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SUMMARY In many applications of Independent Compo-
nent Analysis (ICA) and Blind Source Separation (BSS) esti-
mated sources signals and the mixing or separating matrices
have some special structure or some constraints are imposed for
the matrices such as symmetries, orthogonality, non-negativity,
sparseness and specified invariant norm of the separating ma-
trix. In this paper we present several algorithms and overview
some known transformations which allows us to preserve several
important constraints. Computer simulation experiments con-
firmed validity and usefulness of the developed algorithms.
key words: Blind sources separation, independent component
analysis with constraints, non-negative blind source separation

1. Introduction

The problem of blind source separation (BSS) and Inde-
pendent Component Analysis (ICA) has received wide
attention in various fields such as biomedical signal
analysis and processing (EEG, MEG, fMRI), speech en-
hancement, geophysical data processing, data mining,
wireless communications and image processing [1-33].

The mixing and filtering processes of the unknown
input sources sj(k) (j = 1, 2, ..., n) may have differ-
ent mathematical or physical models, depending on the
specific applications. In this paper, we will focus mainly
on the simplest cases when m observed mixed signals
xi(k) are linear combinations of n (m ≥ n) unknown,
typically zero mean source signals sj(k) which are ei-
ther statistically independent and/or they have differ-
ent temporal structures [1], [21]. They are written as

xi(k) =
n∑

j=1

hij sj(k) + νi(k), (i = 1, 2, . . . , m)(1)

or in the matrix notation

x(k) = Hs(k) + ν(k), (2)

where x(k) = [x1(k), . . . , xm(k)]T is a sensor vector,
s(k) = [s1(k), . . . , sn(k)]T is a vector of source signals
assumed to be statistically independent, ν(k) is a vec-
tor of additive noise assumed to be independent with
source signals, and H is an unknown full column rank
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m× n mixing matrix. It is assumed that only the sen-
sor vector x(k) is available to use and it is desired to
develop algorithms that enable estimation of primary
sources and/or identification of the mixing matrix H.
The ICA of the sensor vector x(k) ∈ IRm is obtained
by finding an n × m, (with m ≥ n), a full rank sep-
arating matrix W such that the output signal vector
y(k) = [y1(k), y2(k), . . . , yn(k)]T defined by

y(k) = Wx(k), (3)

contains the estimated source components s(k) ∈ IRn

that are as independent as possible, evaluated by an
information-theoretic cost function such as the mini-
mum Mutual Information (MI).

The main objective of this contribution is to
present several modifications and extensions of exist-
ing learning algorithms for ICA/BSS when some con-
straints are imposed for mixing matrix H and/or sepa-
rating matrix W and estimated source signals. Typical
constraints such as orthogonality or semi-orthogonality,
symmetry and non-negativity constraints arise natu-
rally in some physical models and they should be sat-
isfied to obtain valid and reliable solutions [1], [6], [21],
[25], [26], [28]–[30].

2. Blind Source Separation for Symmetric Ma-
trices

Blind separation algorithms can be dramatically sim-
plified if the mixing matrix H is symmetric and non-
singular. In such a case we can formulate the following.

Theorem 1: If in the model (2) the mixing ma-
trix H ∈ IRn×n is nonsingular and symmetric, ad-
ditive noise is zero or negligibly small and the zero-
mean sources s(k) are spatially uncorrelated with unit
variance, i.e. Rss = E{s(k)sT (k)} = In, then the
demixing matrix can be uniquely estimated by eigen-
value decomposition of the covariance matrix Rxx =
E{x(k)xT (k)} = VxΛxVT

x as

W∗ = Ĥ−1 = R−1/2
xx = VxΛ−1/2

x VT
x . (4)

Proof. The covariance matrix of sensor signals can be
evaluated as

Rxx = HRssHT . (5)

Taking into account that Rss = In and H = HT , we
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have Rxx = HH = H2. Hence, we obtain W∗ =
Ĥ−1 = R−1/2

xx = VxΛ−1/2
x VT

x , where Vx is the orthog-
onal matrix and Λx is the diagonal matrix obtained by
the eigenvalue decomposition of the covariance matrix:
Rxx = VxΛxVT

x . This means that the output signals
yi(k) will be mutually orthogonal with unit variances.

In general, spatial decorrelation is not sufficient
to perform instantaneous blind source separation from
linear mixtures.

3. Independent Component Analysis with sta-
ble Frobenius Norm of the Demixing Matrix

In order to ensure the convergence of some learning
algorithms and to provide their practical hardware im-
plementations it is often necessary to restrict the values
of entries of the separating matrices to a bounded sub-
set. Such a bound can be, for example, imposed by a
gradient descent learning system by keeping the Frobe-
nius norm of the separating matrix bounded or fixed
(invariant) during the learning process. In this sec-
tion, we present some theorems which explain how to
solve this problem. In the sequel we denote by tr(W)
the trace of a matrix W and assume that a gradient
∂J(W)

∂W
of the cost function J(W) satisfies reasonable

conditions which guarantee uniqueness of the trajecto-
ries (for given initial condition) of the dynamical sys-
tems described below. For example, such a sufficient

condition is
∂J(W)

∂W
to be a Lipschitz function on any

bounded set of IRn×m.
Wide class of algorithms for ICA can be expressed

in general form as [1]

dW(t)
d t

= µ(t)F(y(t))W(t), (6)

where y(t) = W(t)x(t) and the matrix F(y) can take
different forms, for example F(y) = In − f(y)gT (y)
with suitably chosen nonlinearities f(y) =
[f(y1, ..., f(yn)] and g(y) = [g(y1, ..., g(yn)] [11], [12].

Alternatively, for signals corrupted by additive
Gaussian noise, we can use higher order matrix cu-
mulants as follows [1], [13], [14]. Let us use the fol-
lowing notation: Cq(y1) denotes the q-order cumu-
lants of the signal yi and Cp,q(y,y) denotes the cross-
cumulant matrix whose elements are [Cpq(y,y)]ij =
Cum(yi, yi, . . . , yi︸ ︷︷ ︸

p

, yj , yj , . . . , yj︸ ︷︷ ︸
q

).

Let us consider the following cost function:

J(y,W) = −1
2

log | det(WWT )|

− 1
1 + q

n∑

i=1

|C1+q(yi)|. (7)

The first term assures that the determinant of the

global matrix will not approach zero. By including this
term, we avoid the trivial solution yi = 0 ∀i. The
second terms force the output signals to be as far as
possible from Gaussianity, since the higher order cu-
mulants are a natural measure of non-Gaussianity and
they will vanish for Gaussian signals. It can be shown
that for such a cost function, we can derive the follow-
ing equivariant discrete time algorithm [14]

∆W(k) = W(k + 1)−W(k)
= ηk [I−C1,q(y,y)Sq+1(y)]W(k), (8)

where Sq+1(y) = sign(diag(C1,q(y,y))) and F(y) =
I − C1,q(y,y)Sq+1(y). The above algorithm has no
constraints imposed on entries of the separating matrix
W.

For some F the dynamical system doesn’t corre-
spond to minimization of any cost function, for ex-
ample, this is the case of nonholonomic orthogonal
learning algorithm [1], where, for specific F(y) =
diag{f(y)yT } − f(y)yT , the diagonal elements of F(y)
are zero. The main observation for proving this fact is
that for a given diagonal matrix D (different from the
identity matrix) there is no such a cost function J(W)
such that

∂J(W)
∂W

= DW−T .

This fact follows from the criterion for the existence of
potential functions (see [23], Theorem 3.4).

For such a general case, the algorithm may diverge
to infinity, or may converge to zero. We propose mod-
ifications which stabilize the Frobenius norm of W as
follows.

Theorem 2: The learning rule

dW(t)
d t

= µ(t) [F(y(t))− βγ(t)In] W(t), (9)

where β > 0 is a scaling factor and γ(t) =
trace

(
WT (t)F(y(t))W(t)

)
> 0, stabilizes the Frobe-

nius norm of W(t) such ||W(t)||2F = tr(WT (t)W(t)) ≈
β−1.

Proof. It is straightforward to show that

d tr(WT W)
dt

= −2 µ(t)γ(t)β
[
tr(WT W)− β−1)

]
.

(10)

Denote z(t) = ||W||2F = tr
(
WT (t)W(t)

)
, and consider

a differential equation of the form

dz

dt
= −2 µ(t) γ(t)β

(
z(t)− β−1

)
.

The above differential equation has for an initial con-
dition z(0) = β−1 + δ (where δ is a small coefficients
representing perturbation) the following solution

z(t) = β−1 + δ exp(−2
∫ t

0

µ(t) γ(t)β dt). (11)
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Since µ(t), γ(t) and β are assumed to be nonnegative,
the exponential term in (11) decay to zero keeping the
norm ||W(t)||2F = tr(WT (t)W(t)) close to value β−1

and prevents the norm to explode.
In the next corollaries from Theorem 2 we present

stabilizing modifications of some known algorithms.

Corollary 1: The modified natural gradient descent
learning algorithm with a forgetting factor described as

dW(t)
d t

= −µ(t)
[∂J(W)

∂W
WT (t)W(t)

+βγ(t)W(t)
]
, (12)

where J(W) is the cost function, ∇WJ = ∂J(W)
∂W de-

notes its gradient with respect to the nonsingular ma-
trix W ∈ IRn×n, µ > 0 is the learning rate and

γ(t) = −tr
(
WT (t)

∂J(W)
∂W

WT (t)W(t)
)

> 0

(13)

is a forgetting factor, ensures that the Frobenius norm
of the matrix W(t) is bounded.

Proof. Take F (y) = −∂J(W)
∂W WT in Theorem 2.

Remark 1 Theorem 2 does not discuss the stabil-
ity problem of the corresponding learning algorithms,
which depend on a cost function and a learning rate but
only states that by introducing the forgetting factor we
are able to bound entries of the matrix W in such a
way that its Frobenius norm is bounded or even fixed.

The well known Amari’s natural gradient algo-
rithm [1] based on minimization of the MI can be mod-
ified as follows:

Wk+1 = Wk + ηk

[
In − 〈f(yk)yT

k 〉 − βγkIn

]
Wk, (14)

where γk = tr
(
WT

k Γk

)
, Γk =

(
In − 〈f(yk)yT

k 〉
)
Wk

and β satisfies the condition in Theorem 2.

Corollary 2: The stochastic gradient descent learn-
ing algorithm

dW(t)
d t

= −µ(t)
[
∂J(W)

∂W
+ βγ(t)W(t)

]
, (15)

where J(W) is the cost function, ∇WJ(W) = ∂J(W)
∂W

denotes its gradient with respect to the nonsingular ma-
trix W ∈ IRn×n, µ(t) > 0 is the learning rate and

γ(t) = −tr
(
WT (t)

∂J(W)
∂W

)
> 0 (16)

is a forgetting factor, ensures that the Frobenius norm
of the matrix W(t) is stable.

Corollary 3: The modified Atick-Redlich descent
learning algorithm with forgetting factor [1]

dW(t)
d t

= −µ(t)
[
W(t)

[
∂J(W)

∂W

]T

W(t)

+βγ(t)W(t)
]
, (17)

where J(W) is a differentiable cost function, ∇WJ =
∂J(W)

∂W denotes its gradient with respect to the nonsin-
gular matrix W ∈ IRn×n, µ > 0 is the learning rate
and

γ(t) = −tr

(
WT (t)W(t)

[
∂J(W)

∂W

]T

W(t)

)
> 0

is a forgetting factor, ensures that the Frobenius norm
of the matrix W(t) is stable.

4. ICA Algorithms with Semi-Orthogonality
Constraints

Recently, an interest has grown in gradient algorithms
that attempt to impose semi-orthogonality constraints
on the separating matrix [1], [4], [7], [13], [15], [16]. One
advantage of this approach is possibility to extract arbi-
trary group of sources. Consider the problem of extrac-
tion of arbitrary group of sources simultaneously, say
e, where 1 ≤ e ≤ n, with m ≥ n. Let us also assume
that the sensor signals are prewhitened, for example,
by using the PCA technique [1]. Then, the transformed
sensor signals satisfy the condition

Rx x = E{x xT } = In, (18)

where x = x1 = Qx and the new global n × n mix-
ing matrix A = QH is orthogonal, that is, AAT =
AT A = In. Hence, the ideal n × n separating matrix
is W∗ = A−1 = AT for e = n.

In order to solve this problem, we can formu-
late the appropriate cost function expressed by the
Kullback-Leibler divergence

Kpq = K(p(y,We)||q(y))

=
∫

p(y,We) log
p(y,We)

q(y)
dy, (19)

where q(y) =
∏e

i=1 qi(yi) represents an adequate inde-
pendent probability distribution of the output signals
y = Wex, and We ∈ IRe×n is a demixing (separating)
matrix, with e ≤ n.

Hence, the cost function takes the form:

J(y,We) = −
e∑

i=1

E{log qi(yi)} (20)

subject to constraints WeWT
e = Ie.



4
IEICE TRANS. FUNDAMENTALS, VOL.E86–A, NO.1 JANUARY 2003

These constraints follow from the simple fact that
the mixing matrix A = QH is a square orthogonal
matrix and the demixing matrix We should satisfy the
following relationship after successful extraction of e
sources (ignoring scaling and permutation for simplic-
ity):

WeA = [Ie,0n−e]. (21)

We say that the matrix We satisfying the above con-
dition forms a Stiefel manifold since its rows are mu-
tually orthogonal (wiwT

j = δij). In order to satisfy
the constraints during the learning process, we employ
the following continuous-time natural gradient formula
[15], [17]

dWe(t)
d t

= −µ(t)
(∂J(y,We)

∂We

−We(t)
[
∂J(y,We)

∂We

]T

We(t)
)
. (22)

It can be shown that the separating matrix We satisfies
the relation We(t)WT

e (t) = Ie on the condition that
We(0)WT

e (0) = Ie. This property can be formulated
in the form of the following theorem.

Theorem 3: The natural gradient dynamic systems
on the Stiefel manifolds described by (22) with µ >
0,W ∈ IRe×n, e ≤ n satisfy during the learning pro-
cess the semi-orthogonality constraints:

We(t)WT
e (t) = Ie, ∀t if We(0)WT

e (0) = Ie (23)

Proof. Consider the following system of differential
equations

dWe(t)
d t

= −µ(t)
(
We(t)WT

e (t)
∂J(We)

∂We

−We(t)
[
∂J(We)

∂We

]T

We(t)
)

(24)

with the initial condition We(0)WT
e (0) = Ie the same

as those of (22). It is straightforward to check that

the solution We(t) of (24) satisfies
d(WeWT

e )
dt

= 0.

Therefore, We(t)WT
e (t) = Ie for every t ≥ 0. Hence,

the systems (22) and (24) coincide (considered with the
same initial condition satisfying (23)).

Remark 2 It should be noted that for discrete-
time version of the algorithm

∆We(k) = −ηk(∇k −We(k)∇T
k We(k)), (25)

where ∇k = ∂J(We(k))
∂We

the semi-orthogonality con-
straints can be satisfied only approximately. Direct
calculations show that

We(k + 1)WT
e (k + 1)

= We(k)WT
e (k) + η2

k

(
∇k∇T

k − (∇kWT
e (k))2

− (We(k)∇T
k )2 + We(k)∇T

k ∇kWe(k)T
)
, (26)

where the second term can be neglected if the learn-
ing step is sufficiently small. In order to satisfy the
semi-orthogonality constraints we can employ modified
algorithm

∆We(k) = −ηk[We(k)WT
e (k)∇k

−We(k)∇T
k We(k). (27)

Applying the natural gradient formula (25), we ob-
tain a learning rule:

We(k + 1) = We(k)− η(k)[
〈
f [y(k)]xT (k)

〉

− 〈
y(k) fT [y(k)]

〉
We(k)], (28)

with the initial conditions satisfying We(0)WT
e (0) =

Ie.
It is worth to note, that for e = n, the separat-

ing matrix We = W is orthogonal and the learning
rule simplifies to the well-known algorithm proposed
by Cardoso and Laheld [7]:

W(k + 1) = W(k)− η(k)
[ 〈

f [y(k)]yT (k)
〉

− 〈
y(k)fT [y(k)]

〉 ]
W(k), (29)

since x = Qx = QHs = W−1 y = WT y.
The above algorithm (28) can be implemented as

on-line (moving average) algorithm [1]:

We(k + 1) = We(k)− η(k) [R(k)
f x −R(k)

y f We(k)],

(30)

where

R(k)
f x = (1− η0)R

(k−1)
f x + η0 f(y(k))xT (k), (31)

R(k)
y f = (1− η0)R

(k−1)
y f + η0 y(k) fT (y(k)), (32)

and f(y) = [f(y1), f(y2), . . . , f(ye)]T , with suitably
chosen score functions (f(yi) = −d log(qi(yi))/dyi =
q′i(yi)/qi(yi)).

An interesting modification of the natural gradient
learning algorithm with the orthogonality constraint
has been proposed by Nishimori and Fiori [18], [27].
The algorithm can be represented as

W(k + 1) = exp[−ηk∇̃WJ ] W(k), (33)

where the gradient ∇̃WJ can take a special form:

∇̃WJ = ∇kWT (k)−W(k)∇T
k

= f(y(k))yT (k)− y(k)fT (y(k)), (34)

with the standard gradient denoted as ∇k = ∂J(W(k))
∂W .

It can be easily shown that in the special case of
Grassmann-Stiefel manifolds the learning rule (33) ex-
actly satisfies semi-orthogonality constraints indepen-
dent of the value of the learning rate ηk under the con-
dition that W(0)WT (0) = I.
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Proof. Let us assume that W(k)WT (k) = I.
Then we have W(k + 1)WT (k + 1) = exp[−ηk∇̃WJ ]
W(k)WT (k) exp[ηk∇̃WJ ]= exp(0) = I.

The above learning formula can be extended or
generalized to the following forms (that not necessarily
satisfy orthogonality constraints):

W(k + 1) = exp[ηkF(y(k))] W(k), (35)

and

Ĥ(k + 1) = Ĥ(k) exp[−ηkF(y(k))], (36)

where the matrix F(y(k)) can take various forms as
discussed in previous sections of this paper (see also [1]).
The matrix exp[ηkF(y(k))] can be efficiently computed
in MATLAB using a Pade approximation.

5. Blind Source Separation with Non-negativity
Constraints

In many applications such as computer tomography and
biomedical image processing non-negative constraints
are imposed for entries (hij ≥ 0) of the mixing matrix
H and/or estimated source signals (sj(k) ≥ 0) [1], [6],
[20], [26], [28], [30]. Moreover, recently several authors
suggested that a decomposition of a observation X =
[x(1),x(2), . . .x(N)] = HS into non-negative factors or
Non-Negative Matrix Factorization (NMF), is able to
produce useful and meaningful representation of real-
world data, especially in image analysis, hyperspectral
data processing, biological modeling and sparse coding
[20], [25], [28], [29].

In this section, we present very simple and practi-
cal technique for estimation of nonnegative sources and
entries of the mixing matrix using standard ICA ap-
proach and suitable postprocessing. In other words, we
will show that by simple modifications of existing ICA
or BSS algorithms we are able to satisfy non-negativity
constraints of sources and simultaneously impose they
are sparse or independent as possible. Without loss of
generality, we assume that matrix and all sources are
non-negative, i.e., sj(k) = s̃j(k) + cj ≥ 0 ∀j, k. More-
over, we assume that the zero mean subcomponents
s̃j(k) are mutually statistically independent†.

Furthermore, we may assume if necessary that the
entries of nonsingular mixing matrix H are also non-
negative i.e, hij ≥ 0 ∀i, j and optionally that columns
of the mixing matrix are normalized vectors with 1-
norm equal to unity [6], [26], [28].

We propose a two stage procedure. In the first
stage, we can apply any standard ICA or BSS algorithm

†It should be noted that the non negative sources
sj(k) = s̃j(k) + cj are non independent, even zero mean
sub-components s̃j(k) are independent, since dc (constant)
sub-components cj are dependent. Due to this reason we re-
fer to the problem as non-negative blind source separation
rather than non-negative ICA [29], [30].

for zero-mean (pre-processed) sensor signals without
any constraints in order to estimate the separating ma-
trix W up to an arbitrary scaling and permutation and
estimate the waveforms of the original sources by pro-
jecting the (non-zero mean) sensor signals sj(k) via the
estimated separating matrix (ŝ(k) = W∗x(k)).

It should be noted that since the global mixing-
unmixing matrix defined as G = W∗H after successful
extraction of the sources is a generalized permutation
matrix containing only one nonzero (negative or posi-
tive) element in each row and each column, thus each
estimated source in the first stage will be either non-
negative or non-positive for every time instant.

In the second stage in order to recover the origi-
nal waveforms of the sources with correct sign all the
estimated non positive sources should be inverted, i.e.
multiplied by −1. It should be noted that this proce-
dure is valid for an arbitrary nonsingular mixing matrix
with both positive and negative elements.

If the original mixing matrix H has non-negative
entries, then in order to identify it the corresponding
vectors of the estimating matrix Ĥ = W−1 should be
multiplied by the factor −1. In this way, we can esti-
mate the original sources and blindly identify the mix-
ing matrix satisfying non-negativity constraints. Fur-
thermore, if necessary, we can redefine Ĥ and ŝ as fol-
lows: ̂̄hkj = ĥkj/

∑n
i=1 ĥij and ̂̄sj = ŝj(

∑n
i=1 ĥij). Af-

ter such transformation, the new estimated mixing ma-
trix ̂̄H has column sums equal to one and the vector
x = ̂̄H ̂̄s is unchanged.

Summarizing, from this simple explanation it fol-
lows that it is not necessary to develop any special
kind of algorithms for BSS with non-negativity con-
straints (see for example [25], [28], [30]). Any standard
ICA algorithm (batch or on-line) can be applied first
for zero-mean signals, and the waveforms of original
sources and optionally the desired mixing matrix with
non-negativity constraints can be estimated exploiting
basic properties of the assumed model (see Example 2).

6. Multiresolution Subband Decomposition –
Independent Component Analysis (MSD-
ICA)

Despite the success of using standard ICA in many ap-
plications, the basic assumptions of ICA may not hold
for some kind of signals hence some caution should be
taken when using standard ICA to analyze real world
problems, especially in biomedical signal processing. In
fact, by definition, the standard ICA algorithms are
not able to estimate statistically dependent original
sources, that is, when the independence assumption is
violated. In this section we will present some natural
extensions and generalizations of ICA called Multireso-
lution Subband Decomposition ICA (MSD-ICA) which
relaxes considerably the assumption regarding mutual
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independence of primarily sources. The key idea in this
approach is the assumption that the wide-band source
signals are generally dependent, however some narrow
band subcomponents of the sources are independent.
In other words, we assume that each unknown source
can be modeled or represented as a sum of narrow-band
sub-signals (sub-components):

si(k) = si1(k) + si2(k) + · · ·+ siK(k). (37)

The basic concept in MSD-ICA is to divide the sen-
sor signal spectra into their subspectra or subbands,
and then to treat those subspectra individually for the
purpose at hand. The subband signals can be ranked
and processed independently. Let us assume that only a
certain set of sub-components is independent. Provided
that for some of the frequency subbands (at least one)
all sub-components, say {sij(k)}n

i=1, are mutually inde-
pendent or temporally decorrelated, then we can easily
estimate the mixing or separating system (under con-
dition that these subbands can be identified by some a
priori knowledge or detected by some self-adaptive pro-
cess) by simply applying any standard ICA algorithm,
however not for all available raw sensor data but only
for suitably pre-processed (e.g., band pass filtered) sen-
sor signals.

In one of the most simplest case, source signals can
be modeled or decomposed into their low- and high-
frequency sub-components:

si(k) = siL(k) + siH(k) (i = 1, 2, . . . , n). (38)

In practice, the high-frequency sub-components siH(k)
are often found to be mutually independent. In such
a case in order to separate the original sources si(k),
we can use a High Pass Filter (HPF) to extract the
mixture of independent high frequency sub-components
and then apply any standard ICA algorithm to such
preprocessed sensor (observed) signals. We have im-
plemented these concepts in our ICALAB software and
extensively tested these concepts for some experimen-
tal data [1], [8]. Such explanation can be summarized
as follows.

Definition 1 (MSD-ICA): The MSD-ICA (Multires-
olution Subband Decomposition ICA) can be formu-
lated as a task of estimation of the separating matrix
W and/or the mixing matrix H on the basis of suit-
able multiresolution subband decomposition of sensor
signals and by applying a classical ICA (instead for raw
sensor data) for one or several preselected subbands for
which source sub-components are independent.

In the preprocessing stage, more sophisticated meth-
ods, such as block transforms, multirate subband filter
bank or wavelet transforms, can be applied. We can ex-
tend and generalize further this concept by performing
the decomposition of sensor signals in a composite time-
frequency domain rather than in frequency subbands.

This naturally leads to the concept of wavelets pack-
ets (subband hierarchical trees) and to block transform
packets [9], [35].

7. Computer Simulation Experiments

In this section, we present a few examples illustrating
the validity and performance of some of the proposed
algorithms.

Example 1. Five independent zero-mean sources
mixed by a randomly generated full column rank mix-
ing matrix H ∈ IR9×5 and additive uniform noise was
added with SNR 15dB. The plots of original sources
and their noisy mixtures are shown respectively in Fig
1 (a) and (b).

In order to reconstruct original sources the learn-
ing rule (14) has been applied for square separating ma-
trix W ∈ IR9×9 with F(y) = I5 −

〈
f(y)yT

〉
, β = 0.01

and f(y) = tanh(2y). After 100 iterations the algo-
rithm was able to estimate the sources (see Fig. 1 (c))
by keeping the Frobenius norm of the separating ma-
trix in the range ||W(k)||2F = tr(WT (k)W(k)) ≈ 100.
Without a stabilizing factor the norm of W grows to
very large value as the number of iteration increases.

Example 2. In this example sparse non-negative
source signals are mixed by a normalized sparse matrix
with non-negative entries (assumed to be unknown).

H =




0 0.7 0.2 0
0.4 0 0 0.3
0.6 0.3 0 0.5
0 0 0.8 0.2


 (39)

The mixed (observed sensor) signals are shown in Fig.
2 (a).

After standard prewhitening algorithm (8) with
fourth order cumulants has been applied. The esti-
mated sources are shown in Fig 2 (c) and the estimating
mixing matrix has the form

Ĥ = W−1 =




0.000 3.549 0.000 0.888
−1.861 0.000 −1.245 0.000
−2.783 1.521 −2.095 0.001
−0.005 0.003 −0.909 3.563




It is seen that source ŝ1(k) and ŝ3(k) are non positive so
they should be inverted and the corresponding columns
(first and third one) of the matrix Ĥ should be multi-
plied by −1. After normalizing the mixing matrix we
obtained

̂̄H =




0.000 0.700 0.000 0.199
0.395 0.000 0.293 0.000
0.605 0.300 0.493 0.000
0.000 0.000 0.214 0.801


 (40)

which is a very close approximation of the original mix-
ing matrix H neglecting permutation ambiguity. In this
way, we were able to reconstruct the original sources
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(d) Performance index

0.081279 1.000000 0.089716 0.088170 0.015837

0.093763 0.013712 0.035906 0.175413 1.000000

0.003784 0.080718 1.000000 0.052424 0.047505
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0.051767 0.004591 0.044169 0.023064 0.030532
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0.095639 0.035751 0.057608 0.036879 0.139964

0.086048 0.031949 0.143862 0.010568 0.027507

Fig. 1 Plots illustrating Example 1: (a) Original 5 sources.
(b) 9 sensor (observed) noisy signals (the number of sources is
assumed to be unknown). (c) Estimated source signals + noise,
(d) performance matrix G = WH.

and estimate the mixing matrix with only permutation
ambiguity. We reduced the scaling ambiguity with the
assumption that the mixing matrix H is normalized and
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(c) Recovered sources
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Fig. 2 Plots illustrating Example 2: (a) Original non-negative
sources. (b) Mixed (observed) signals. (c) Estimated sources
before post-processing.

non-negative.
Example 3 In this experiment 4 human faces are

mixed with the Hilbert (ill-conditioned) mixing matrix
H. The mixing images shown in Fig. 3 (a) are strongly
correlated, thus any classical ICA algorithm would fail
to separate them. In order to reconstruct the original
images we applied the pre-processing stage first high
pass filtering the observed images in order to enhance
edges (which appear to be independent for the original
images). For such preprocessed mixed images we have
applied the learning rule (8) and after convergence of
the algorithm the post processing technique described
in section 5 has been employed.

The estimated original images are shown in Fig.
3 (b). It should be noted that original images are re-
constructed almost perfectly without sign scaling am-
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(a) Superimposed images
mixture 1 mixture 2

mixture 3 mixture 4

(b) Reconstructed images

output 1 ~output 1 output 2 ~output 2

output 3 ~output 3 output 4 ~output 4

Fig. 3 Example 3: (a) Observed overlapped images. (b) Re-
constructed original images using MSD-ICA with high pass filter
preprocessing.

biguity. Similar results have been obtained for other
randomly generated matrices.

8. Conclusions

In this paper we have presented several extensions and
modifications of algorithms for blind source separa-
tion and independent component analysis where var-
ious constraints are imposed such as symmetries, semi-
orthogonality, non-negativity and constant or bounded
Frobenius norm. Mathematical analysis and/or com-
puter simulations confirmed validity and satisfactory
performance of the proposed algorithms. Moreover, we
proposed generalization and extension of ICA to MSD-
ICA which relaxes considerably the condition on inde-
pendence of original sources. Using these concepts in
many cases, we are able to reconstruct (recover) the

original sources and to estimate mixing and separating
matrices, even if the original sources are not indepen-
dent and in fact they are strongly correlated. In the
future work, we are going to establish a self-adaptive
system which detect automatically optimal subbands
for which ICA should be performed.
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