Math 3500/H. Multivariable math.

Introduction.

Difficulty of course

Gradescope.

Encouragement to work together. Classroom culture.

Definition. \mathbb{R}^n is the set of vectors $\vec{x} = \begin{bmatrix} x_1 \\ x_n \end{bmatrix}$.

We can think of IR" as an n-dimensional space. We will learn to be comfortable in this setting, but don't need geometric intuition.

Definition. We let \overrightarrow{AB} denote the vector from A (tail) to B (head).

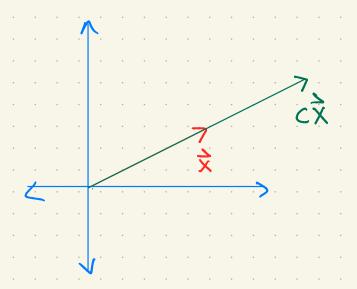
and say
$$\overline{AB} = \begin{bmatrix} b_1 - a_1 \\ b_n - a_n \end{bmatrix}$$

Definition. The length (or norm) of \vec{x} is $||\vec{x}|| = \sqrt{x_1^2 + \dots + x_n^2}.$

Note. There are other useful ways to measure length. This is the one we're familiar with from geometry class - it immediately implies Pythagorean thm.

Definition. A real number c is called a scalar and we define scalar multiplication by

$$CX^{2}$$
 CX^{3}

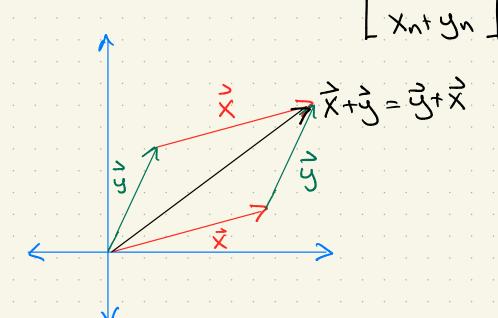


Exercise:

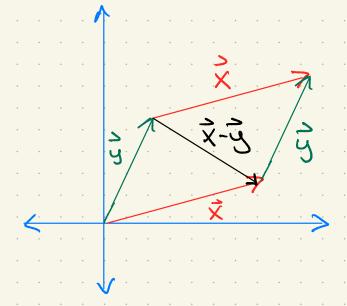
1/c x 1/= ?

Definition. We say \vec{x} and \vec{y} are parallel if there is some c so that $\vec{x} = c\vec{y}$ or $\vec{y} = c\vec{x}$.

Definition. We define yector addition by $\vec{X} + \vec{y} = \begin{bmatrix} X_1 + y_1 \end{bmatrix}$.



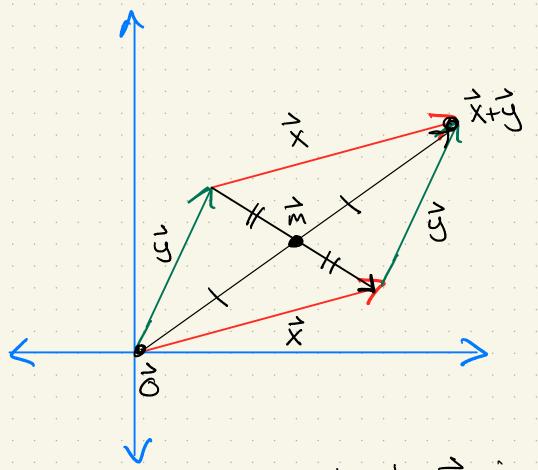
We notice that
$$\dot{\vec{X}} - \dot{\vec{y}} = \dot{\vec{X}} + (-1)\dot{\vec{y}} = \begin{bmatrix} x_1 - y_1 \\ x_n - y_n \end{bmatrix} = \dot{\vec{y}} \dot{\vec{X}}$$



Vector algebra makes a lot of geometry Simpler and clearer

Fact. The midpoint of \overrightarrow{AB} is $\frac{1}{2}\overrightarrow{A} + \frac{1}{2}\overrightarrow{B}$.

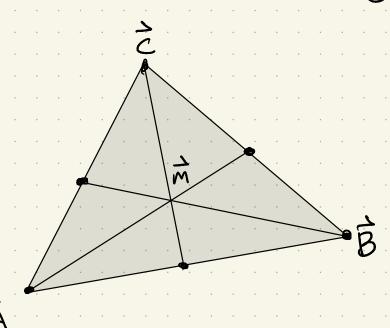
Proposition. The diagonals of a parallelogram bisect each other.



Proof. We will show that \vec{m} is the midpoint of both $O(x+\vec{\gamma})$ and $\vec{\gamma}\vec{X}$. $m = \frac{1}{2}\vec{O} + \frac{1}{2}(\vec{X}+\vec{\gamma}) = \frac{1}{2}\vec{X} + \frac{1}{2}\vec{\gamma}$. $m = \frac{1}{2}\vec{O} + \frac{1}{2}\vec{X} = \frac{1}{2}\vec{X} + \frac{1}{2}\vec{\gamma}$.

Definition. The line segment joining a vertex of a triangle to the midpoint of the opposite side is called a median.

Proposition. The medians of a triangle all intersect at a single point.



Proof. We will show that m is 2/3 of the way from each vertex to the the midpoint of the opposite side.

$$\frac{1}{A} + \frac{2}{3} \left(\frac{1}{3} (B + \hat{c}) - \hat{A} \right) = \frac{1}{A} + \frac{1}{3} B + \frac{1}{3} \hat{c} - \frac{2}{3} \hat{A}
= \frac{1}{3} \hat{A} + \frac{1}{3} B + \frac{1}{3} \hat{c} - \frac{2}{3} \hat{B}
= \frac{1}{3} \hat{A} + \frac{1}{3} B + \frac{1}{3} \hat{c} - \frac{2}{3} \hat{B}
= \frac{1}{3} \hat{A} + \frac{1}{3} B + \frac{1}{3} \hat{c} - \frac{2}{3} \hat{c} - \frac{2}{3} \hat{c} + \frac{1}{3} \hat{c} + \frac{1}{3}$$

Porism. The point of intersection of the medians of a triangle is the vector average of the vertices.