8.3 Line Integrals and Green's Theorem
Definition. A vector field \(\vec{F} \) on an open set \(U \subset \mathbb{R}^n \) is a function \(\vec{F} : U \to \mathbb{R}^n \) which associates a vector to each point in \(U \).

Now we previously (curves, 3.5) defined a parametrized curve to be a map \(\vec{g} : [a, b] \to \mathbb{R}^n \). Recall that

\[
T(t) = \frac{\vec{g}'(t)}{||\vec{g}'(t)||}
\]

is called the unit tangent vector to \(\vec{g} \) at \(\vec{g}(t) \).
and that we called a parametrization regular when $\|\hat{g}'(t)\| = 0$ (so T is well-defined). Looking back on this, we now say "a parametrization is regular when rank $Dg = 1$.

Construction. Every 1-form on $U \subset \mathbb{R}^n$ ω has a corresponding vector field \vec{F} so that

$$\omega = \sum F_i \, dx_i \iff \vec{F} = \begin{bmatrix} F_1 \\ \vdots \\ F_n \end{bmatrix}$$

Then if $C \subset \mathbb{R}^n = \hat{g}([a, b])$,

$$\int_C \omega = \int_{\hat{g}} \omega = \int_a^b \left(\sum_{i=1}^n F_i(\hat{g}(t)) \hat{g}_i(t) \right) dt$$

pullback of \vec{F}_i

pullback of dx_i
\[
= \int_{[a,b]} \hat{F}(\hat{g}(t)) \cdot \hat{g}'(t) \, dt
\]

This is called a "line integral" or "path integral."

If \(\|\hat{g}'(t)\| = 1 \) for all \(t \in [a, b] \), we say "\(g \) is parametrized by arclength" and use \(s \) for the parameter. This motivates us to write our path integral as

\[
= \int_{[a,b]} \hat{F}(\hat{g}(t)) \cdot \frac{\hat{g}'(t)}{\|\hat{g}'(t)\|} \|\hat{g}'(t)\| \, dt
\]

\[
= \int_{C} \hat{F} \cdot T \, ds
\]

\text{definitions}
We've been a bit informal about the smoothness of \(\hat{g} \). Everything makes sense as long as \(C \) is parametrized by a finite collection of \(C^1 \) maps

\[
\hat{g}_1 : [a_1, b_1] \rightarrow \mathbb{R}^n \\
\hat{g}_2 : [a_3, b_3] \rightarrow \mathbb{R}^n
\]

where \(\hat{g}_j(b_j) = \hat{g}_{j+4}(a_{j+1}) \). We call these curves "piecewise \(C^1 \)."
Proposition. If C is a curve in \mathbb{R}^n parametrized by $\tilde{g}: [a, b] \to \mathbb{R}^n$, let C^- be the curve parametrized by $\tilde{h}: [\tilde{a}, \tilde{b}] \to \mathbb{R}^n$, $\tilde{h}(u) = \tilde{g}(a+b-u)$. Then for every $w \in A^1(\mathbb{R}^n)$, we have

$$\int w = -\int_{C^-} w$$

Proof. We write

$$\int_{C^-} w = \int_{a}^{b} \tilde{h}^* w = \int_{a}^{b} F(\tilde{h}(u)) \cdot \tilde{h}'(u) \, du$$

$$= \int_{a}^{b} F(\tilde{g}(a+b-u)) \cdot (-\tilde{g}'(a+b-u)) \, du$$
\[- \int_{a}^{b} F(\mathbf{g}(t)) \cdot \mathbf{g}'(t) \, dt \quad \text{where } t = a + b - u\]

\[= - \int_{a,b} \mathbf{g}^* \omega.\]

\[= - \int_{c} \omega.\]

Example. Let C be the line segment $[\frac{1}{2}, \frac{1}{2}]$ to $[\frac{2}{2}, \frac{2}{2}]$ and let $\omega = xy \, dz$. To compute $\int_{C} \omega$, we parametrize C by

\[\mathbf{g}(t) = (1-t)\begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix} + t \begin{bmatrix} 2 \\ 2 \\ 2 \end{bmatrix}\]

where $t \in [0,1]$.
We then have
\[\hat{g}'(t) = \begin{bmatrix} 2 \\ 2 \end{bmatrix} - \begin{bmatrix} \frac{1}{2} \\ -1 \end{bmatrix} = \begin{bmatrix} 1 \\ 3 \end{bmatrix} \]

and can compute
\[
\int_c \omega = \int_c \hat{g}^* \omega = \int_{[0,1]} \\
= \int_0^1 \left((1-t)1 + t \cdot 2 \right) \left((1-t)(-1) + t \cdot 2 \right) \, 2 \, dt \\
= \int_0^1 \left(1 + t \right) \left(-1 + 3t \right) \, 2 \, dt \\
= \int_0^1 \left(6t^2 + 4t - 2 \right) \, dt = 2.
\]
Definition. If \(\hat{F}(x): \mathbb{R}^n \to \mathbb{R}^n \) is a vector field whose value is a force at each point in space, and \(\omega \) is the corresponding 1-form, the work done by the force field by a particle moving along a path \(C \) is

\[
\text{work} = \int_C \omega
\]

Definition. If a particle of mass \(m \) has velocity vector \(\hat{v} \), the kinetic energy \(KE = \frac{1}{2}m\|\hat{v}\|^2 \).
We can now prove the Work-Energy Theorem. If the only force acting on a particle of mass \(m \) causes the particle to move along a path \(C \), then

\[
\text{work} = \text{change in kinetic energy}.
\]

Proof. Suppose the force is given by \(F(x) \) and the path by \(g(t) \).

\[
\text{work} = \int_C \omega = \int_a^b F(g(t)) \cdot \dot{g}'(t) \, dt
\]

\[
= \int_a^b m \dddot{g}(t) \cdot \dot{g}'(t) \, dt
\]

\[
= \int_a^b \frac{d}{dt} \left(m \frac{d}{dt} (\| \dot{g}'(t) \|^2) \right) \, dt
\]
\[\frac{1}{2} m \left(\| \dot{\vec{g}}'(b) \|^2 - \| \dot{\vec{g}}'(a) \|^2 \right) \]

= change in kinetic energy. \(\square \)

Now we can prove the fundamental theorem of calculus for line integrals.

Proposition. If \(\omega = df \in \mathcal{A}^1(\mathbb{R}^n) \) and \(C \) is a path from \(\vec{a} \) to \(\vec{b} \) in \(\mathbb{R}^n \),

\[\int_C \omega = f(\vec{b}) - f(\vec{a}). \]

Proof. Suppose \(C \) is parametrized by \(\dot{\vec{g}} \).

\[\int_C \omega = \int_a^b \dot{\vec{g}}^* \omega = \int_a^b \dot{\vec{g}}^* (df) \]

\[= \int_a^b d(\dot{\vec{g}}^* f) = \int_a^b d(f \circ \dot{\vec{g}}) \]
\[= \int_{a}^{b} (f \circ \dot{g})'(t) \, dt \]
\[= (f \circ \dot{g})(b) - (f \circ \dot{g})(a) \]
\[= f(\dot{g}(b)) - f(\dot{g}(a)) \]
\[= f(b) - f(a). \]

Corollary. If \(\tilde{F}(\dot{x}) = \nabla f(\dot{x}) \), then
\[\int_{\gamma} \tilde{F} \cdot \dot{F} \, ds = \tilde{F}(b) - \tilde{F}(a). \]

Notice that the value of the integral doesn’t depend on the path!

Definition. If \(\omega = d\eta \), we say that \(\eta \) is a **potential form** for \(\omega \).

(Or a potential function if \(\eta \in \mathcal{A}(U) \).)
Theorem. Let \(\omega = \sum F_i \, dx_i \in A^1(U) \) with \(U \subset \mathbb{R}^n \). The following are equivalent:

1) For every closed path \(C \subset U \),
\[
\int_C \omega = 0.
\]

2) If \(\vec{a} \) and \(\vec{b} \) are joined by paths \(C \subset U \) and \(C' \subset U \),
\[
\int_C \omega = \int_{C'} \omega
\]
(In this case, we say the integral is path independent and write \(\int_{\vec{a}}^{\vec{b}} \omega = \int_C \omega \) for any \(C \) which starts at \(\vec{a} \) and ends at \(\vec{b} \).)

3) \(\omega = df \) for some potential function \(f : U \to \mathbb{R} \).
Note. If a force field $\mathbf{F} = \nabla f$, we say \mathbf{F} is conservative. If so, and \mathbf{C} is a path parametrized by $\mathbf{\hat{g}}$,

$$\int_{\mathbf{C}} \mathbf{w} = \int_{a}^{b} \mathbf{\hat{F}}(\mathbf{\hat{g}}(t)) \cdot \mathbf{\hat{g}}'(t) \, dt$$

= work

$$= \frac{1}{2} m \| \mathbf{\hat{g}}'(b) \|^2 - \frac{1}{2} m \| \mathbf{\hat{g}}'(a) \|^2$$

(by work-energy theorem) but also

$$\int_{\mathbf{C}} \mathbf{w} = f(\mathbf{\hat{g}}(b)) - f(\mathbf{\hat{g}}(a))$$

(by fundamental theorem of calculus)

This leads physicists to call $-f(\mathbf{\hat{g}}(x))$ a potential energy for $\mathbf{\hat{F}}(x)$
So that they can write above as
\[\Delta \text{K.E.} = - \Delta \text{P.E.} \Rightarrow \Delta (\text{K.E.} + \text{P.E.}) = 0 \]
and say "the sum of kinetic and potential energy is conserved."

Proof. (1 \Rightarrow 2)

If \(C_1, C_2\) are paths from \(\hat{a}\) to \(\hat{b}\), \(C_1 \cup C_2^-\) is a closed path, so

\[0 = \int \omega = \int \omega + \int \omega = \int \omega - \int \omega \]
\[C_1 \cup C_2^- \quad C_1 \quad C_2^- \quad C_1 \quad C_2 \]
so \(\int_{C_1} \omega = \int_{C_2} \omega\).

(2 \Rightarrow 3) Fix any \(\tilde{a} \in \mathcal{U}\) and define
\[f(\tilde{x}) = \int_{\tilde{a}}^{\tilde{x}} \omega \]
(by hypothesis, the path doesn't matter).

To prove $df = \omega$, we must show

$$F_i(x) = \frac{\partial f}{\partial x_i}(\hat{x})$$

$$= \lim_{h \to 0} \frac{f(\hat{x} + h\hat{e}_i) - f(\hat{x})}{h}$$

$$= \lim_{h \to 0} \frac{1}{h} \int_{\hat{x}}^{\hat{x} + h\hat{e}_i} \omega$$

Now we can join \hat{x} to $\hat{x} + h\hat{e}_i$ by $\hat{g} : [0, h] \to \mathbb{R}^n$, $\hat{g}(t) = \hat{x} + t\hat{e}_i$.

$$= \lim_{h \to 0} \frac{1}{h} \int_0^h \hat{g}^* \omega$$

$$= \lim_{h \to 0} \frac{1}{h} \int_0^h \sum_{j=1}^n F_j(\hat{g}(t)) \hat{g}^* dx_j$$

but

$$\hat{g}^* dx_j = g_j'(t) dt$$

where g_j is the coordinate function.
But \(\tilde{g}(t) = \tilde{x} + t\tilde{e}_i \), so
\[
\tilde{g}'(t) = \delta_{ij}
\]
So we have
\[
= \lim_{h \to 0} \frac{1}{h} \int_0^h F_i(\tilde{g}(t)) \, dt
\]
\[
= \lim_{h \to 0} F_i(\tilde{g}(t_0)) \text{ for some } t_0 \in [0, h]
\]
by MVT for integrals
\[
= F_i(\tilde{g}(0)) \quad \text{continuity of } F_i
\]
\[
= F_i(\tilde{x}).
\]
which proves \(df = \omega \), as desired.
(3 \(\Rightarrow \) 4) Since \(\omega = df \), if \(C \) is closed
\[
\int_C \omega = \int_C df = f(\tilde{a}) - f(\tilde{b}) = 0. \quad \square
\]
Definition. If $\omega \in A^k(U)$ and $d\omega = 0$, we say ω is closed.

If $\omega = d\eta$ for some $\eta \in A^{k-1}(U)$ we say ω is exact.

Now if $\omega = df$, then $d\omega = d(df) = 0$.

So every exact form is closed. Is every closed form exact? The answer will be interesting.

Example. Suppose

$$\omega = (e^x + 2xy)\,dx + (x^2 + \cos y)\,dy$$

We would like to find a potential function f so that $df = \omega$.
Such a function (if it exists) has
\[\frac{\partial f}{\partial x} = e^x + 2xy, \quad \frac{\partial f}{\partial y} = x^2 + \cos y. \]
We can find it by "partial integration"
\[\int e^x + 2xy \, dx = e^x + x^2y + C(y) \]

Partial differentiation

\[\frac{\partial}{\partial y} e^x + x^2y + C(y) = x^2 + C'(y) \]

Solve for \(C'(y) \)
\[x^2 + \cos y = x^2 + C'(y) \]
\[C'(y) = \cos y \]

Integrate again
\[C(y) = \int \cos y \, dy = -\sin y + D \]
Assemble results:

\[f(x, y) = e^x + x^2y - \sin y + D. \]

We want to prove a theorem about when this works, but need a tool. Suppose \(f : [a, b] \times [c, d] \to \mathbb{R} \) is \(C^1 \) and consider

\[
F(x) = \int_c^d f([x, y]) \, dy.
\]

You proved in homework that

\[
F'(x) = \frac{\partial}{\partial x} \int_c^d f([x, y]) \, dy
= \int_c^d \frac{\partial}{\partial x} f([x, y]) \, dy.
\]

This is called “differentiating under the integral sign.”
Definition. We say a region $\Omega \subset \mathbb{R}^n$ is starlike if there is some $\hat{a} \in \Omega$ so that for every $\hat{x} \in \Omega$, the line segment $\hat{a}\hat{x} \subset \Omega$.

\begin{center}
\begin{tabular}{cc}
\text{starlike} & \text{not starlike} \\
\end{tabular}
\end{center}

Theorem. Let $\Omega \subset \mathbb{R}^n$ be a starlike region and $\omega \in A_0^1(\Omega)$. If ω is closed, then ω is exact.

Proof. Suppose $\omega = \sum F_i \, dx_i$. For any $\hat{x} \in \Omega$, we can parametrize the
line C from \hat{a} to \hat{x} by
\[\hat{g}(t) = \hat{a} + t(\hat{x} - \hat{a}), \quad t \in [0,1]. \]

We define
\[f(\hat{x}) = \int_{\hat{c}} w = \int_{[0,1]} \hat{g}^* w \]
\[= \int_0^1 \sum_{j=1}^n F_j(\hat{g}(t)) g^j(t) \, dt \]

Now \[\hat{g}'(t) = \hat{x} - \hat{a}, \]
so \[g^j(t) = x_j - a_j. \]
\[= \sum_{j=1}^n (x_j - a_j) \int_0^1 F_j(\hat{g}(t)) \, dt \]

We claim that $df = w$. So we have to compute
\[\frac{\partial f}{\partial x_i} = \int_0^1 F_i (\dot{x}(t)) \, dt + \sum_{j=1}^n (x_j - a_j) \frac{\partial}{\partial x_i} \int_0^1 F_j (\dot{x}(t)) \, dt \]

\[= \int_0^1 F_i (\dot{x}(t)) \, dt + \sum_{j=1}^n (x_j - a_j) \int_0^1 \frac{\partial}{\partial x_i} F_j (\dot{x}(t)) \, dt. \]

Now

\[\frac{\partial}{\partial x_i} F_j (\dot{x}(t)) = \frac{\partial}{\partial x_i} F_j (\dot{x} + t(\ddot{x} - \dot{x})) \]

\[= \frac{\partial F_j}{\partial x_i} (\dot{x} + t(\ddot{x} - \dot{x})). \frac{\partial}{\partial x_i} (\dot{x} + t(\ddot{x} - \dot{x})) \]

\[= \frac{\partial F_j}{\partial x_i} (\dot{x}(t)) \cdot t \]
Now w is closed, so $d\omega = 0$. But $d\omega = \sum_{1 \leq i,j \leq n} (\frac{\partial F_i}{\partial x_j} - \frac{\partial F_j}{\partial x_i}) dx_i \wedge dx_j$, so this means that $\frac{\partial F_i}{\partial x_j} = \frac{\partial F_j}{\partial x_i}$, and we can write

$$\int_0^1 t \frac{\partial F_j}{\partial x_i} (g(t)) dt = \int_0^1 t \frac{\partial F_i}{\partial x_j} (g(t)) dt$$

and we have

$$\sum_{j=1}^n (x_j - a_j) \int_0^1 \frac{\partial}{\partial x_i} F_j (g(t)) dt =$$

$$= \int_0^1 t \sum_{j=1}^n (x_j - a_j) \frac{\partial F_i}{\partial x_j} (g(t)) dt$$

the derivative

$$\frac{d}{dt} F_i (g(t))$$

by chain rule!
\[\int_0^1 t (F_i \circ \hat{g})'(t) \, dt \]

\[= \left(F_i \circ \hat{g} \right)(t) \bigg|_0^1 - \int_0^1 F_i(\hat{g}(t)) \, dt \]

\[\text{integration by parts!} \]

\[= F_i(\hat{g}(1)) - \int_0^1 F_i(\hat{g}(t)) \, dt \]

\[= F_i(\mathbf{x}) - \int_0^1 F_i(\hat{g}(t)) \, dt \]

Thus

\[\frac{\partial F}{\partial x_i} = \int_0^1 F_i(\hat{g}(t)) \, dt + \]

\[+ \sum_{j=1}^n (x_j - a_j) \int_0^1 \frac{\partial}{\partial x_i} F_j(\hat{g}(t)) \, dt \]

\[= F_i(\mathbf{x}), \text{ as required. } \]
This theorem is usually enough: given a 1-form, check if it's closed, then try to construct a potential.

Example. Newton's law of gravitational says that the force of gravity exerted by a point mass M at \mathbf{r} is given by

$$\mathbf{F} = -GM \frac{\mathbf{r}}{||\mathbf{r}||^3}$$

The corresponding 1-form is

$$\omega = -GM \frac{x}{(x^2+y^2+z^2)^{3/2}} (xdx+ydy+zdz)$$

To find a potential, let's try

$$\int \frac{-x}{(x^2+y^2+z^2)^{3/2}} \, dx = \frac{1}{(x^2+y^2+z^2)^{1/2}} + C$$
and observe that this works, so

\[f(\hat{x}) = \frac{GM}{\|\hat{x}\|} \]

is a potential function.

This means that

\[
\begin{align*}
\text{work} &= \int_{0}^{4} \hat{g} \cdot \omega \\
&= f(\hat{g}(4)) - f(\hat{g}(0)) \\
&= GM \left(\frac{1}{\|\hat{g}(4)\|} - \frac{1}{\|\hat{g}(0)\|} \right)
\end{align*}
\]
= change in kinetic energy

\[= \frac{1}{2} \| \ddot{\mathbf{r}}(1) \|^2 - \frac{1}{2} \| \ddot{\mathbf{r}}(0) \|^2. \]

and we can see that an object in orbit is moving fastest when closest to the origin.

We can also see that \(\| \dot{\mathbf{r}}(t) \| \) is periodic - over a complete orbit no work is done, so the starting and ending kinetic energy are the same.
Green's Theorem on a Rectangle.
We have proved that if $\omega = df$, and C is a curve from a to b, we have $\int_C \omega = f(b) - f(a)$. This is a 1-d generalization of the fundamental theorem of calculus.
Let's try for 2d!

Theorem. (Green's theorem) Let $R \subseteq \mathbb{R}^2$ be a rectangle and let ω be a 1-form on R. Then if ∂R is the closed curve given by following the boundary ccw,

$$\int_{\partial R} \omega = \int_R d\omega.$$
Proof. Suppose $R = [a,b] \times [c,d]$ and

$$\omega = P \, dx + Q \, dy$$

Now $d\omega = \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) \, dx \wedge dy$, and

$$\int_R d\omega = \int_R \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) \, d\text{Area}$$

$$= \int_a^b \int_c^d \left(\int_a^b \frac{\partial Q}{\partial x} \, dx \right) \, dy - \int_a^b \int_c^d \left(\int_c^d \frac{\partial P}{\partial y} \, dy \right) \, dx$$

$$= \int_c^d \left(\int_a^b Q([x]) - Q([y]) \, dy \right) \, dx$$

$$- \int_a^b \left(\int_c^d P([x]) - P([y]) \, dx \right) \, dy$$

$$= \int_a^b P([x]) \, dx + \int_c^d Q([y]) \, dy$$

$$+ \int_a^c P([x]) \, dx + \int_d^b Q([y]) \, dy$$
Corollary. If $S \subset \mathbb{R}^2$ is parametrized by a rectangle and ω is a 1-form on S, then $\int_S \omega = \int_S d\omega$.

Proof.

\[\int_S \omega = \int_R \hat{g}^* \omega = \int_R d(\hat{g}^* \omega) = \int_R \hat{g}^* (d\omega) = \int_S d\omega. \]

We observe that if we can "tile" a region by subsets parametrized by rectangles, the theorem works.
We note that sections of the boundary of the rectangles which map to the interior of S cancel each other out, leaving only ∂S.

Example. Suppose that $\omega = -\frac{y}{2} \, dx + \frac{x}{2} \, dy$. Then $d\omega = -\frac{1}{2} \, dy \wedge dx + \frac{1}{2} \, dx \wedge dy = dx \wedge dy$. So

$$\text{area}(S) = \int_S dx \wedge dy = \int_S d\omega = \int_S \omega.$$
and so we can compute the area enclosed by any curve \(C \subset \mathbb{R}^2 \) by integrating

\[
\frac{1}{2} \int_C -y\,dx + x\,dy = \text{area enclosed!}
\]

Now we can say a bit more about closed and exact forms.

Definition. A subset \(X \subset \mathbb{R}^n \) is called **path-connected** if every \(a, b \in X \) are the endpoints of a curve \(C \subset X \).

Definition. A subset \(X \subset \mathbb{R}^n \) is called **simply connected** if it is path-connected and every closed curve \(C \subset X \) may be parametrized by \(\hat{g} : \mathbb{R} \to X \) so that \(C = \hat{g}(\mathbb{R}) \).
Corollary. Let $\Omega \subset \mathbb{R}^n$ be a simply connected region, and ω a 1-form on Ω. If ω is closed, ω is exact.

Proof. Suppose C is a closed curve in X. Then $C = \gamma(\partial R)$, so $C = \partial S$ where S is parametrized by R. We then have

$$\int_C \omega = \int_S \omega = \int_S d\omega = \int_S 0 = 0.$$

(by hypothesis)

Green's (them) corollary

By our previous theorem, if $\int_C \omega = 0$ for every closed curve in X, $\omega = df$. \square

We now consider the example

$$\omega = \frac{-y}{x^2+y^2} \, dy + \frac{x}{x^2+y^2} \, dx$$
We have previously computed
\[d\omega = \left(\frac{\partial}{\partial y} \frac{y}{x^2+y^2} + \frac{\partial}{\partial x} \frac{x}{x^2+y^2} \right) \, dx \, dy \]
\[= \left(\frac{x^2+y^2}{(x^2+y^2)^2} - 2y^2 + \frac{(x^2+y^2)^2 - 2x^2}{(x^2+y^2)^2} \right) \, dx \, dy \]
\[= 0. \]

Now if \(\mathbf{g}(t) = \begin{bmatrix} r \cos t \\ r \sin t \end{bmatrix} \), we have
\[\mathbf{g}^* \omega = \frac{-r \sin t}{r^2 \cos^2 t + r^2 \sin^2 t} \left(-r \sin t \right) \, dt \]
\[+ \frac{r \cos t}{r^2 \cos^2 t + r^2 \sin^2 t} \left(r \cos t \right) \, dt \]
\[= dt \]
(for any \(r > 0 \)). Thus if \(C \) is any circle around the origin, we have
\[\oint_{C} \omega = \int_{0}^{2\pi} dt = 2\pi. \]

Now suppose \(C \) is any simple closed curve which bounds a region including the origin.

There is a circle \(C' \) around the origin inside \(C \), and a region \(S \) so \(2S = C - C' \).
We then know
\[\int_{C} w = \int_{C'} w + \int_{S} dw = 2\pi + 0. \]

Definition. If \(C \) is a closed curve in \(\mathbb{R}^2 - \{0,0\} \), the winding number of \(C \) around \(0 \) is given by

\[\frac{1}{2\pi} \int_{C} \left(-\frac{y}{x^2+y^2} \, dx + \frac{x}{x^2+y^2} \, dy \right) \]

Theorem. The winding number is an integer. If \(C \) and \(C' \) can be deformed continuously to one another, their winding numbers are equal.