Math 2250 Homework \#2

This homework assignment covers three problems (two extra credit) in the target tracking exercise.

1. Problems

1. Suppose that our detector moves on the circle $(x(t), y(t))=(\cos t, \sin t)$. At t values t_{1} and t_{2} the detector registers IR light, indicating that the target is on the tangent line to the circle at that t value. Solve for the position (x, y) of the target as a function of t_{1} and t_{2}.

Note: The answer we arrived at was

$$
\begin{aligned}
& x=-\frac{-\sin (\mathrm{t} 1)-\cos (\mathrm{t} 1) \cot (\mathrm{t} 1)+\sin (\mathrm{t} 2)+\cos (\mathrm{t} 2) \cot (\mathrm{t} 2)}{\cot (\mathrm{t} 1)-\cot (\mathrm{t} 2)}, \\
& y=-\frac{\cos (\mathrm{t} 1) \cot (\mathrm{t} 1) \cot (\mathrm{t} 2)-\cot (\mathrm{t} 1) \cos (\mathrm{t} 2) \cot (\mathrm{t} 2)+\sin (\mathrm{t} 1) \cot (\mathrm{t} 2)-\cot (\mathrm{t} 1) \sin (\mathrm{t} 2)}{\cot (\mathrm{t} 1)-\cot (\mathrm{t} 2)}
\end{aligned}
$$

2. Mathematica (our computer software) claims that this complicated formula actually simplifies to

$$
x=\cos \left(\frac{\mathrm{t} 1+\mathrm{t} 2}{2}\right) \sec \left(\frac{\mathrm{t} 1-\mathrm{t} 2}{2}\right), \quad y=\sin \left(\frac{\mathrm{t} 1+\mathrm{t} 2}{2}\right) \sec \left(\frac{\mathrm{t} 1-\mathrm{t} 2}{2}\right)
$$

Extra credit problem, due Monday 2/7: Prove it!
(Problem 2 continued) It might help to look at the picture:

3. (Big Extra Credit Problem) Suppose that the detectors pick up a moving target. How can we solve for the trajectory of the target as a function of the interception times? For instance, suppose that the target moves along the line

$$
(x(t), y(t))=(a t+b, c t+d) .
$$

and lies on the tangent lines to the circle at $t_{1}, t_{2}, t_{3}, t_{4}$. Presumably, there exists some way to solve for the unknown numbers a, b, c, d as functions (complicated trig functions) of t_{1}, t_{2}, t_{3} and t_{4}. Give a solution!

Example: For example, for the path $(x(t), y(t))=(12-0.5 t, 4)$, the detectors pick up a signal at times $4.91659,5.30929,11.294,11.8595,17.7814,18.6925,24.6929,25.8553$. Now keep in mind that one detector is mounted π radians away from the other. So these correspond to t (that is, angle) values $4.91659,5.30929-\pi, 11.294,11.8595-\pi, 17.7814,18.6925-$ $\pi, 24.6929,25.8553-\pi$.

Note: I don't know the answer to this problem. I imagine that we set up and solve a system of simultaneous equations for a, b, c, and d using the t values and the formula for the tangent line to a path $(x(t), y(t))$ at $t=a$ which is

$$
y-y(a)=\frac{y^{\prime}(a)}{x^{\prime}(a)}(x-x(a)) .
$$

applied to the circle $(x(t), y(t))=(\cos t, \sin t)$.

