Polygons and Knots

Jason Cantarella
University of Georgia

UnKnot Conference, Denison University
August 2, 2016

Geometric Knot Theory

Big Idea

Suppose we replace curves by n-edge polygons. This gives us a finite-dimensional version of knot theory where we can more easily understand the topology and the geometry of curve space.

Theorem (Kuiper, Randell 1987)

Every polygonal knot has at least 6 edges. (And there are 6 edge polygonal knots.)

Theorem (Jin) If $2 \leq p<q<2 p$, every polygonal (p, q) torus knot has at least $2 q$ edges (and there at $2 q$ edge polygonal (p, q) torus knots).

Two-dimensional Knot Theory

Theorem (1930's?)
There are no smooth planar knots.

Theorem (Connelly, Demaine, Rote 2004)
There are no polygonal planar knots.

The Structure of Planar Polygons of Fixed Edgelength

The space of planar polygons with fixed edgelengths w_{1}, \ldots, w_{n} can be described in two ways:

- the set of all configurations of n points $\vec{p}_{1}, \ldots, \vec{p}_{n}$ in \mathbb{R}^{2} such that

$$
\left|\vec{p}_{i+1}-\vec{p}_{i}\right|=w_{i}
$$

- the set of all configurations of n angles θ_{i} on the circle so that the weighted average

$$
\sum w_{i}\left(\cos \theta_{i}, \sin \theta_{i}\right)=\overrightarrow{0}
$$

For this talk, we'll focus on $w_{i}=1$, but the theory isn't really different otherwise.

From Arms to Polygons

We now want to do an Eric Rawdon type thing- how do we close polygons? If we could continuously deform every open polygon to a closed polygon, we'd have proved that open and closed polygons have the same topology.

Theorem (Farber, Walker, etc)
Well, they don't.

From Arms to Polygons

So let's go for something a little weaker:
Definition
The set of non-closed polygons where no more than half of θ_{i} are equal is called the stable polygonal arms.

Theorem (Kapovich-Millson)

There is a continuous map which associates each stable equilateral polygonal arm uniquely with a closed equilateral polygon with the same number of edges.

How does it work?

Definition

The maps (hyperbolic isometries!)

$$
f(z)=e^{i \theta} \frac{z-a}{1-\bar{a} z}
$$

form a group of conformal (angle-preserving), orientation-preserving transformations of the unit disk to itself called $\operatorname{PSL}(2, \mathbb{R})$ which preserves the unit circle.

GIT Quotients

Theorem (Kapovich-Millson, Sjamaar)

- For every stable equilateral arm A, there is a unique $\mu(A)$ in the unit disk so that $c(z)=\frac{z-\mu}{1-\bar{\mu} z}$ maps z_{i} to a closed polygon $c\left(z_{i}\right)$.
- The closed polygon $c\left(z_{i}\right)$ is uniquely associated to the family of arms related to z_{i} by elements of $\operatorname{PSL}(2, \mathbb{R})$.
- The $c\left(z_{i}\right)$ is the polygon you'd get from flowing along the gradient of end-to-end distance squared.
- Closed equilateral polygons are the GIT quotient of $S O(2)^{n}$ by $\operatorname{PSL}(2, \mathbb{R})$.

Closure Algorithm

Question

Is $\mu(A)$ the center of mass of the z_{i} ? If so, $c(z)$ would certainly take the center of mass of the z_{i} to the origin.

Proposition

Given a collection of z_{i} on the unit circle with center of mass $w=\frac{1}{n} \sum z_{i}$, the Milnor-Abikoff-Ye iteration

$$
z_{i} \mapsto \frac{z_{i}-w}{1-\bar{w} z_{i}}
$$

yields a point cloud $f\left(z_{i}\right)$ with center of mass $w^{\prime}=\frac{1}{n} \sum f\left(z_{i}\right)$ satisfying

$$
\left|\boldsymbol{w}^{\prime}\right|<\alpha|\boldsymbol{w}|
$$

where $\alpha<1$ depends only on n.

So what?

Proposition (with Shonkwiler)

MAY iteration converges linearly to the closed polygon $c(z)$.

The Elliptic Distance Energy

Definition

The elliptic distance energy of a polygon is the sum

$$
E(P)=\sum_{\text {vertex } p_{i} \text {, edge }} \frac{1}{e_{j k}} \underbrace{\left(\left|p_{i}-p_{j}\right|+\left|p_{i}-p_{k}\right|-\left|p_{j}-p_{k}\right|\right)^{2}}_{\text {the triangle inequality } \Longrightarrow \geq 0}
$$

Proposition (with Demaine, O'Brien)

If a vertex of the polygon is on an edge, $E(P)$ is infinite. The only critical points of $E(P)$ are convex polygons.

Algorithm for planar polygonal unknotting

Algorithm

Given a configuration of a planar equilateral polygon P:
(1) Find the negative gradient vector of E at P, a set of velocities v_{i} for angles θ_{i}.
(2) Construct the family of (open) polygons $p_{i}(\lambda)=\theta_{i}+\lambda v_{i}$.
(3) Define $e(\lambda)$ to be the elliptic distance energy of the closed polygon $c\left(p_{i}(\lambda)\right)$. Use MAY iteration to compute $e(\lambda)$ fast.
(4) Search for a local min λ_{0} of $e(\lambda)$; $e\left(\lambda_{0}\right)<e(0)=E(P)$. Update P to $P^{\prime}=e\left(\lambda_{0}\right)$.
Repeat until P is sufficiently close to a convex polygon.

Theorem-in-progress (with Shonkwiler)

Time bounds.

Demonstration

Space polygons?

Definition

An equilateral space polygon is given by a collection of edge directions e_{i} on S^{2} which sum to zero.

Coordinates on polygon space

Definition

If we triangulate a regular n-gon, we see the polygon is the boundary of a folded structure made of $n-3$ flat triangles joined at $n-3$ hinges. The lengths d_{i} and angles θ_{i} are a system of coordinates on polygon space called action-angle coordinates.

The Triangulation Polytope

Definition

The hinge lengths are sides of triangles, so they obey some triangle inequalities which define a convex polytope in \mathbb{R}^{n-3} called the triangulation polytope $\mathcal{P}_{n}(\vec{r})$.

The Triangulation Polytope

Definition

The hinge lengths are sides of triangles, so they obey some triangle inequalities which define a convex polytope in \mathbb{R}^{n-3} called the triangulation polytope $\mathcal{P}_{n}(\vec{r})$.

The Triangulation Polytope

Definition

The hinge lengths are sides of triangles, so they obey some triangle inequalities which define a convex polytope in \mathbb{R}^{n-3} called the triangulation polytope $\mathcal{P}_{n}(\vec{r})$.
$(0,2,2)$

$(2,2,2)$
$(2,2,0)$

Why This Function?

Theorem (Archimedes, Duistermaat-Heckman)
The action-angle coordinates θ, z on the sphere given by

$$
(\theta, z) \mapsto\left(\sqrt{1-z^{2}} \cos \theta, \sqrt{1-z^{2}} \sin \theta, z\right)
$$

are an area-preserving map from the cylinder to the sphere.

Illustration by Kuperberg.

The Sampling Theorem

Theorem (with Shonkwiler)
Action-angle coordinates are a volume-preserving map from torus \times polytope (with Euclidean volume!) to the space of closed polygons.

Corollary
Probabilities computed over torus \times polytope equal probabilities computed over polygon space.

Example: Chord Lengths

Proposition (with Shonkwiler)

The expected length of a chord skipping k edges in an n-edge equilateral polygon is the $(k-1)$ st coordinate of the center of mass of the moment polytope for $\operatorname{Pol}(n ; \overrightarrow{1})$.

Example: Chord Lengths

Proposition (with Shonkwiler)

The expected length of a chord skipping k edges in an n-edge equilateral polygon is the $(k-1)$ st coordinate of the center of mass of the moment polytope for $\operatorname{Pol}(n ; \overrightarrow{1})$.

n	$k=2$	3	4	5	6	7	8
4	1						
5	$\frac{17}{15}$	$\frac{17}{15}$					
6	$\frac{14}{12}$	$\frac{15}{12}$	$\frac{14}{12}$				
7	$\frac{461}{385}$	$\frac{506}{385}$	$\frac{506}{385}$	$\frac{461}{385}$			
8	$\frac{1,168}{960}$	$\frac{1,307}{960}$	$\frac{1,944}{960}$	$\frac{1,307}{960}$	$\frac{1,168}{960}$		
9	$\frac{112,121}{91,035}$	$\frac{127,059}{91,035}$	$\frac{133,337}{91,035}$	$\frac{133,337}{91,035}$	$\frac{127,059}{91,035}$	$\frac{112,121}{91,035}$	

Example: Chord Lengths

Proposition (with Shonkwiler)

The expected length of a chord skipping k edges in an n-edge equilateral polygon is the $(k-1)$ st coordinate of the center of mass of the moment polytope for $\mathrm{Pol}(n ; \overrightarrow{1})$.
$E(\operatorname{chord}(37,112))=$
2586147629602481872372707134354784581828166239735638 002149884020577366687369964908185973277294293751533 821217655703978549111529802222311915321645998238455 195807966750595587484029858333822248095439325965569 561018977292296096419815679068203766009993261268626 707418082275677495669153244706677550690707937136027 424519117786555575048213829170264569628637315477158 307368641045097103310496820323457318243992395055104
≈ 4.60973

The Fan Triangulation Polytope

The polytope $\mathcal{P}_{n}=\mathcal{P}_{n}(\overrightarrow{1})$ corresponding to the "fan triangulation" is defined by the triangle inequalities:

$$
0 \leq d_{1} \leq 2 \quad 1 \leq d_{i}+d_{i+1} \quad 0 \leq d_{n-3} \leq 2
$$

A Change of Coordinates

If we introduce a fake chordlength $d_{0}=1=d_{n-2}$, and make the linear transformation

$$
s_{i}=d_{i}-d_{i-1}, \text { for } 1 \leq i \leq n-2
$$

then $\sum s_{i}=d_{n-2}-d_{0}=0$, so s_{n-2} is determined by
s_{1}, \ldots, s_{n-3}

A Change of Coordinates

If we introduce a fake chordlength $d_{0}=1=d_{n-2}$, and make the linear transformation

$$
s_{i}=d_{i}-d_{i-1}, \text { for } 1 \leq i \leq n-2
$$

then $\sum s_{i}=d_{n-2}-d_{0}=0$, so s_{n-2} is determined by s_{1}, \ldots, s_{n-3} and the inequalities

$$
0 \leq d_{1} \leq 2 \quad 1 \leq d_{i}+d_{i+1} \quad 0 \leq d_{n-3} \leq 2
$$

become

A fantastically stupid idea (that works great!)

Just pick s_{1}, \ldots, s_{n-3} independently in $[-1,1]$, so we know they obey the easy conditions and throw out any picks which don't obey the hard conditions

$$
-1 \leq \sum_{i=1}^{n-3} s_{i} \leq 1, \quad \sum_{j=1}^{i} s_{j}+\sum_{j=1}^{i+1} s_{j} \geq-1
$$

Theorem (with Duplantier, Shonkwiler, Uehara)
For large n the expected number of tries before a success is asymptotic to

$$
\frac{\sqrt{\pi}}{6 \sqrt{6}} n^{3 / 2}
$$

The Action-Angle Method

We can now state the final sampling algorithm, which generates perfect, independent samples of polygon space:
Action-Angle Method (with Duplantier, Shonkwiler, Uehara 2015)
(1) Generate $\left(s_{1}, \ldots, s_{n-3}\right)$ uniformly on $[-1,1]^{n-3}$ until they obey hard inequalities, build corresponding d_{1}, \ldots, d_{n}.
(2) Generate dihedral angles $\theta_{1}, \ldots, \theta_{n-3}$.
(3) Build polygon from action-angle coordinates.

We've proved above that this takes $O\left(n^{5 / 2}\right)$ time per sample.

Rank stats for 60-gons

How common are various kinds of knots among all polygons?

Probability

Rank stats for random diagram model

Corresponding graph in the random diagram model:

Rank stats for 600 edge collapsed SAP model

Baiesi, Orlandini, Stasiak 2007

Current Questions

- What's up with the linear rank statistics?
- We can find paths between equilateral space polygons. How about geodesics? (cf. my student Tom Needham's work on curves- solves the problem for nonequilateral polygons)
- Can we interpolate between polygons? Define the "average shape" of a collection of curves?
- Can we generalize all this to a statistics of theta curves? Handcuff graphs? Trees?
- Trees?
- Trees?

Why am I so fixated on trees?

A public service announcement

Global climate change will intensify drought in this century

DRY
CONDITION \qquad

A public service announcement

Source: UNEP, International Soil Reference and Information Centre (ISRIC), World Atlas of Desertification, 1997.

Global food supply

Projection

Per-acre crop yields must double by 2050, or people starve.
On worse farmland.
With less water, less fertilizer, and less agricultural chemicals.

- Tilman, D., et al., Global food demand and the sustainable intensification of agriculture. Proceedings of the National Academy of Sciences, 2011. 108(50): p. 20260-20264
- Ray DK, Mueller ND, West PC, Foley JA. Yield Trends Are Insufficient to Double Global Crop Production by 2050. Hart JP, ed. PLoS ONE. 2013;8(6):e66428. doi:10.1371/journal.pone.0066428.

Problem: root system bioengineering

How to improve roots?

Assumption: If an observed root trait variation is linked to genes, than the trait is possible to breed

Math problem: DiRT, collaboration with Buksch lab

Unknown which genes affect roots. Large databases of digital photography of root systems show significant variations between root systems, even for cloned plants.

Problem

Find a mathematically defensible theoretical framework for measuring the significance of geometric differences between populations of tree shapes.

The molecular biologists are just guessing until we solve it, the computer scientists already did their stuff . . . and it matters.

Thank you for listening!

References

- The Symplectic Geometry of Closed Equilateral Random Walks in 3-Space Jason Cantarella and Clayton Shonkwiler Annals of Applied Probability 26 (2016), no. 1, p. 549-596
- A Fast Direct Sampling Algorithm for Equilateral Closed Polygons
Jason Cantarella, Bertrand Duplantier, Clayton Shonkwiler, and Erica Uehara Journal of Physics A 49 (2016), no. 27, p. 275205.

