
82 CHAPTER 3. SURFACES: FURTHER TOPICS

Remark. The first equality in Proposition 1.3 should not be surprising in the least. Curvature of a
plane curve measures the rate at which its unit tangent vector turns relative to a fixed reference direction.
Similarly, the geodesic curvature of a curve in a surface measures the rate at which its unit tangent vector
turns relative to a parallel vector field along the curve; ! 0 measures its turning relative to e1, which is itself
turning at a rate given by "12, so the geodesic curvature is the sum of those two rates.

Now suppose that ˛ is a closed curve bounding a region R ! M . We denote the boundary of R by @R.
Then by Green’s Theorem (see Theorem 2.6 of the Appendix), we have
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by the formula (#) for Gaussian curvature on p. 60. (Recall from the end of Section 1 of Chapter 2 that the
element of surface area on a parametrized surface is given by dA D kxu$xvkdudv D

p
EG " F 2dudv.)

We now see that Gaussian curvature and holonomy are intimately related:

Corollary 1.4. When R is a region with smooth boundary and lying in an orthogonal parametrization,
the holonomy around @R is $ D

’

RKdA.

Proof. This follows immediately from Proposition 1.2 and the formula (#) above. !

We conclude further from Proposition 1.3 that
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so the total angle through which the tangent vector to @R turns is given by
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Now, when R is simply connected (i.e., can be continuously deformed to a point), it is not too surprising
that $! D 2& . Intuitively, as we shrink the curve to a point, e1 becomes almost constant along the curve,
but the tangent vector must make one full rotation (as a consequence of the Hopf Umlaufsatz, Theorem 3.5
of Chapter 1). Since $! is an integral multiple of 2& that varies continuously as we deform the curve, it
must stay equal to 2& throughout.

Corollary 1.5. If R is a simply connected region lying in an orthogonal parametrization and whose
boundary curve is a geodesic, then

’

RKdA D $! D 2& .

Example 2. We take R to be the upper hemisphere and use the usual spherical coordinates parametriza-
tion. Then the unit tangent vector along @R is e2 everywhere, so $! D 0, in contradiction with Corollary
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1.5. Alternatively, C D @R is a geodesic, so there should be zero holonomy around C (computed with
respect to this framing).

How do we resolve this paradox? Well, although we’ve been sloppy about this point, the spherical
coordinates parametrization actually fails at the north pole (since xv D 0). Indeed, there is no framing of
the upper hemisphere with e2 everywhere tangent to the equator. However, the reader can rest assured that
there is some orthogonal parametrization of the upper hemisphere, e.g., by stereographic projection from
the south pole (cf. Example 1(e) in Section 1 of Chapter 2). O

Remark. In more advanced courses, the holonomy around the closed curve ˛ is interpreted as a rota-
tion of the tangent plane of M at ˛.0/. That is, what matters is $ .mod 2&/, i.e., the change in angle
disregarding multiples of 2& . This quantity does not depend on the choice of framing e1; e2.

We now set to work on one of the crowning results of surface theory.

Theorem 1.6 (Local Gauss-Bonnet). Suppose R is a simply connected region with piecewise smooth
boundary and lying in an orthogonal parametrization. If C D @R has exterior angles 'j , j D 1; : : : ; `, then
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FIGURE 1.3

Note, as we indicate in Figure 1.3, that we measure exterior angles so that j'j j % & for all j .

Proof. If @R is smooth, then from our earlier discussion we infer that
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But when @R has corners, the unit tangent vector turns less by the amount
P`

j D1 'j , so the result follows.
(Technically, what we need is the correction of the Hopf Umlaufsatz when the curve has corners. See
Exercise 1.3.12.) !

Corollary 1.7. For a geodesic triangle (i.e., a region whose boundary consists of three geodesic seg-
ments) R with interior angles (1, (2, (3, we have
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RKdA D .(1 C (2 C (3/ " & , the angle excess.

Proof. Since the boundary consists of geodesic segments, the geodesic curvature integral drops out, and
we are left with
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as required. !
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Remark. It is worthwhile to consider the three special cases K D 0, K D 1, K D "1, as pictured in
Figure 1.4. When M is flat, the sum of the angles of a triangle is & , as in the Euclidean case. When M

FIGURE 1.4

is positively curved, it takes more than & for the triangle to close up, and when M is negatively curved, it
takes less. Intuitively, this is because geodesics seem to “bow out” when K > 0 and “bow in” when K < 0

(cf. Exercise 3.2.17).

Example 3. Let’s consider Theorem 1.6 in the case of a spherical cap, as shown in Figure 1.5. Using
the usual spherical coordinates parametrization, we have 0 % u % u0. By Proposition 1.3 and Example 1,

FIGURE 1.5

since ! D &=2 along the v-curve, we have %g D "12.s/ D cotu0 (cf. also Exercise 2.4.4). Therefore, we
have “

R

KdA D 2& "
Z

@R
%gds D 2&.1 " cosu0/;

which checks, of course, since K D 1 and the area of this cap is indeed
Z 2$

0

Z u0

0
sinududv D 2&.1 " cosu0/: O

Remark. Notice that the sign of %g depends on both the orientation of ˛ and the orientation of the
surface. If we rescale the surface by a factor of c, then the integral

R

@R %gds does not change, as the
arclength changes by a factor of c and the geodesic curvature by a factor of 1=c. Similarly, the integral
’

R KdA does not change when we rescale the surface: Area changes by a factor of c2 and Gaussian
curvature changes by a factor of 1=c2.

We now come to one of the crowning results of modern-day mathematics, one which has led to much
subsequent research and generalization. We say a surface M ! R3 is oriented if we have chosen a con-
tinuous unit normal field defined everywhere on M . We now consider a compact, oriented surface with
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n

FIGURE 1.6

piecewise-smooth boundary, as pictured in Figure 1.6. T. Radó proved in 1925 that any such surface M can

be triangulated. That is, we may write M D
mS

%D1

$% where

(i) $% is the image of a triangle under an (orientation-preserving) orthogonal parametrization;
(ii) $% \$& () ¤ *) is either empty, a single vertex, or a single edge;

(iii) when $% \ $& consists of a single edge, the orientations of the edge are opposite in $% and
$&; and

(iv) at most one edge of $% is contained in the boundary of M .

We now make a standard

Definition. Given a triangulation T of a surface M with V vertices, E edges, and F faces, we define
the Euler characteristic +.M;T/ D V "E C F .

Example 4. We can triangulate a disk as shown in Figure 1.7, obtaining + D 1. Without being so

V−E+F = 5−8+4 = 1

∆1∆2

∆3 ∆4

V−E+F = 9−18+10 = 1

FIGURE 1.7

pedantic as to require that each$% be the image of a triangle under an orthogonal parametrization, we might
just think of the disk as a single triangle with its edges puffed out; then we would have + D V "E C F D
3" 3C 1 D 1, as well. We leave it to the reader to triangulate a sphere and check that +.†;T/ D 2. O

Remark. It’s important to note that by choosing the orientations on the “triangles” $% compatibly,
we get an orientation on the boundary of M . That is, a choice of n on M determines which direction we
proceed on @M . This is precisely the case any time one deals with Green’s Theorem (or its generalization
to oriented surfaces, Stokes’s Theorem). Nevertheless, following up on the Remark on p. 85, the sign of %g

on @M is independent of the choice of orientation on M , for, if we change n to "n, the orientation on @M
switches and n $ T stays the same.

The beautiful result to which we’ve been headed is now the following
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Theorem 1.8 (Global Gauss-Bonnet). Let M be a compact, oriented surface with piecewise-smooth
boundary, equipped with a triangulation T as above. If 'k, k D 1; : : : ; `, are the exterior angles of @M , then
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Proof. As we illustrate in Figure 1.8, we will distinguish vertices on the boundary and in the interior,
denoting the respective total numbers by Vb and Vi . Similarly, we distinguish among edges on the boundary,
edges in the interior, and edges that join a boundary vertex to an interior vertex; we denote the respective

FIGURE 1.8

numbers of these by Eb , Ei , and Eib. Now observe that
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since all the orientations are compatible, and
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because the line integrals over interior and interior/boundary edges cancel in pairs (recall that %g changes
sign when we reverse the orientation of the curve). Let '%j , j D 1; 2; 3, denote the exterior angles of the
“triangle” $%. Then, applying Theorem 1.6 to $%, we have
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and now, summing over the triangles, we obtain
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Now we must do some careful accounting: Letting (%j denote the respective interior angles of triangle $%,
we have
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.& " (%j / D &.2Ei CEib/ " 2&Vi(#)

inasmuch as each interior edge contributes two interior vertices, whereas each interior/boundary edge con-
tributes just one, and the interior angles at each interior vertex sum to 2& . Next,
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To see this, we reason as follows. Given a boundary vertex v, denote by a superscript .v/ the relevant angle
or number for which the vertex v is involved. Note first of all that any boundary vertex v is contained in
E.v/

ib
C 1 faces. Moreover, for a fixed boundary vertex v,
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& ; v a smooth boundary vertex

& " 'k ; v a corner of @M with exterior angle 'k

:

Thus,

X

boundary
vertices

'%j D
X

boundary
vertices v

.& " (%j / D
X

boundary
vertices v

&.E
.v/
ib
C 1/ "

$ X

v smooth

(%j C
X

v corner
(%j

%

D &Eib C
X̀

kD1

'k :

Adding equations (#) and (##) yields
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At long last, therefore, our reckoning concludes:
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"

D 2&.V "E C F /
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(Note that because the boundary curve @M is closed, we have Vb D Eb .) !

We now derive some interesting conclusions:

Corollary 1.9. The Euler characteristic +.M;T/ does not depend on the triangulation T of M .

Proof. The left-hand side of the equality in Theorem 1.8 has nothing whatsoever to do with the trian-
gulation. !
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It is therefore legitimate to denote the Euler characteristic by +.M/, with no reference to the triangulation.
It is proved in a course in algebraic topology that the Euler characteristic is a “topological invariant”; i.e., if
we deform the surface M in a bijective, continuous manner (so as to obtain a homeomorphic surface), the
Euler characteristic does not change. We therefore deduce:

Corollary 1.10. The quantity
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is a topological invariant, i.e., does not change as we deform the surface M .

In particular, in the event that @M D ; (so many people refer to the surface M as a closed surface), we
have

Corollary 1.11. When M is a compact, oriented surface without boundary, we have
“

M

KdA D 2&+.M/:

It is very interesting that the total curvature does not change as we deform the surface, for example, as shown
in Figure 1.9. In a topology course, one proves that any compact, oriented surface without boundary must

FIGURE 1.9

have the topological type of a sphere or of a g-holed torus for some positive integer g. Thus (cf. Exercise
4), the possible Euler characteristics of such a surface are 2, 0, "2, "4, ...; moreover, the integral

’

M KdA

determines the topological type of the surface.
We conclude this section with a few applications of the Gauss-Bonnet Theorem.

Example 5. SupposeM is a surface of nonpositive Gaussian curvature. Then there cannot be a geodesic
2-gon R on M that bounds a simply connected region. For if there were, by Theorem 1.6 we would have

0 &
“

R

KdA D 2& " .'1 C '2/ > 0;

which is a contradiction. (Note that the exterior angles must be strictly less than & because there is a unique
(smooth) geodesic with a given tangent direction.) O

Example 6. Suppose M is topologically equivalent to a cylinder and its Gaussian curvature is negative.
Then there is at most one simple closed geodesic in M . Note, first, as indicated in Figure 1.10, that if
there is a simple closed geodesic ˛, either it must separate M into two unbounded pieces or else it bounds
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R

FIGURE 1.10

a disk R, in which case we would have 0 >
’

RKdA D 2&+.R/ D 2& , which is a contradiction. On
the other hand, suppose there were two. If they don’t intersect, then they bound a cylinder R and we get
0 >

’

R KdA D 2&+.R/ D 0, which is a contradiction. If they do intersect, then we we have a geodesic
2-gon bounding a simply connected region, which cannot happen by Example 5. O

EXERCISES 3.1

1. Compute the holonomy around the parallel u D u0 (and indicate which direction the rotation occurs
from the viewpoint of an observer away from the surface down the x-axis) on

*a. the torus x.u; v/ D
!

.aC b cosu/ cos v; .aC b cosu/ sin v; b sinu
"

b. the paraboloid x.u; v/ D .u cos v; u sin v; u2/

c. the catenoid x.u; v/ D .cosh u cos v; cosh u sin v; u/

*2. Determine whether there can be a (smooth) closed geodesic on a surface when
a. K > 0

b. K D 0
c. K < 0

If the closed geodesic can bound a simply connected region, give an example.

3. Calculate the Gaussian curvature of a torus (as parametrized in Example 1(c) of Section 1 of Chapter 2)
and verify Corollary 1.11.

4. a. Triangulate a cylinder, a sphere, a torus, and a two-holed torus; verify that + D 0, 2, 0, and "2,
respectively. Pay particular attention to condition (ii) in the definition of triangulation.

b. Prove by induction that a g-holed torus has + D 2 " 2g.

5. Suppose M is a compact, oriented surface without boundary that is not of the topological type of a
sphere. Prove that there are points in M where Gaussian curvature is positive, zero, and negative.

6. Consider a surface with K > 0 that is topologically a cylinder. Prove that there cannot be two disjoint
simple closed geodesics both going around the neck of the surface.

7. Suppose M and M ! are locally isometric and compatibly oriented. Use Proposition 1.3 to prove that if
˛ and ˛! are corresponding arclength-parametrized curves, then their geodesic curvatures are equal at
corresponding points.


