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CURVES AND SURFACES
IN EUCLIDEAN SPACE

S. S. Chern

1. INTRODUCTION

This article contains a treatment of some of the most elementary
theorems in differential geometry in the large. They are the seeds
for further developments and the subject should have a promising
future. We shall consider the simplest cases, where the geometrical
ideas are most clear.

1. THEOREM OF TURNING TANGENTS

Let E be the euclidean plane, which is oriented so that there is
a prescribed sense of rotation. We define a smooth curve by ex-
pressing its position vector X = (x, ») as a function of its are
length s. We supposé the funetion X (s)—that is, the functions
21(s), T2(s)—to be twice continuously differentiable and the vector

X’(s) to be nowhere 0. The latter allows the definition of the unit
16
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tangent vector e (s), which is the unit vector in the direction of
X’(s) and, since E is oriented, the unit normal vector es(s), so
that the rotation from e; to es is positive. The vectors X (s), ex(s),
es(s) are related by the so-called Frenet formulas

(1) % = €y, g'gl = keg, % = —kel.

The function k(s) is called the curvature. It is defined together with
its sign and changes its sign if the orientation of the curve or of
the plane is reversed.

The curve C is called closed, if X(s) is periodic of period L,
L being the length of C. It is called simple if X (s1) # X(s3), when
0 < s — s < L. It is said to be convex if it lies in one side of
every tangent line.

Let C be an oriented closed curve of length L, with the position
vector X (s) as a function of the arc length s. Let O be a fixed point
in the plane, which we take as the origin of our coordinate system.
Denote by T' the unit circle about O. We define the tangential
mapping T:C — T as the one which maps a point P of C to the
endpoint of the unit vector through O parallel to the tangent
vector to C at P. Obviously 7 is a continuous mapping. It is
intuitively clear that when a point goes around C once its image
point goes around I' a number of times. This number will be called
the rotation index of €. The theorem of turning tangents asserts
that if C is simple, the rotation index is ==1. We begin by giving
a rigorous definition of the rotation index.

We choose a fixed vector through 0, say Oz, and denote by 7(s)
the angle which Oz makes with the vector ei(s). We assume that
0 < 7(s) < 2m, so that 7(s) is uniquely determined. This function
7(s) is, however, not continuous, for in every neighborhood of s
at which 7(s;) = 0 there may be values of 7(s) differing from 27
by an arbitrarily small quantity. There exists nevertheless a con-
tinuous function 7(s) closely related to 7(s), as given by the follow-
ing lemma.

LemMA: There exists a continuous function #(s) such that
7(s) = =(s), mod 2.

g
?

Proof: To prove the lemma, we observe that the mapping 7
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being continuous, is uniformly continuous. Therefore, there exists
o number 8 > 0, such that, for |s; — s2| <39, T(s;) and T'(sp) lie
in the same open half-plane. From our conditions on #(s), it follows
that, if 7(s;) is known, #(sy) is completely determined. We divide the
interval 0 < s < L by the points 8 (= 0) <& < -+~ < 8m (= L)
such that |s; — si-1| <9, i=1, ---, m. To define 7(s), we assign
to #(so) the value 7(s0)- Then it is determined in the subinterval
s <8< s, in particular at sy, which determines it in the second
subinterval, ete. The function #(s) so defined clearly satisfies the
conditions of the lemma.

The difference #(L) — 7(0) is an integral multiple of 2w, say,
= v2r. We assert that the integer v 18 independent of the choice

of the function 7(s). In fact, let 7' (s) be a function satisfying the
same conditions. Then we have

#(s) — 7(s) = n(s) -2,
where n(s) is an integer. Sinece n(s) is continuous in s, it must be
a constant. It follows that

#(L) — #(0) = #(L) — 7(0),

which proves the independence of vy from the choice of 7(s). We
define v to be the rotation index of C. The theorem of turning
tangents follows.

TaroreM: The rotation index of a simple closed curve is x1.

Proof: To prove this theorem, we consider the mapping = which
carries an ordered pair of points of C, X (s1), X(52),0 = 81 = % <L,
into the endpoint of the unit vector through O parallel to the
secant joining X (s1) to X (s5). These ordered pairs of points can
be represented as a triangle A in the (sy, se)-plane defined by
0<s < s = L. The mapping = of A into T is continuous. We
also observe that its restriction to the side s = 8218 the tangential
mapping 7.

To a point p € A, let 7(p) be the angle which Oz makes with
0=(p), such that 0 = 7(p) < 2m. Again this function need not be
continuous. We shall, however, prove that there exists a con-
tinuous function 7(p), p € 4, such that 7(p) = 7(p) mod 2.

In fact, let m be an interior point of A. We cover A by the radii
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through m. By the arguments used in the proof of the preceding
lemma, we can define a function 7(p), p € A, such that #(p) = =(p),
mod 27, and such that it is continuous along every radius through
m. It remains to prove that it is continuous in A. For this purpose,
let po be a point of A. Since Z is continuous, it follows from the
compactness of the segment mp, that there exists a number
7 = n(po) > 0, such that, for ¢ € mp,, and for any point of
¢ € A for which the distance d(g, go) < , the points =(¢) and
Z(go) are never antipodal. The latter condition is equivalent to
the relation

@) 7(q) — 7(g) # 0, mod .

Now let € > 0, e < 7/2, be given. We choose a neighborhood U of
Po, such that U is contained in the y-neighborhood of p,, and such
that, for p € U, the angle between OZ(p,) and OZ(p) is less than e.
This is possible, because the mapping Z is continuous. The last
condition can be expressed in the form

(3) '?(p) - f(pﬁ) =€ + Qk(p)"r: ‘G’[ <e¢

where k(p) is an integer. Let ¢, be any point on the segment mp.
Draw the segment qog parallel to pep, with ¢ on mp. The func-
tion #(g) — 7(go) is continuous in ¢ along mp and is zero when
g coincides with m. Since d(g, ¢u) is less than 7, it follows from
Equation (2) that |#(¢) — #(go)| < . In particular, for g, = py,
|7#(p) — 7(po)| < 7. Combining this result with Equation (3), we
get k(p) = 0, which proves that #(p) is continuous in A. Since
7(p) = 7(p), mod 2, it is easy to see that #(p) is differentiable.

Now let 4(0, 0), B(0, L), and D(L, L) be the vertices of A. The
rotation index vy of C is defined by the line integral

2wy = _ d7.
Since 7(p) is defined in A, we have

AD d7 = [m dv + - d7.

To evaluate the line integrals on the right-hand side, we make use
of a suitable coordinate system. We can suppose X (0) to be the
“lowest” point of C—that is, the point when the vertical coordi-
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nate is a minimum, and we choose X (0) to be the origin O. The
tangent vector to C at X(0) 1s horizontal, and we call it Oz. The
curve C then lies in the upper half-plane bounded by Oz, and

the line integral f 5 d# is equal to the angle rotated by OP as P
traverses once along C. Since OP never points downward, this
angle is er, with e = ==1. Similarly, the integral j] _d7 is the

angle rotated by PO as P goes once along C. Its value is also
equal to er. Hence, the sum of the two integrals is 2w and the
rotation index of C'is =1, which completes our proof.

We can also define the rotation index by an integral formula.
In fact, using the function #(s) in our lemma, we can express the
components of the unit tangent and normal vectors as follows:

ey = (cos 7(s), sin 7(s)), e, = (—sin #(s), cos 7(s)).
1t follows that
d#(s) = dei-ex = k ds.

From this equation, we derive the following formula for the rota-
tion index:

(4) Oy = fC k ds.

This formula holds for closed curves which are not necessarily
simple.

The accompanying figure gives an
example of a closed curve with rota-
tion index zero.

Many interesting theorems in differ-
ential geometry are valid for a more
general class of curves, the so-called

Fig. 1 sectionally smooth curves. Such a curve

is the union of a finite number of

smooth ares A¢di, Aids -, A,_1An, where the tangents of
the two arcs through a common vertex A, 2 =1, +--,m — 1,

may be different. The curve is called closed, if Ay = An. The
simplest example of a closed sectionally smooth curve is a recti-
linear polygon.
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The notion of rotation index and the theorem of turning tangents
can be extended to closed sectionally smooth curves; we sum-
marize, without proof, the result as follows. Let s;,z =1, ---, m,
be the arc length measured from A, to 4;, so that s, = L is the
length of the curve. The curve supposedly being oriented, the
tangential mapping is defined at all points different from A;. At
a vertex A; there are two unit vectors, tangent respectively to
A; 1A; and A;A;;. (We define A, = A;.) The corresponding
points on T" we denote by T'(4;)~ and T'(4:)*. Let ¢; be the angle
from T'(A,)~ to T(A,)*, with 0 < ¢; < m, briefly the exterior angle
from the tangent to 4, 14, to the tangent to 4,4.:. For each arc
A; 1A, a continuous function 7(s) can be defined which is one of
the determinations of the angle from Oz to the tangent at X (s).
The number vy defined by the equation

m

(5) 2my = g)l {#(s:) — 7(siz0)} + Z i

is an integer, which will be called the rotation index of the curve.
The theorem of turning tangents is again valid.

TarorEM. If a sectionally smooth curve is simple, the rotation
index s equal to +=1.

As an application of the theorem of turning tangents, we wish to
give the following characterization of a simple closed convex curve.

REMARK: A simple closed curve is convex, if and only +f it can be
so0 ortented that ils curvature is greater than, or equal to, 0.

Let us first remark that the theo-
rem is not true without the assump-
tion that the curve is simple. In fact,
the accompanying figure gives a non-
convex curve with £ > 0.

Proof: To prove the theorem, we
let #(s) be the function constructed,
so that we have k = d7/ds. The con-
dition & = 0 is equivalent to the as-
sertion that #(s) is a monotone non-

Fia. 2 decreasing function. Because C 1is
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simple, we can suppose that 7(s), 0 < s £ L, increases from 0
to 2. It follows that if the tangents at X (s1) and X (52),0 £ 81 <
sy < L, are parallel ‘n the same sense, the arc of C from X(sy) to
X (sy) is a straight line segment and these tangents must coincide.,

Suppose 7(s), 0 = s < L, is monotone nondecreasing and C' is
not convex. There is a point A = X (so) on C such that there are
points of C' at both sides of the tangent ¢ to C at A. Choose a
positive side of and consider the oriented perpendicular distance
from a point X (s) of C to t. This is a continuous function in s and
attains a maximum and a minimum at the points M and N of C,
respectively. Clearly M and N are not on ¢ and the tangents to C
at M and N are parallel to . Among these two tangents and ¢
itself, there are two tangents parallel in the same sense, which,
according to the preceding remark, is impossible.

Next we let €' be convex. To prove that 7(s) is monotone, we
suppose 7(s1) = 7(ss), 81 < s2. Then the tangents at X(s1) and
X (s,) are parallel in the same sense. But there exists a tangent
parallel to them in the opposite sense. From the convexity of C
it follows that two of them coincide.

We are thus led to the consideration of a line ¢ tangent to (84
at two distinct points, A and B. We claim that the segment A B
must be a part of C. In fact, suppose this is not the case and let D
be a point of AB not on C. Draw through D a perpendicular u
to ¢ in the half-plane which contains C. Then u intersects C in at
least two points. Among these points of intersection, let F be the
farthest from ¢ and G the nearest, so that F ¢ G. Then G is an
interior point of the triangle ABF. The tangent to C at G must
have points of € in both sides, which contradicts the convexity
of C.

It follows that, under the hypothesis of the last paragraph, the
segment AB is a part of C and that the tangents at A and B are
parallel in the same sense. This proves that the segment joining
X (s1) to X (ss) belongs to C'. The latter implies that 7(s) remains
constant in the interval s, = 8 < s,. Hence, the function 7(s) 1s
monotone, and our theorem is proved.

«L 0
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The first half of the theorem can also be stated as follows.

ReMARK: A closed curve with k(s) = 0 and rotation index equal
to 1 s convex.

The theorem of turning tangents was essentially known to
Riemann. The above proof was given by H. Hopf, Compositio
M athematica 2 (1935), pp. 50-62. For further reading, see:

1. H. Whitney, “On regular closed curves in the plane,” Compositio
Mathematica 4 (1937), pp. 276-84.

2. S. Smale, “Regular curves on a Riemannian manifold,” Trans-
actions of the American Mathematical Society 87 (1958), pp.
492-511.

3. S. Smale, “A classification of immersions of the two-sphere,”
Transactions of the American Mathematical Society 90 (1959),
pp- 281-90.

2. THE FOUR-VERTEX THEOREM

An interesting theorem on closed plane curves is the so-called
“four-vertex theorem.” By a vertex of an oriented closed plane
curve we mean a point at which the curvature has a relative ex-
tremum. Since the curve forms a compact point set, it has at least
two vertices, corresponding respectively to the absolute minimum
and maximum of the curvature. Our theorem says that there are
at least four.

TaeorEM: A simple closed convex curve has at least four vertices.

This theorem was first presented by Mukhopadhyaya (1909);
the proof we shall give was the work of G. Herglotz. It is also true
for nonconvex curves, but the proof is more difficult. The theorem
cannot be improved, because an ellipse with unequal axes has
exactly four vertices, which are its points of intersection with the
axes.

Proof: We suppose that the curve C has only two vertices, M and
N, and we shall show that this leads to a contradiction. The line
MN does not meet € in any other point, for if it does, the tangent
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line to C at the middle point must contain the other two points.
ible only when the segment

By the last section, this condition s possi
MN is a part of hat the curvature vanishes at

C. 1t would follow t

M and N, which 1s not possible, since
ature takes the absolute maximum and minimum respectively.

the parameters of M and N respectively
,-axis. Then we can suppose

they are the points where the

curv
We denote by 0 and So
and take MN to be the
x(s) <0, 0<s < S

z2(8) > 0, s < s <L,
Let (x1(8), 22(s)) be the position vector

where L is the length of C.
ameter s. Then the unit tangent and

of a point of C with the par
normal vectors have the components
€2 = ("':C;, mi)s

where primes denote differentiations with respect to s. From the

Frenet formulas we get

(6) Ty =
1t follows that

e, = (&1, 22),

. i

f: kot ds = —ai, = 0-

=TS

The integral in the left-hand side can be written as a sum:

i , L
fo ks ds = fo“" jah ds 4 [kt ds.

80

To each summand we apply the second mean value theorem,
which is stated as follows. Let f(x), g(@), @ < z £ b, be two fun
tions in @ such that f(z) and g'(x) are continuous and g(x) is mon
tone. Then there exists £, 0 <E< b, satisfying the equation,

! @) de = 9@ (£ de + 0@ [ @) 32

) is monotone in each of the intervals 0 £ 8 =

Since k(s
Sg = 8 < L, we get

L * kzh ds = k(0) f:‘ zh ds + k(o) L T x5 ds

= 25(81) (K(0) — le(s0)) s

Il

0<u<
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L 7 5? ’ L '
kzs ds = k(so) x5 ds + k(L) . T2 ds
S0 80 :

= (&) (k(s0) — k(0)), 8 < & < L.
Since the sum of the left-hand members is zero, these equations
give
(z2(]1) — 22(£2)) (K (0) — k(s0)) = O,
which is a contradiction, because
2o(81) — 22(82) <0, k(0) — k(sy) > 0.

It follows that there is at least one more vertex on C. Since the
relative extrema occur in pairs, there are at least four vertices
and the theorem is proved.

At a vertex we have k' = 0. Hence, we can also say that on a
simple closed convex curve there are at least four points at which
k' = 0.

The four-vertex theorem is also true for simple closed nonconvex
plane curves; see:

1. S. B. Jackson, “Vertices for plane curves,” Bulletin of the Ameri-
can M athematical Society 50 (1944), pp. 564-578.
2. L. Vietoris, “Ein einfacher Beweis des Vierscheitelsatzes der

ebenen Kurven,” Archiv der Mathematik 3 (1952), pp. 304-306.

For further reading, see:

1. P. Scherk, ‘“The four-vertex theorem,” Proceedings of the First
Canadian Mathematical Congress. Montreal: 1945, pp. 97-102.

3. ISOPERIMETRIC INEQUALITY
FOR PLANE CURVES

The theorem can be stated as follows.

TuEOREM: Among all simple closed curves having a given length
the circle bounds the largest area. In other words, if L is the length.
of a simple closed curve C, and A is the area it bounds, then

@) L —47A =2 0.

M oreover, the equality sign holds only when C is a circle.
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Many proofs have been given of this theorem, differing in degree
of elegance and in the range of curves under consideration—that
is, whether differentiability or con-
C vexity is supposed. We shall give
two proofs, the work of E. Schmidt
(1939) and A. Hurwitz (1902), re-

spectively.

Schmidt’s Proof: We enclose C be-
tween two parallel lines, ¢ and ¢’, such
that C lies between g and g and 1s
tangent to them at the points P and @,
respectively. Welets = 0, so being the
parameters of P and Q, and construct
0 a circle U tangent to g and ¢ at P and
0, respectively. Denote its radius by
» and take its center to be the origin
of a coordinate system. Let X(@s) =
g g (21(8), %2(s)) be the position vector

Fia. 3 of C, so that (z1(0),2:(0)) = (21(L),
z5(L)). As the position vector of C we

take (F1(s), z2(s)), such that
Zi(s) = 21(9),
®) Ta(s) = — Vi — 7i(s), 0=8 =8
= +\/m), s =s=L.

Denote by A the area bounded by C. Now the area bounded by a
closed curve can be expressed by the line integral

L L L
A= fo s ds = — fo 2oy dS = 3 j; (zyh — @521) dS.

0
Q

R

o)

o
Q)

J! !
1
ﬁ l
'_I

1

Applying this to our two curves C and C, we get

L ’
A =ﬁ] $1Izd8

- A T
A=m?= -—fo ToTy dS = -—ﬁ) Toxy ds.

Adding these two equations, we have
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A+ w2 = [ @at — mal) ds < [" Vot — 7)) ds

©) < ["VE+ DGR + P ds
- ];L\/m? T+ Zds = Lr.

Since the geometric mean of two positive numbers is less than or
equal to their arithmetic mean, it follows that

VA Varr £ HA + m?) £ iLr,

which gives, after squaring and cancellation of 7%, the inequality
in Equation (7).

Suppose now that the equality sign in Equation (7) holds; then
A and 7 have the same geometric and arithmetic mean, so that
A = 72 and L = 2#r. The direction of the lines ¢ and ¢’ being
arbitrary, this means that €' has the same “width” in all direc-
tions. Moreover, we must have the equality sign everywhere in
Equation (9). It follows, in particular, that

(@xs — Za2))? = (21 + 73) (21* + 237,
which gives

T

1 —Tp Va? + 73
r
2

.
T Va4 ai?

= =47,

8

From the first equality in Equation (9), the factor of propor-
tionality is seen to be r, that is,

X = 1T8, Ty = —TII
which remains true when we interchange z; and z,, so that
T2 = TZ1.
Therefore, we have
2t + 23 = 17,

which means that C is a circle.
Hurwitz’s proof makes use of the theory of Fourier series. We
shall first prove the lemma of Wirtinger.
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Lemma: Let f(1) be a continuous periodic function of period 2,
;i : 2%
POSSESSING G CONLUNUOUS derivatwe f'(t). If L f(t) dt = 0, then

2 2w
(10) T prardz )75
Moreover, the equality sign holds if and only tf
(11) f(t) = acost+ bsint.

Proof: To prove the lemma, we let the Fourier series expansion
of f(t) be

f(t) ~ (:—12‘1 -+ Ei}l (a» cos nt + by sin nt).

Since f’(t) is continuous, its Fourier series can be obtained by
differentiation term by term, and we have

') ~ 2 (nb, cosnt — naysin nt).
1

n=

Since
02' 1) dt = maq,

it follows from our hypothesis that ao = 0. By Parseval’s formula,
we get

> @y dt = 2 (@h+ b3,

n=1

gy de = 3 nt(ak + b

n

I

Hence,
2r 2w e
jrora— [Tierd= 2 @ = D+ b)),
0 0 n=1

which is greater than, or equal to, 0. It is equal to zero, only if
a, = b, =0 for all n > 1. Therefore, f(f) = a1 cos ¢ + by sin ¢,
which proves the lemma.

Hurwitz's Proof: In order to prove the inequality in Equation
(7), we assume, for simplicity, that L = 2m, and that

sz z1(s) ds = 0.
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The latter means that the center of gravity lies on the z;-axis, a
condition which can always be achieved by a proper choice of the
coordinate system. The length and the area are given by the
integrals,

2w P T
21 = j; (@2 4+ 25*) ds, and A = L * ey ds.
From these two equations we get
2n y 2x ’
2(r — A) = L (z1® — 23) ds + fo (zy — x3)% ds.

The first integral is greater than, or equal to, 0 by our lemma and
the second integral is clearly greater than, or equal to, 0. Hence,
A < =, which is our isoperimetric inequality.

The equality sign holds only when

Z; = acos s + bsin s, Z3 = 21,
which gives
2 = a cos 8 + bsin s, 2, = asins — bcoss + c.

Thus, C is a circle.

For further reading, see:

1. E. Schmidt, “Beweis der isoperimetrischen Eigenschaft der
Kugel im hyperbolischen und sphiirischen Raum jeder Dimen-
sionenzahl,” Math. Zeit. 49 (1943), pp. 1-109.

4. TOTAL CURVATURE OF A SPACE CURVE

The total curvature of a closed space curve C of length L is
defined by the integral

(12) p= [ k) ds,

where k(s) is the curvature. For a space curve, only [k(s)| is
defined.

Suppose C is oriented. Through the origin O of our space we
draw vectors of length 1 parallel to the tangent vectors of C.
Their end-points describe a closed curve T' on the unit sphere, to
be called the tangent indicatriz of C. A point of T is singular (that
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is, with either no tangent or a tangent of higher contact) if it is the
image of a point of zero curvature of C. Clearly the total curvature
of C is equal to the length of T'.

Fenchel’s theorem concerns the total curvature.

TaroreEM: The total curvature of a closed space curve C s greater
than, or equal to, 2. It is equal to 2 if and only if C is a plane
CONVET CUTVE.

The following proof of this theorem was found independently by
B. Segre (Bolletino della Unione Matematica Italiana 13 (1934),
979-283), and by H. Rutishauser and H. Samelson (Comptes Ren-
dus Hebdomadaires des Séances de UAcadémie des Sciences 227
(1948), 755-757). See also W. Fenchel, Bulletin of the American
Mathematical Society 57 (1951), 44-54. The proof depends on the
following lemma:

Lemma: Let T be a closed rectifiable curve on the unit sphere, with
length L < 2w. There exists @ point m on the sphere such that the
spherical distance mz < L/ for all points z of T. If T is of length
o but is not the union of two great semicircular arcs, there exists a
point m such that mx < w/2 forall x of T

We use the notation ab to denote the spherical distance of two
points, a and b. If ab < , their midpoint m is the point defined
by the conditions am = bm = 3ab. Let z be a point such that
mz < ir. Then 2mx < az + bz. In fact, let 2’ be the symmetry

of z relative to m. Then,

za = b, 7z = ¥'m + mx = 2ma.
If we use the triangle inequality, it follows that
(13) omz = 7% < 7'a + az = az + bz,
as to be proved.

Lemma Proof: To prove the first part of the lemma, we take two
points, @ and b, on T which divide the curve into two equal ares.
Then ab < =, and we denote the midpoint by m. Let z be a point
of T such that 2mz < =. Such points exist—for example, the
point a. Then we have
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pre— P S e P
ar £ azx, bz = bz,

where az and bz are respectively the arc lengths along I'. From
Equation (13), it follows that

L

o

Hence, the function f(z) = mz, x €T, iseither = v/2or = L/4 <
7/2. Since T is connected and f(z) is a continuous function in T,
the range of the function f(z) is connected in the interval (0, 7).
Therefore, we have f(z) = mz < L/4.

Consider next the case that I' is of length 2x. If T' contains a
pair of antipodal points, then, being of length 2, it must be the
union of two great semicircular ares. Suppose that there is a pair
of points, @ and b, which bisect T' such that

ax + bx <
for all z € T'. Again, let m denote the midpoint of a and b. If
f(z) = mz < i, we have, from Equation (13),
omz < az + bz < m,

which means that f(z) omits the value =/2. Since its range is con-
nected and since f(a@) < 7/2, we have f(z) < «/2 for all z € T.
Thus the lemma is true in this case.

Tt remains to consider the case that T' contains no pair of antip-

odal points, and that for any pair of points @ and b which bisect I,
there is a point z € T with

omz < az + bz = ab =

az + bx = .

An elementary geometrical argument, which we leave to the reader,
will show that this is impossible. Thus, the lemma is proved.

Theorem Proof: To prove Fenchel’s theorem, we take a fixed

unit veetor A and put
g(s) = AX(s),

where the right-hand side denotes the scalar produet of the vectors
A and X(s). The function g(s) is continuous on C and hence must
have a maximum and a minimum. Since ¢'(s) exists, we have,
at such an extremum sy,
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g (so) = AX'(s) = 0.

Thus A, as a point on the unit sphere, has a distance 7/2 from at
least two points of the tangent indicatrix. Since A is arbitrary,
the tangent indicatrix is met by every great circle. 1t follows from
the lemma that its length is greater than, or equal to, 2.

Suppose next that the tangent indicatrix T is of length 2x. By
our lemma, it must be the union of two great semicircular ares.
It follows that C itself is the union of two plane ares. Since C has
a tangent everywhere, it must be a plane curve. Suppose C be s0
oriented that its rotation index

1 L
%L kds = 0.

Then we have
0< foL{lkl—k} o T~ ﬁf‘kds_

<o that the rotation index is either 0 or 1. To a given vector in the
plane there is parallel to it a tangent ¢ of C such that C lies to the
left of t. Then ¢ is parallel to the vector in the same sense, and at

its point of contact we have k = 0, implying that Lc i kds = 2w.
Since fc |k| ds = 2, there is no point with k <0, and f kds = 2x.

From the remark at the end of Section 1, we conclude that Cis
convex.

As a corollary we have the following theorem.

Corornary: If |k(s)| = 1/R for a closed space curve C, C has a
length L = 2xR.

We have
L= fOLds > LLRIA:I ds = R L"‘ k| ds = 27R.

Fenchel’s theorem holds also for sectionally smooth curves. As
the total curvature of such a curve we define

(14) = fOL k| ds + 3 as

where the a; are the angles at the vertices. In other words, in this
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case the tangent indicatrix consists of a number of ares each cor-
responding to a smooth arc of C'; we join successive vertices by the
shortest great circular arc on the unit sphere. The length of the
curve so obtained is the total curvature of C. It can be proved that
for a closed sectionally smooth curve we have also u = 2.

We wish to give another proof of Fenchel’s theorem and a re-
lated theorem of Fary-Milnor on the total curvature of a knot.f
The basis is Crofton’s theorem on the measure of great circles
which cut an arc on the unit sphere. Every oriented great circle
determines uniquely a ‘“‘pole,” the endpoint of the unit vector
normal to the plane of the circle. By the measure of a set of great
circles on the unit sphere is meant the area of the domain of their
poles. Then Crofton’s theorem is stated as follows.

TuaeorEM: Let T' be a smooth arc on the unit sphere Z,. The
measure of the oriented great circles of Zy which meet T', each counted
a number of times equal to the number of its common points with T,
18 equal to four times the length of T.

Proof: We suppose T is defined by a unit vector ¢;(s) expressed
as a function of its arc length s. Locally (that is, in a certain
neighborhood of s), let ex(s) and e;(s) be unit vectors depending
smoothly on s, such that the scalar products

(15) eice;=20; 1=17,7=3
and
(16) det (61, €2, Ba) = 1.
Then we have
.
%% = ases + ages,
d
(17) < B’i} = —@er + mes,
des _ —aze; — 1€
L ds = 3C1 1€2.

tI. Fary (Bullstin de la Société Mathématique de France, 77 (1949), pp.
128-138), and J. Milnor (Annals of Mathematics, 52 (1950), pp. 248-257).




34 8. S. Chern

The skew-symmetry of the matrix of the coefficients in the above
system of equations follows from differentiation of Equations (15).
Since s is the arc length of T', we have

(18) ai + a3 = 1,
and we put
(19) as = cos 7(8), a; = sin 7(s).

If an oriented great circle meets I' at the point e1(s), its pole is of
the form ¥ = cos 0 ex(s) + sin 0-es(s), and viee versa. Thus (s, 0)
serve as local coordinates in the domain of these poles; we wish
to find an expression for the element of area of this domain.

For this purpose, we write

dY = (—sin 6 ey + cosfes)(dd + a ds) — ey(as cos 0 + az sin ) ds.

Since —sin 6 es + cos 6 ¢; and e; are two unit vectors orthogonal
to Y, the element of area of Y is

(20) |dA| = |a2 cos 6 + a; sin 6| do ds = |cos (r — 6)| df ds,

where the absolute value at the left-hand side means that the area
is calculated in the measure-theoretic sense, with no regard to
orientation. To the point Y let ¥+ be the oriented great circle
with Y as its pole, and let n(Y*) be the (arithmetic) number of
points common to ¥* and T'. Then the measure p in our theorem
is given by

o [n(Yl)|dA| = L"ds K’ |cos (= — 0)| 8,

where \ is the length of T'. As 6 ranges from 0 to 2, the variation
of |cos (r — )], for a fixed s, is 4. Hence, we get u = 4\, which
proves Crofton’s theorem.

By applying the theorem to each subare and adding, we see that
the theorem remains true when I' is a sectionally smooth curve on
the unit sphere. Actually, the theorem is true for any rectifiable
are on the sphere, but the proof is much longer.

For a closed space curve the tangent indicatrix of which fulfills
the conditions of Crofton’s theorem, Fenchel’s theorem is an easy
consequence. In fact, the proof of Fenchel’s theorem shows us that
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the tangent indicatrix of a closed space curve meets every great
circle in at least two points—that is, n(¥+) = 2. It follows that
its length is

X - f [k ds = } [ n(Y*)|d4| = 2,

because the total area of the unit sphere is 4.

Crofton’s theorem also leads to the following theorem of Fary
and Milnor, which gives a necessary condition on the total curva-
ture of a knot.

TaEOREM: The total curvature of a knot is greater than, or equal
to, 4.

Since n(Y+) is the number of relative maxima or minima of the
“height function,” Y -X(s), it is even. Suppose that the total
curvature of a closed space curve C is < 4x. There exists ¥ € 2,
such that n(Y*) = 2. By a rotation, suppose Y is the point
(0, 0, 1). Then the function z;(s) has only one maximum and one
minimum. These points divide C' into two ares, such that z; in-
creases on the one and decreases on the other. Every horizontal
plane between the two extremal horizontal planes meets C in
exactly two.points. If we join them by a segment, all these seg-
ments will form a surface which is homeomorphie to a circular disk,
which proves that C is not knotted.

For further reading, see:

1. 8. S. Chern and R. K. Lashof, “On the total curvature of im-
mersed manifolds,” I, American Jowrnal of Mathematics 79
(1957), pp. 302-18, and II, Michigan Mathematical Journal 5
(1958), pp. 5-12.

2. N. H. Kuiper, “Convex immersions of closed surfaces in E5”’
Comm. Math. Helv. 35 (1961), pp. 85-92.

On integral geometry compare the article of Santalo in this vol-
ume.

5. DEFORMATION OF A SPACE CURVE

It is well-known that a one-one correspondence between two
curves under which the arc lengths, the curvatures (when not equal
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to 0), and the torsions are respectively equal, can only be estab-
lished by a proper motion. It is natural to study the correspond-
ences under which only s and k are equal. We shall call such a
correspondence a deformation of the space curve (in German,
Verwindung). The most notable result in this direction is a theo-
rem of A. Schur, which formulates the geometrical fact that if an
arc is “stretched,” the distance between its endpoints becomes
longer. Using the name curvature to mean here always its absolute
value, we state Schur’s theorem as follows.

Tarorem: Let C be a plane arc with the curvature k(s) which
forms a convex curve with its chord, AB. Let C* be an arc of the same
length referred to the same parameler such that its curvature k*(s) =
k(s). If d* and d denole the lengths of the chords joining their end-
points, then d = d*. Moreover, the equality sign holds when and only
when C and C* are congruent.

Proof: Let T' and T'* be the tangent indicatrices of C and C*
respectively, Py and P; two points on T', and P{ and P% their cor-

responding points on I'*. We denote by PiP; and PiP;3 their arc
lengths and by P1P: and iP5 their spherical distances. Then we
have

—— i T P e
PP, £ PP, PiP: < PiPs.
The inequality on the curvature implies
B —
(21) PiP3 £ PyPs.
Since C is convex, I' lies on a great circle, and we have
I
PiP> = PPy,

provided that PiP; = . Now let Q be a point on € at which the
tangent is parallel to the chord. Denote by Py its image point on T'.
Then the condition PoP < 7 i8 satisfied by any point P on T,
and if P denotes the point on I'* corresponding to Py, we have
(22) PiP* < PP,

from which it follows that

(23) cos PeP* = cos PoP,
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since the cosine function is a monotone decreasing function of its
argument when the latter lies between 0 and .

Because C is convex, d is equal to the projection of C on its
chord:

(24) d = '[OL cos PoP ds.
On the other hand, we have
(25) d*' = L “ cos P3P* ds,

for the integral on the right-hand side is equal to the projection of
C*, and hence of the chord joining its endpoints, on the tangent
at the point @* corresponding to Q. Combining Equations (23),
(24), and (25), we get d* = d.

Suppose that d = d*. Then the inequalities in Equations (22),
(23), and (25) become equalities, and the chord joining the end-
points A* and B* of C* must be parallel to the tangent at Q*.
In particular, we have

PE-P*=P0Pr

which implies that the ares A*Q* and B*Q* are plane arcs. On
the other hand, we have, by using Equation (21),

PiP* < PtP* < PP = PP,
or
P —
PoP* = P,P.

Hence, the ares A*Q* and B*Q* have the same curvature as AQ
and BQ at corresponding points and are therefore respectively
congruent.

It remains to prove that the ares A*Q* and B*Q* lie in the same
plane. Suppose the contrary. They must be tangent at Q* to the
line of intersection of the two distinet planes on which they lie.
Since this line is parallel to A*B*, the only possibility is that it
contains A* and B*; however, then the tangent to €' at Q must also
contain the endpoints A and B, which is a contradiction. Hence,
C* is a plane arc and is congruent to C.
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Schur's theorem has many applications. For example, it gives
a solution of the following minimum problem: Determine the
shortest closed curve with a curvature k(s) £ 1/R, R being a con-
stant. The answer is, of course, a circle.

RemARK: The shortest closed curve with curvature k(s) < 1/R, R
being a constant, 18 a circle of radius R.

By the corollary to Fenchel’s theorem, such a curve has length
oxR. Comparing it with a circle of radius R, we conclude from
Schur’s theorem (with d* = d = 0) that it must itself be a circle.

As a second application of Schur’s theorem, we shall derive a
theorem of Schwarz. It is concerned with the lengths of arcs join-
ing two given points having a curvature bounded from the above
by a fixed constant. The statement of Schwarz’s theorem is as
follows:

TaroreM: Let C be an arc joining two given points A and B, with
curvature k(s) < 1/R, such that R = }d, where d = AB. Let S be
a circle of radius R through A and B. Then the length of C is either
less than, or equal to, the shorter arc AB or greater than, or equal to,
the longer arc AB on S.

Proof: We remark that the assumption R = 3d is necessary for
the circle S to exist. To prove the theorem, we can assume that the
length L of C is less than 2R ; otherwise, there is nothing to prove.
We then compare C with an arc of the same length on S having a
chord of length d’. The conditions of Schur’s theorem are satisfied
and we get d’ < d, d being the distance between A and B. Hence,
L is either greater than, or equal to, the longer arc of S with the
chord AB, or less than, or equal to, the shorter arc of S with the
chord AB.

In particular, we can consider ares joining A and B with curva-
ture of 1/R, R = d/2. The lengths of such arcs have no upper
bound, as shown by the example of a helix. They have d as a lower
bound, but can be as close to d as possible. Therefore, we have an
example of a minimum problem which has no solution.

Finally, we remark that Schur’s theorem can be generalized to
sectionally smooth curves. We give here a statement of this
generalization without proof.
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ReMArk: Let C' and C* be two sectionally smooth curves of the
same length, such that C' forms a simple convex plane curve with its
chord. Referred to the arc length s from one endpoint as parameter,
let k(s) be the curvature of C at a regular point and a(s) the angle
between the oriented tangents at a vertex; denote corresponding quan-
tities for C* by the same notations with asterisks. Let d and d* be the
distances between the endpoints of C and C*, respectively. Then, if

k*(s) = k(s) and a*(s) = a(s),
we have d* = d. The equality sign holds if and only if
k*(s) = k(s) and a*(s) = a(s).

The last set of conditions does not necessarily imply that C and
C* are congruent. In fact, there are simple rectilinear polygons in
space which have equal sides and equal angles, but are not con-
gruent.

6. THE GAUSS-BONNET FORMULA

We consider the intrinsic Riemannian geometry on a surface M.
To simplify calculations and without loss of generality, we suppose
the metric to be given in the isothermal parameters u and v:

(26) : dst = 2w ) (du? + dv?).
The element of area is then

(27) dA = e du dv

and the area of a domain D is given by the integral

(28) A=ﬂ&ww
D

Also, the Gaussian curvature of the surface is
(29) K = —e"_zh(hu_u + Rug).

It is well-known that the Riemannian metric defines the paral-
lelism of Levi-Civita. To express it analytically, we write

(30) wl=wu and uw =7

and
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(31) ds® = 3 gq; du® dui.

In this last formula and throughout this paragraph, our small
Latin indices will range from 1 to 2 and a summation sign will
mean summation over all repeated indices. From gi; we introduce
the g%, according to the equation

(32) > gig™* = 8
and the Christoffel symbols

o _1(0gy | 99w _ 6_9_5)
(33) T =3 (au" T ouw ~ ow

Th = 2 97Tk

To a vector with the components ¢ the Levi-Civita parallelism
defines the “covariant differentia 4

(34) Dii = dif + 2 Ti du* &7,

All these equations are well-known in classical Riemannian
geometry following the introduction of tensor analysis. The fol-
lowing is a new concept. Suppose the surface M is oriented. Con-
sider the space B of all unat tangent vectors of M. This space B
1S a three-dimensional space, because the set of all unit tangent
vectors with the same origin is one-dimensional. (It is called a
fiber space, meaning that all the unit tangent vectors with origins
in a neighborhood form a space which is topologically a product
space.) To a unit tangent vector § = &, 2), let 7 = (@' 7°) be the
uniquely determined unit tangent vector, orthogonal to £, such
that £ and 9 form a positive orientation. We introduce the linear
differential form
(35) o= 3 guDEw’

1=<i,J=2
Then ¢ is well-defined in B and is usually called the connection
form.

Because the vector & is a unit vector, we can write its compo-
nents as follows:

(36) g = e cosl and £ = e *sind.
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Then
(37) 7' = —e*sinf and %* = e cosé.
Routine calculation gives
38) Mi=Th=—Tkh =X\,
e =T% = —TH = A,
whence the important relation
(39) @ = df — N\, du + \, do.
Its exterior derivative is therefore
(40) de = —KdA.

Equation (40) is perhaps the most important formula in two-
dimensional local Riemannian geometry.

The connection form ¢ is a differential form in B. We get from
¢ a differential form in a subset of M, when there is defined on it
a field of unit tangent vectors. For example, let C be a smooth
curve on M with the are length s and let £(s) be a smooth unit
vector field along C. Then ¢ = ¢ ds, and ¢ is called the variation
of ¢ along C. The vectors £ are said to be parallel along C, if
o = 0. If ¢ is everywhere tangent to C, ¢ is called the geodesic
curvature of C. C is a geodesic of M, if along C the unit tangent
vectors are parallel, that is, if its geodesic curvature is 0.

Consider a domain D of M, such that there is a unit vector field
defined over D, with an isolated singularity at an interior point
Po € D. Let v, be a circle of geodesic radius e about p,. Then,
from Equation (39), the limit
(a1) Liim [ o

27 0 Je
is an integer, to be called the index of the vector field at po.

Examples of vector fields with isolated singularities are shown
in Figure 4. These singularities are, respectively, (a) a source or
maximum, (b) a sink or minimum, (c) a center, (d) a simple saddle
point, (e) a monkey saddle, and (f) a dipole. The indices are, re-
spectively, 1,1, 1, —1, —2, and 2.

The Gauss-Bonnet formula is the following theorem.
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A

(0) (b)

(c) (d)

.
Nl g

. 4

TasoreM: Let D be a compact oriented domain in M bounded by a
sectionally smooth curve C. Then

(42) fck,ds—i—fDKdA + 3 — @) = 27,

where k, 18 the geodesic curvature of C, # — a;are the exterior angles
at the vertices of C, and x is the Euler characteristic of D.

Proof: Consider first the case that D belongs to a coordinate
domain (u,v) and 18 bounded by a simple polygon C of n sides,
Cial=215m, with the angles e« at the vertices. Suppose D is
positively oriented. To the points of the arcs C; we associate the
unit tangent vectors to Ci. Thus, to each vertex is associated two
vectors at an angle = — ai. By the theorem of turning tangents
(see Section 1), the total variation of 6 as the C/s are traversed
once is 2r — 2 (r — a). It follows that

fckgds = 2% — ? (r — i) + fc —\, du + Ay dv.
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By Stokes theorem, the last integral is equal to — f f K dA.
D

Thus, the formula is proved in this special case.

In the general case, suppose D is subdivided into a union of
polygons Dy, A = 1, ---, f, such that (1) each D, lies in one co-
ordinate neighborhood and (2) two Dy have either no point, or one
vertex, or a whole side, in common. Moreover, let the D, be
coherently oriented with D, so that every interior side has dif-
ferent senses induced by the two polygons of which it is a side.
Let v and e be the numbers of interior vertices and interior sides
in this subdivision of D—i.e., vertices and sides which are not on
the boundary, C. The above formula can then be applied to each
Dy. Adding all these relations, we have, because the integrals of
geodesic curvature along the interior sides cancel,

fck‘,ds+f[KdA =2~ Z () =3 (r — )
J .

where «; are the angles at the vertices of D, while the first sum in
the right-hand side is extended over all interior vertices of the
subdivision. Since each interior side is on exactly two D, and since
the sum of interior angles about a vertex is 2, this sum is equal to

—2we + 2xv.
We call the integer

(43) D) = vi— e J

the Euler characteristic of D. Substituting, we get Equation (42).
Equation (42) has the consequence that the integer x is inde-
pendent of the sukdivision.

In particular, if C' has no vertex, we have

(44) k,ds + || K dA = 2xx.
[has+ ff
Moreover, if D is the whole surface M, we get
45) ] K dA = 2xx.

S

It follows that if K = 0, the Euler characteristic of M is 0,
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and M is homeomorphic to a torus. 1f K > 0, then x > 0, and S
is homeomorphic to & sphere.

The Euler characteristic plays an important role in the study of
vector fields on a surface.

ReMark: On a closed orientable surface M, the sum of the indices
of a vector field with a finite number of singularities, is equal to the
Euler characteristic, x(M) of M.

Proof: Letpi, 1 = i < n, be the singularities of the vector field.
Let vi(e) be a circle of radius e about pi, and let Ai(e) be the
disk bounded by ~i(e). Integrating K of A over the domain
M—-U A;(e) and using Equation (40), we get

KdA =2 f @5

M—U il Yol
where 7yi(e) 18 oriented so that it is the boundary of A;(e). The
theorem follows by letting e — 0.

We wish to give two further applications of the Gauss-Bonnet
formula. The first is a theorem of J acobi. Let X(s) be the coordi-
nate vector of a closed space curve, with the arc length s. Let
7(s), N(s), and B(s) be the unit tangent, principal normal, and
binormal vectors, respectively. In particular, the curve on the unit
sphere with the coordinate vector N(s) is the principal normal
indicatriz. 1t has a tangent, wherever

(46) k2 + w?* # 0,
where k (when not equal to 0) and w are, respectively, the curva-

ture and torsion of X (s). Jacobi’s theorem follows.

TasoreM: If the principal normal indicatriz of @ closed space
curve has a tangent everywhere, 1t divides the umit sphere in two
domains of the same ared.

Proof: To prove the theorem, we define 7 by the equations
(47) k= VEk* + w* cos T, w = VI + wsin 7.

Then we have

—eee

d(—cos T + sin 7B) = (sin 7T + cos 7B) dr — V2 4+ w? N ds.
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Hence, if o is the arc length of N (s), dr/de is the geodesic curvature
of N(s) on the unit sphere. Let D be one of the domains bounded
by N(s), and A its area. By the Gauss-Bonnet formula, we have,

since K = 1,
[ dr—l—ffdA = O%.

Ns)
It follows that A = 2, and the theorem is proved.

Our second application is Hadamard’s theorem on convex sur-
faces.

TaroreM: If the Gaussian curvaiure of a closed orientable surface
in euclidean space is everywhere positive, the surface is convex (that is,
it lies at one side of every langent plane).

We discussed a similar theorem for curves in Section 1. For sur-
faces, it is not necessary to suppose that it has no self-intersection.

Proof: It follows from the Gauss-Bonnet formula that the Euler
characteristic x(M) of the surface M is positive, so that x(M) = 2

and
fo K dA = 4r.

Suppose M is oriented. We consider the Gauss mapping
(48) g:M — Z,

(where Z; is the unit sphere about a fixed point 0), which assigns
to every point p &€ M the end of the unit vector through 0 parallel
to the unit normal veetor to M at p. The condition K > 0 implies
that ¢ has everywhere a nonzero functional determinant and is
locally one-to-one. It follows that g(M) is an open subset of Z,.
Since M is compact, g(M) is a compact subset of 2, and hence is
also closed. Therefore, ¢ maps onto Z,.

Suppose that g is not one-to-one, that is, there exist points p
and g of M, p # ¢, such that g(p) = g(¢). There is then a neigh-

borhood U of ¢, such that g(M — U) = Z,. Since [ [ Kadais
M-U

the area of g(M — U), counted with multiplicities, we will have
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| Mﬂu K dA = 4.

}.I | But

i | !; KdA >0,
so that

f[KdA=[[KdA+ ff K dA > 4,
M U M-U

which is a contradiction, and Hadamard’s theorem is proved.

Hadamard’s theorem is true under the weaker hypothesis K = 0,
but the proof is more difficult; see the article by Chern-Lashof
mentioned in Section 4.

For further reading, see:

1. S. S. Chern, “On the curvatura integra in a Riemannian mani-
fold,” Annals of Mathematics, 46 (1945), pp. 674-84.

9. H. Flanders, “Development of an extended exterior differential

caleulus,” Transactions of the American Mathematical Soctety,
75 (1953), pp. 311-26.

See also Section 8 of Flanders’s article in this volume.

7. UNIQUENESS THEOREMS OF COHN-VOSSEN
AND MINKOWSKI

| The “rigidity’’ theorem of Cohn-Vossen can be stated as follows.

TaEOREM: An isomelry between lwo closed comvex surfaces 1s
established either by a motion or by a motion and a reflection.

In other words, such an isometry is always trivial, and the theorem
is obviously not true locally. The following proof is the work of
G. Herglotz.

Proof: We shall first discuss some notations on surface theory
in euclidean space. Let the surface S be defined by expressing its
position vector X as a function of two parameters, u and v. These
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functions are supposed to be continuously differentiable up to the
second order. Suppose that X, and X, are everywhere linearly
independent, and let £ be the unit normal vector, so that S is
oriented. As usual, let

I =dX -dX = E du® 4+ 2F du dv + G dv®
Il = —dX-d¢ = Ldu® + 2M dudv 4+ N dv?

be the first and second fundamental forms of the surface. Let H
and K denote respectively the mean and Gaussian curvatures.

It is sufficient to prove that under the isometry, the second
fundamental forms are equal. Assume the local coordinates are
such that corresponding points have the same local coordinates.
Then E, F, and G are equal for both surfaces, and the same is
true of the Christoffel symbols. Let the second surface be S*,
and denote the quantities pertaining to S* by the same symbols
with asterisks. We introduce

L M N

(50) h=—D-! #=—5! P=B

where D = VEG — F?. Then the Gaussian curvature is
(51) K =\ — 2 = \%* — u*2,

(49)

?

and is the same for both surfaces. The mean curvatures are
2) H = 2% (G\ — 2Fu + E») and
1
H* = 5D (G\* — 2Fu* 4+ Ev¥).
We introduce further
(53) | J = ¥ — 2up* + n\*
The proof depends on the following identity:
R _ __‘2' * =t * =, ﬁ * = *
(54) DJE = o (v*X., — pu*X,) = (u*X, — N\*X)).

We first notice that the Codazzi equations can be written in terms
of A*, u* and »* in the form
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(55) Nt — ph 4+ ThN* — oT%.u* + Iiw* = 0,
wh — v — TLA* 4 2Tn™ — Tip* = 0.
We next write the equations of Gauss:
X, — X, — ThX,— DM = 0,
(56) X,, — MeX, — ThX, — Dt = 0,
X., — ThX. — I'hX, — DvE = 0.

Multiplying these equations by X, — X, v¥, —2p*, and \¥, re-
spectively, and adding, we establish Equation (54).
We now write

(57) p = Xes, = XXy ys = XX,

where the right-hand sides are the scalar products of the vectors
in question, so that p(u, v) is the oriented distance from the origin
to the tangent plane at X (u, v). Equation (54) gives, after taking
scalar product with X,

(58) DJp = —*E + 2u*F — \*G

+ ¥y — p*Y2)u — (u*yy — N*Y2) 0.
Let C be a closed curve on S. It divides S into two domains, D,
and D, both having C as boundary. Moreover, if D1 and D, are

coherently oriented, C appears as 2 boundary in opposite senses.
To each of these domains, say D,, we apply Green’s theorem, and

get
(59) f JpdA = f f (—v*E + 2u*F — \*G) du dv
D D

+ fc (Furyr — N*y2) du + @*ys — #*) dV-

Adding this equation to a similar one for D», the line integrals
cancel, and we have

ﬂ JpdA = ﬂ (—v*E + 2u*F — \*G) du dv.

By Equation (562),
(60) [[Ipaa = —2 [[ B*aa.
S 8
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. In particular, this formula is valid when S and S* are identical, |
and we have |
(61) 2KpdA = —2 || HdA.
i f
i
I
:
|
|

Subtracting these two equations, we get

._)\'u
¥

“lpda _szﬂ*dA —2ffHdA

To complete the proof, we need the following elementary lemma.

LevMmA : Let |
(63) az? + 2bzy + ¢ and a'z? + 2b'zy + 'Y
be two positive definite quadratic forms, with
(64) ac — b* = a'c’ — b
- Then
) —% 0 ey

" and the equality sign holds only when the two forms are identical.

As proof, we observe that the statement of the lemma remains
unchanged under a linear transformation of the variables. Apply-
ing such a linear transformation when necessary, we can assume
b’ = b. Then the left-hand side of Equation (65) becomes

(@ —a) —0 =—5@—a=0,

as to be proved. Moreover, the quantity equals 0 only when we

also have @’ = a and ¢’ = c.
We now choose the origin to be inside S, so that p > 0. Then
the integrand in the left-hand side of Equation (62) is nonpositive,

and it follows that
!f H*dA < SffHdA.

Since the relation between S and S8* is symmetrical, we must also
have '
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] HdA < ff H* dA.
S

S

Hence,
ﬂHdA =£ H* dA.

It follows that the integral at the left-hand side of Equation (62)
is 0, and hence, that

X*=‘-h: F*":P’: P*=—'V,
completing the proof of Cohn-Vossen’s theorem.

By Hadamard’s theorem, we see that the Gauss map ¢:8 — 2o
(see Section 6) is one-to-one for a closed surface with K > 0. A
point on S can therefore be regarded as a function of its normal
vector £, and the same is true with any scalar function on S. Min-
kowski’s theorem expresses the unique determination of S when
K (§) is known.

Tarorem: Let S be a closed convex surface with Gaussian curva-
ture K > 0. The function K (£) determines S up to a translation.

Proof: We shall give a proof of this theorem modeled after the
above—that is, by an integral formula [see S. S. Chern, American
Journal of Mathematics 79 (1957), pp. 949-50]. Let u and v be
:sothermal parameters on the unit sphere 2, so that we have

(66) g2 =g =A>0 (ay), £, = 0.

Through the mapping ¢~ we regard u and v also as parameters
on S. Since £, and £, are orthogonal to £ and are linearly inde-
pendent, every vector orthogonal to £ can be expressed as their
linear combination. Thisfact, taken with the relation Xu¢, = X ok,
allows us to write

—X.=aku + bt,,

"'X-n = b&u + CE,,.

Forming sealar products of these equations with &, and £,, we have

(689) Aa=1L, Ab=M, Ac=N.

(67)
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Moreover, taking the vector product of the two relations in Equa-
tion (67), we find

Xy X X, = (ac — ) (ku X &)-

But
(69) Xu X X, = D¢, bu X & = Ag,
so that, combining with Equation (68), we have
2
D = A(ac — b*) = I%:
which gives
(70) A=KD, ac—b=rg

Since A du dv and D du dv are, respectively, the volume elements
of 2, and S, the first relation in Equation (70) expresses the well-
known fact that K is the ratio of these volume elements.

Suppose S* is another convex surface with the same function,
K(£). We set up a homeomorphism between S and S*, so that
they have the same normal vector at corrresponding points. Then
the parameters u and v can be used for both S and S*, and cor-
responding points have the same parameter values. We denote
by asterisks the vectors and functions for the surface S*. Since
K = K*, we have from Equation (70), ac — b*> = a*c* — b™ and
D= D*,

Let
(71) p=X-t and p* = X*-¢

be the distances from the origin to the tangent planes of the two
surfaces. Our basic relation is the identity

(Xs X*: X“)v e (Xa X*r Xv)u
= A{2(ac — b?)p* + (—ac* — a*c + 2bb*)p}
a—a* b—b*

.—.A{Q(ac—bz)(p*-—p)-l-b_b* P T)}

which follows immediately from Equations (67), (69), (70), and
(71). From it, we find, by Green’s theorem, the integral formula
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— ¥ b__b*
@) [, {2600 D+ pe o

By translations if necessary, we can suppose the origin to be
inside both surfaces, S and S¥, so that p > 0 and p* > 0. Since

(a b) d (a* b*
b ¢ o b c*

are positive definite matrices, it follows from our algebraic lemma
that

p}A dudv = 0.

a—a* b—Db*
b —b* ¢—c*

<0.

Hence,
(73) [xo (ac — b)(p* — p) A dudo 2 0.

But the same relation is true when S and S* are interchanged.

Hence, the integral at the left-hand side of Equation (73) must be
identically 0. It follows from Equation (72) that

f a—a* b—Db*
znlb — b* ¢ —¢o*

possible only when a = a* b = b* and ¢ = c*. The latter implies
that

pAdudy =0,

X*=X, and Xi=X,
which means that S and S* differ by a translation.
For further reading, see:

1. 8. 8. Chern, “Integral formulas for hypersurfaces in euclidean
space and their applications to uniqueness theorems,” Journal
of Mathematics and Mechanics, 8 (1959), pp. 947-55.

9. T. Otsuki, “Integral formulas for hypersurfacesin a Riemannian
manifold and their applications,” Téhoku Mathematical Journal,
17 (1965), pp. 335—48.

3. K. Voss, «Differentialgeometrie geschlossener Flichen im eukli-
dischen Raum,”’ Jahresberichie deulscher Math. Verein., 63
(1960-1961), pp. 117-36.
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8. BERNSTEIN’S THEOREM
ON MINIMAL SURFACES

A minimal surface is a surface which locally solves the Plateau
problem—that is, it is the surface of smallest area bounded by a
given closed space curve. Analytically, it is defined by the condi-
tion that the mean curvature is identically 0. We suppose the
surface to be given by

(74) z = f(z, 9),

where the function f(z,y) is twice continuously differentiable.
Then a minimal surface is characterized by the partial differential

equation,

(75) 14 ¢®)r—2pgs + (1 + p*)t =0,
where

_of _f _9 _ 9 _ 97,
@6) p= oz 1= %y "= §= zay b= 3y’

Equation (75), called the minimal surface equation, is a nonlinear
“elliptic” differential equation.
Bernstein’s theorem is the following ‘“uniqueness theorem.”

TugoreM: If a minimal surface is defined by Equation (74) for all
values of = and y, it is a plane. In other words, the only solution of
Equation (75) valid in the whole (z, y)-plane is a linear function.

Proof: We shall derive this theorem as a corollary of the follow-
ing theorem of Jorgens [Math Annalen 127 (1954), pp. 130-34].

TaeOREM: Suppose the function z = f(z,y) is a solution of the
equation

(77) t—8=1, r> 0,

for all values of z and y. Then f(z, y) 18 a quadratic polynomial in
z and y.

For fixed (2o, o) and (z1, ¥1), consider the function
h(E) = f(zo + t(@1 — o), Yo + L1 — Y0))-
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We have
K({t) = (21 — 2)p + (11 — ¥0)g,
R(t) = (x1 — 20)*r + 2(x1 — 20) (Y1 — Yo)s + (1 — Yo)’s = 0,

where the arguments in the functions p, ¢, r, s, ¢ are 2, + t(z, — )
and yo + t(y1 — yo). From the last inequality, it follows that

K (1) = h'(0)

or
(78) (@1 — o) (1 — po) + (1 — o) (@n — @) = 0.
where
(79) pi =p@i,y:) and ¢i=qz,y), =0, L

Consider the transformation of Lewy:
80) &=¢&@y) =z+p@y), 2=y =y+asy).
Setting
(81) &i=E@ny), mi=als,y), =01,
we have, by Equation (78),
(82) & — &)+ (m—m) = (@1 — 20)* + (11 — 20)%
Hence, the mapping
(83) (@, y) — (& n)

is distance-increasing.
Moreover, we have

(84) L,=14r, & =3
Nz = 9, "hr=1+t)
so that

6(&-1 7?) 8
(S5) a(x,y)—2+r+tgz,

and the mapping in Equation (83) is locally one-to-one. It follows
easily that Equation (83) is a diffeomorphism of the (z, y)-plane
onto the (&, 7)-plane.

We can therefore regard the function f(z, ), which is a solution
of Equation (77), as a function in £ and 5. Let
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(86) Fgn) =z —1y— (p— 1),

- (87) ¢=E+1a0.

It can be verified by a computation that F(g n) satisfies the

0.3 Cauchy-Riemann equations, so that F({) = F(§ 1) is a holo-

- morphic function in {. Moreover, we have

il iy =14 248
- From the last relation, we get
4
— ! e
=P = Frai> O

) ‘_ Thus F’(¢) is bounded in the whole {-plane. By Liouville’s theo-

. rem, we have

F’'(¢) = const.
. On the other hand, by Equation (88) we have
g N =FP] _i(F' —F") 147
®9) r= T—FF s$=3—Tpm TaE ’ {=3— I— 7}

. It follows that r, s, and ¢ are all constants, and Jorgens’s theorem is

. proved.
~  Bernstein’s theorem is an easy consequence of Jorgens’s theo-
rem. In fact, let

- (90) W= (+p+ )"

"~ Then the minimal surface equation is equivalent to each of the

following equations:

d —pg, 4149
6‘:::W+6y W =0

) 1+q a —pq
oz +6y w i

It follows that there exists a C?-funetion, ¢(z, y), such that

91)

' 1 1 1
T (92) Pzz = W (1 + p2), Pay = qu? Puy = _'ﬁ_f (1 + qz)_
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These partial derivatives satisfy the equation
CrzaPyy — 'Piy = 1" Paz > 0.

By Jorgens’s theorem, @zz, @, and ¢,, are constants. Hence, p
and ¢ are constants, and f(z, y) is a linear function. [This proof
of Bernstein’s theorem is that of J. C. C. Nitsche, Annals of
Mathematics, 66 (1957), pp. 543-44.]
Minimal surfaces have an extensive literature. See the follow-
ing expository article:
1. J. C. C. Nitsche, “On new results in the theory of minimal
surfaces,” Bulletin of the American M athematical Society, 71
(1965), pp. 195-270.




