Math 2250 Homework \#4

This homework assignment covers the train linkage lab. The setup for the lab is that we have a linkage with an arm of length 3 connected to a point on a wheel of radius 1 .

The position of the attachment point on the wheel is given by

$$
x_{\text {attach }}(\theta)=\cos \theta . \quad y_{\text {attach }}(\theta)=\sin \theta
$$

The position of the other end of the linkage lies on the x-axis at the point $(x, 0)$. This is shown in the pictures

point slides along the x-axis ...

... the wheel rotates ...

\ldots...and point reverses direction.

1. Problems

1. Use implicit differentiation to find a formula for the derivative of x with respect to θ and a formula for the derivative of θ with respect to x.
2. At what x coordinate does moving the point on the axis (the piston) turn the wheel fastest? Explain your answer physically.
3. At what x coordinate does moving the point on the axis (the piston) turn the wheel slowest? Explain your answer physically.
