The differential geometry of spaces of polygons and polymers

Jason Cantarella

University of Georgia

Geometry and Shape Analysis in Biological Sciences IMS Singapore, June 2017

▲ロト ▲団ト ▲ヨト ▲ヨト 三ヨー わらぐ

Space curves model useful biological shapes

Protonated P2VP

Plasmid DNA

Knotted DNA

Elafin

Plant tendril

Cowpea root

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

- Replace curves with polygons.
- Use the (differential, symplectic, algebraic) geometry of polygon space.
- Add constraints (closed, fixed edgelength, confined, different topology) as needed.
- Geometric structure \rightarrow efficient algorithms.

Definition

The quaternions $\mathbb H$ are the skew-algebra over $\mathbb R$ defined by adding $i,\,j,$ and k so that

$$i^2 = j^2 = k^2 = -1$$
, $ijk = -1$

Proposition

Unit quaternions (S^3) double-cover SO(3) (orthonormal frames for 3-space) via the Hopf map.

$$\mathsf{Hopf}(q) = (\bar{q}iq, \bar{q}jq, \bar{q}kq),$$

where the entries turn out to be purely imaginary quaternions, and hence vectors in \mathbb{R}^3 .

Constructing polygons from quaternions: Arms

Given a vector $\vec{q} \in \mathbb{H}^n$, we can construct a polygon:

$$\underbrace{(q_1,\ldots,q_n)}_{\text{vector of quaternions}} \to \underbrace{(\text{Hopf}(q_1),\ldots,\text{Hopf}(q_n))}_{\text{vector of frames}} \to \underbrace{(\bar{q_1}iq_1,\ldots,\bar{q_n}iq_n)}_{\text{vector of edges}}$$

We call the polygon Hopf(\vec{q}).

・ロン ・ 四 と ・ 回 と ・ 日 と

Fixed length polygonal arms

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Proposition

framed n-gons of total length 1 \iff $S^{4n-1} \subset \mathbb{H}^n$

Proof.

The length of *i*-th edge is $|\bar{q}_i \mathbf{i} q_i| = |q_i|^2$.

The open polygon model

Proposition (with Shonkwiler)

The distribution of edges in the quaternionic model is:

- directions are sampled independently, uniformly on $(S^2)^n$.
- lengths are sampled by the Dirichlet (2, ..., 2) distribution on the simplex $\{\vec{x} | x_i \ge 0, \sum x_i = 1\}$.

Framed space polygon shape space

(ロ) (同) (三) (三) (三) (○) (○)

Alignment is an irritating problem in shape comparison: this geometric structure makes it easy.

Proposition

Multiplying \vec{q} *by* w *rotates polygon by matrix* Hopf(w) \in SO(3).

Conclusion Framed, length 1, space polygons (up to trans/rot) \iff

$$\mathbb{H} P^n = S^{4n-1}/(ec{q} \simeq wec{q}, w \in \mathbb{H})$$

The metric on $\mathbb{H}P^n$ then gives a translation and rotation invariant distance function for space polygons:

$$ext{dist}(\textit{P},\textit{Q}) = ext{acos} \sqrt{rac{\left<\textit{P},\textit{Q}
ight>\left<\textit{Q},\textit{P}
ight>}{\left<\textit{P},\textit{P}
ight>\left<\textit{Q},\textit{Q}
ight>}}$$

Shape comparison of proteins from PDB

We can use the $\mathbb{H}P^n$ distance to cluster protein shapes. Here is a proof-of-concept experiment with 10 proteins done by Tom Needham (Ohio State).

1A5G and 1A61 in the PDB

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─の�?

(ロ) (同) (三) (三) (三) (○) (○)

A natural question is: how statistically significant is a distance of 0.27? In this setting, the answer is classical:

Proposition (based on Skriganov)

The probability that two random open polygons of n edges are within distance d of one another is given by

sin⁴ⁿ d

So we expect most completely unrelated polygons to be at distances which are very close to $\pi/2$, which is easy to check with experiments on random polygons.

Every quaternion $q = a + b\mathbf{j}$, where $a, b \in \mathbb{C}$. This means that we can take *complex* vectors (\vec{a}, \vec{b}) corresponding to a quaternionic vector \vec{q} .

Proposition (Hausmann/Knutson)

P is closed, length 2 \iff the vectors (\vec{a}, \vec{b}) are Hermitian orthonormal.

Proof.

$$\mathsf{Hopf}(a+b\mathbf{j}) = (\overline{a+b\mathbf{j}})\mathbf{i}(a+b\mathbf{j}) = \mathbf{i}(|a|^2 - |b|^2 + 2\bar{a}b\mathbf{j})$$

so we have

$$\sum \operatorname{Hopf}(a+b\mathbf{j}) = 0 \iff \sum |a|^2 = \sum |b^2|, \sum \overline{a}b = 0.$$

Conclusion (Hausmann/Knutson)

Closed, framed space polygons \iff Stiefel manifold $V_2(\mathbb{C}^n)$.

Proposition (Hausmann/Knutson)

The action of the matrix group U(2) on $V_2(C^n)$

- rotates the polygon in space (SU(2) action) and
- spins all vectors of the frame (U(1) action).

Conclusion (Hausmann/Knutson)

Closed, rel. framed space polygons of length 2 \iff Grassmannian of 2-planes in complex n-space $G_2(\mathbb{C}^n)$.

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ

An invariant distance between closed polygons is easy to compute in linear time:

Proposition

Given two closed, (relatively) framed polygons as $n \times 2$ complex matrices $Y_1 = (\vec{a}_1, \vec{b}_1)$ and $Y_2 = (\vec{a}_2, \vec{b}_2)$, let $\cos \theta_1, \cos \theta_2$ be the singular values of $Y_1^T Y_2$.

The singular values are invariant under translation and rotation and allow us to construct several metrics on polygon space:

$$d_{geo}(Y_1, Y_2) = \sqrt{\theta_1^2 + \theta_2^2}, \quad d_{chord}(Y_1, Y_2) = \sqrt{\sin^2 \theta_1 + \sin^2 \theta_2}$$

Shape Recognition

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ

This provides a space curve version of well-known construction for plane curves:

Theorem (Younes–Michor–Shah–Mumford) *Roughly speaking,*

 $\left\{\begin{array}{l} \textit{Contours in}\\ \mathbb{R}^2 \textit{ modulo}\\ \textit{similarities} \end{array}\right\} \longleftrightarrow \textit{Gr}(2, \textit{C}^{\infty}(\textit{S}^1, \mathbb{R})),$

where Gr(k, V) is the Grassmannian of k-dimensional linear subspaces of the vector space V.

Proposition (with Grosberg, Kusner, Shonkwiler) The expected value of total turning angle for an n-turn

• open polygon is

$$\frac{\pi}{2}n$$

closed polygon is

$$\frac{\pi}{2}n+\frac{\pi}{4}\frac{2n}{2n-3}$$

Proposition (with Grosberg, Kusner,Shonkwiler) At least 1/3 of rel. framed hexagons and 1/11 of rel. framed heptagons are unknots.

Equilateral polygons

To describe the space of equilateral polygons, we first recall that $G_2(\mathbb{C}^n)$ is a symplectic space; in fact it is the symplectic reduction of \mathbb{C}^{2n} by U(2).

$$G_2(\mathbb{C}^n) = \underbrace{\mathbb{C}^{2n} /\!\!/ U(2)}_{U(2) \text{ acts on vectors } \vec{a}.\vec{b}}$$

Proposition (Knutson-Hausmann, Millson-Kapovich) (Unframed) equilateral polygon space is a symplectic space; it is the symplectic reduction of $G_2(\mathbb{C}^n)$ by $U(1)^{n-1}$:

$$ePol_n = \underbrace{G_2(\mathbb{C}^n) /\!\!/ U(1)^{n-1}}_{u(1)^{n-1}}$$

 $U(1)^{n-1}$ rotates each frame around edge

Classical Mechanics

Symplectic spaces are the right setting for classical mechanics:

Theorem (Duistermaat-Heckmann, stated informally) On a 2*m*-dimensional (symplectic) space,

d continuous, commuting (Hamiltonian) symmetries \rightarrow d conserved quantities (momenta)

joint distribution is cts, piecewise-polynomial, degree $\leq m - d$.

Polygons (up to rotation) are 2n-6 = 2(n-3) dimensional. Rotations around n-3 chords d_i by n-3 angles θ_i commute.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Theorem (with Shonkwiler)

The joint distribution of d_1, \ldots, d_{n-3} and $\theta_1, \ldots, \theta_{n-3}$ are all uniform (on their domains).

Proof. Check D-H theorem applies (hard part).

Then count: m = n - 3 and we have n - 3 symmetries, so the pdf of the momenta d_i is piecewise polynomial of degree \leq

$$m - (n-3) = (n-3) - (n-3) = 0$$
.

The pdf is continuous, so this means it's constant.

・ コット (雪) (小田) (コット 日)

Definition

The momenta d_1, \ldots, d_{n-3} obey triangle inequalities which determine an n-3 dimensional polytope $\mathcal{P}_n \subset \mathbb{R}^{n-3}$. This is called the **moment polytope**.

Definition

The momenta d_1, \ldots, d_{n-3} obey triangle inequalities which determine an n-3 dimensional polytope $\mathcal{P}_n \subset \mathbb{R}^{n-3}$. This is called the **moment polytope**.

Definition

The d_i and θ_i are *action-angle coordinates* on polygon space. In these coordinates, the volume form is simple:

$$\mathsf{dVol} = \, \mathrm{d} d_1 \wedge \ldots \, \mathrm{d} d_{n-3} \wedge \, \mathrm{d} \theta_1 \wedge \ldots \, \mathrm{d} \theta_{n-3}.$$

To recover the polygon:

- Build the triangles from the edgelengths.
- Put the first one in a standard position.
- Place the rest using the dihedral angles.

Structure of the Moment Polytope

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

The polytope \mathcal{P}_n is defined by the triangle inequalities:

$$0 \le d_1 \le 2$$
 $1 \le d_i + d_{i+1} \ |d_i - d_{i+1}| \le 1$ $0 \le d_{n-3} \le 2$

Sampling Algorithm

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ

Theorem (with Duplantier, Shonkwiler, Uehara)

A direct sampling algorithm for equilateral closed polygons with expected performance $O(n^{5/2})$ per sample.

If we let

$$s_i = d_i - d_{i-1}$$
, for $1 \le i \le n-2$

and $s_i \in [-1, 1]$, then d_i automatically have $|d_i - d_{i-1}| \le 1$.

Proposition (with Duplantier, Shonkwiler, Uehara) If we build d_i from s_i sampled uniformly in $[-1, 1]^n$, the d_i obey all triangle inequalities with probability $\sim 6\sqrt{6/\pi} n^{-3/2}$.

So rejection sample to build d_i , sample θ_i directly, and reassemble the polygon as above.

Diagonal sampling in 3 lines of code

```
RandomDiagonals[n] :=
  Accumulate[
   Join[{1}, RandomVariate[UniformDistribution[{-1, 1}],
     n]]];
InMomentPolytopeQ[d ] :=
  And [Last [d] \ge 0, Last [d] \le 2,
   And @@ (Total [#] \ge 1 \& /@ Partition[d, 2, 1]);
DiagonalSample[n] := Module[{d},
   For[d = RandomDiagonals[n], ! InMomentPolytopeQ[d], ,
    d = RandomDiagonals[n]];
   d[[2;;]]
  1;
```

Not first direct sampling algorithm (Grosberg-Moore, Diao-Ernst-Montemayor-Ziegler), but numerically stable, simple and fast.

Proposition (with Shonkwiler)

The expected length of a chord skipping k edges in an n-edge equilateral polygon is the (k - 1)st coordinate of the center of mass of the moment polytope.

n	<i>k</i> = 2	3	4	5	6	7	8
4	1						
5	<u>17</u> 15	<u>17</u> 15					
6	<u>14</u> 12	<u>15</u> 12	<u>14</u> 12				
7	<u>461</u> 385	<u>506</u> 385	<u>506</u> 385	<u>461</u> 385			
8	<u>1,168</u> 960	<u>1,307</u> 960	<u>1,344</u> 960	<u>1,307</u> 960	<u>1,168</u> 960		
9	<u>112,121</u> 91,035	<u>127,059</u> 91,035	<u>133,337</u> 91,035	<u>133,337</u> 91,035	<u>127,059</u> 91,035	<u>112,121</u> 91,035	
10	97,456 78,400	<u>111,499</u> 78,400	<u>118,608</u> 78,400	<u>120,985</u> 78,400	<u>118,608</u> 78,400	<u>111,499</u> 78,400	$\frac{97,456}{78,400}$

▲□▶▲圖▶▲臣▶▲臣▶ 臣 のへで

Proposition (with Shonkwiler)

The expected length of a chord skipping k edges in an n-edge equilateral polygon is the (k - 1)st coordinate of the center of mass of the moment polytope.

E(chord(37, 112)) =

 $\begin{array}{l} 2586147629602481872372707134354784581828166239735638\\ 002149884020577366687369964908185973277294293751533\\ 821217655703978549111529802222311915321645998238455\\ \underline{195807966750595587484029858333822248095439325965569}\\ 561018977292296096419815679068203766009993261268626\\ 707418082275677495669153244706677550690707937136027\\ 424519117786555575048213829170264569628637315477158\\ 307368641045097103310496820323457318243992395055104\\ \approx 4.60973 \end{array}$

Proposition

The space of closed equilateral polygons in \mathbb{R}^k is the quotient of (almost all) of the space $(S^{k-1})^n$ by the (diagonal) action of the Möbius group on S^{k-1} .

Proof.

For each *n* point cloud on S^{k-1} (where fewer than n/2 points coincide) there is a unique (rotation-free) Möbius transformation which takes the center of mass to the origin. This associates a unique closed equilateral polygon with almost every polygonal arm.

Current Project

Use this structure to provide robust coordinates for

equilateral polygons in all dimensions.

Current: Topologically Constrained Random Walks

A topologically constrained random walk (TCRW) is a collection of random walks in \mathbb{R}^3 whose components are required to realize the edges of some fixed multigraph.

Current: Topologically Constrained Random Walks

Tezuka Lab, Tokyo Institute of Technology

A synthetic $K_{3,3}$!

ヘロト ヘポト ヘヨト ヘヨト

Thank you!

Funding from Simons Foundation, NSF, Issac Newton Institute,

- Probability Theory of Random Polygons from the Quaternionic Viewpoint with T. Deguchi, and C. Shonkwiler Comm. on Pure & Applied Mathematics 67 (2014)
- The Expected Total Curvature of Random Polygons with A. Y. Grosberg, R. Kusner, and C. Shonkwiler American Journal of Mathematics 137 (2015)
- The Symplectic Geometry of Closed Equilateral Random Walks in 3-space with C. Shonkwiler Annals of Applied Probability **26** (2016).
- A Fast Direct Sampling Algorithm for Equilateral Closed Polygons with B. Duplantier, C. Shonkwiler, and E. Uehara. Journal of Physics A **49** (2016).