordinates parametriza-
tion. Then the unit tangent vector along @R is e2 everywhere, so #$ D 0, in contradiction with Corollary


