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Space curves model useful biological shapes

Protonated P2VP Plasmid DNA Knotted DNA

Elafin Plant tendril Cowpea root



Main Ideas

• Replace curves with polygons.
• Use the (differential, symplectic, algebraic) geometry of

polygon space.
• Add constraints (closed, fixed edgelength, confined,

different topology) as needed.
• Geometric structure→ efficient algorithms.



Quaternions

Definition
The quaternions H are the skew-algebra over R defined by
adding i, j, and k so that

i2 = j2 = k2 = −1, ijk = −1

Proposition
Unit quaternions (S3) double-cover SO(3) (orthonormal frames
for 3-space) via the Hopf map.

Hopf(q) = (q̄iq, q̄jq, q̄kq),

where the entries turn out to be purely imaginary quaternions,
and hence vectors in R3.



Constructing polygons from quaternions: Arms

Given a vector ~q ∈ Hn, we can construct a polygon:

(q1, . . . ,qn)︸ ︷︷ ︸
vector of quaternions

→ (Hopf(q1), . . . ,Hopf(qn))︸ ︷︷ ︸
vector of frames

→ (q̄1iq1, . . . , q̄niqn)︸ ︷︷ ︸
vector of edges

We call the polygon Hopf(~q).



Fixed length polygonal arms

Proposition

framed n-gons of total length 1 ⇐⇒ S4n−1 ⊂ Hn

Proof.
The length of i-th edge is |q̄i iqi | = |qi |2.



The open polygon model

Proposition (with Shonkwiler)
The distribution of edges in the quaternionic model is:
• directions are sampled independently, uniformly on (S2)n.
• lengths are sampled by the Dirichlet (2, . . . ,2) distribution

on the simplex {~x |xi ≥ 0,
∑

xi = 1}.

⇐⇒ pdf is ∼ x1x2 · · · xn



Framed space polygon shape space

Alignment is an irritating problem in shape comparison: this
geometric structure makes it easy.

Proposition
Multiplying ~q by w rotates polygon by matrix Hopf(w) ∈ SO(3).

Conclusion
Framed, length 1, space polygons (up to trans/rot) ⇐⇒

HPn = S4n−1/(~q ' w~q,w ∈ H)

The metric on HPn then gives a translation and rotation
invariant distance function for space polygons:

dist(P,Q) = acos

√
〈P,Q〉 〈Q,P〉
〈P,P〉 〈Q,Q〉



Shape comparison of proteins from PDB

We can use the HPn distance to cluster protein shapes. Here is
a proof-of-concept experiment with 10 proteins done by Tom
Needham (Ohio State).



1A5G and 1A61 in the PDB



Nice setting, nice tools

A natural question is: how statistically significant is a distance
of 0.27? In this setting, the answer is classical:

Proposition (based on Skriganov)
The probability that two random open polygons of n edges are
within distance d of one another is given by

sin4n d

So we expect most completely unrelated polygons to be at
distances which are very close to π/2, which is easy to check
with experiments on random polygons.



Closed framed space polygons

Every quaternion q = a + bj, where a,b ∈ C. This means that
we can take complex vectors (~a, ~b) corresponding to a
quaternionic vector ~q.

Proposition (Hausmann/Knutson)
P is closed, length 2 ⇐⇒ the vectors (~a, ~b) are Hermitian
orthonormal.

Proof.

Hopf(a + bj) = (a + bj)i(a + bj) = i(|a|2 − |b|2 + 2ābj)

so we have
∑

Hopf(a + bj) = 0 ⇐⇒
∑
|a|2 =

∑
|b2|,

∑
āb = 0.



Closed, rel. framed space poly shapes

Conclusion (Hausmann/Knutson)
Closed, framed space polygons ⇐⇒ Stiefel manifold V2(Cn).

Proposition (Hausmann/Knutson)
The action of the matrix group U(2) on V2(Cn)

• rotates the polygon in space ( SU(2) action) and
• spins all vectors of the frame ( U(1) action).

Conclusion (Hausmann/Knutson)
Closed, rel. framed space polygons of length 2 ⇐⇒
Grassmannian of 2-planes in complex n-space G2(Cn).



Metric on the Complex Grassmannian

An invariant distance between closed polygons is easy to
compute in linear time:

Proposition
Given two closed, (relatively) framed polygons as n × 2
complex matrices Y1 = (~a1, ~b1) and Y2 = (~a2, ~b2), let
cos θ1, cos θ2 be the singular values of Y T

1 Y2.

The singular values are invariant under translation and rotation
and allow us to construct several metrics on polygon space:

dgeo(Y1,Y2) =
√
θ2

1 + θ2
2, dchord(Y1,Y2) =

√
sin2 θ1 + sin2 θ2



Shape Recognition

This provides a space curve version of well-known construction
for plane curves:

Theorem (Younes–Michor–Shah–Mumford)
Roughly speaking,

{Contours in
R2 modulo
similarities

}
←→ Gr(2,C∞(S1,R)),

where Gr(k ,V ) is the Grassmannian of k-dimensional linear
subspaces of the vector space V .



Total Curvature of Space Polygons

Proposition (with Grosberg, Kusner, Shonkwiler)
The expected value of total turning angle for an n-turn
• open polygon is

π

2
n

• closed polygon is

π

2
n +

π

4
2n

2n − 3
.

Proposition (with Grosberg, Kusner,Shonkwiler)
At least 1/3 of rel. framed hexagons and 1/11 of rel. framed
heptagons are unknots.



Equilateral polygons

To describe the space of equilateral polygons, we first recall
that G2(Cn) is a symplectic space; in fact it is the symplectic
reduction of C2n by U(2).

G2(Cn) = C2n // U(2)︸ ︷︷ ︸
U(2) acts on vectors ~a,~b

Proposition (Knutson-Hausmann, Millson-Kapovich)
(Unframed) equilateral polygon space is a symplectic space; it
is the symplectic reduction of G2(Cn) by U(1)n−1:

ePoln = G2(Cn) // U(1)n−1
︸ ︷︷ ︸

U(1)n−1 rotates each frame around edge



Classical Mechanics

Symplectic spaces are the right setting for classical mechanics:

Theorem (Duistermaat-Heckmann, stated informally)
On a 2m-dimensional (symplectic) space,

d continuous, commuting (Hamiltonian) symmetries→
d conserved quantities (momenta)

joint distribution is cts, piecewise-polynomial, degree ≤ m − d.

Polygons (up to rotation) are
2n−6 = 2(n−3) dimensional.
Rotations around n−3 chords
di by n−3 angles θi commute.

d1

d2



Main Theorem

Theorem (with Shonkwiler)
The joint distribution of d1, . . . ,dn−3 and θ1, . . . , θn−3

are all uniform (on their domains).

Proof.
Check D-H theorem applies (hard part).

Then count: m = n − 3 and we have n − 3 symmetries, so the
pdf of the momenta di is piecewise polynomial of degree ≤

m - (n-3) = (n-3) - (n-3) = 0 .

The pdf is continuous, so this means it’s constant.



What is the domain of the di?

Definition
The momenta d1, . . . ,dn−3 obey triangle inequalities which
determine an n − 3 dimensional polytope Pn ⊂ Rn−3. This is
called the moment polytope.

d1

d2

0
0

1

2

1 2



What is the domain of the di?

Definition
The momenta d1, . . . ,dn−3 obey triangle inequalities which
determine an n − 3 dimensional polytope Pn ⊂ Rn−3. This is
called the moment polytope.

d1

d2 d1 + d2 ≥ 1

d1 ≤ 2

d2 ≤ 2

d1 ≤ d2 + 1

d2 ≤ d1 + 1

0
0

1

2

1 2



Action-Angle Coordinates

Definition
The di and θi are action-angle coordinates on polygon space.
In these coordinates, the volume form is simple:

dVol = dd1 ∧ . . . ddn−3 ∧ dθ1 ∧ . . . dθn−3.

To recover the polygon:
14

d1
d2

✓1

✓2

FIG. 2: This figure shows how to construct an equilateral pentagon in cPol(5;~1) using the action-angle map.
First, we pick a point in the moment polytope shown in Figure 3 at center. We have now specified diagonals
d1 and d2 of the pentagon, so we may build the three triangles in the triangulation from their side lengths,
as in the picture at left. We then choose dihedral angles ✓1 and ✓2 independently and uniformly, and join
the triangles along the diagonals d1 and d2, as in the middle picture. The right hand picture shows the final
space polygon, which is the boundary of this triangulated surface.

Arm3(n;~r) admits a Hamiltonian action by the Lie group SO(3) given by rotating the polygonal
arm in space (this is the diagonal SO(3) action on the product of spheres) whose moment map
µ gives the vector joining the ends of the polygon. The closed polygons Pol3(n;~r) are the fiber
µ�1(~0) of this map. While the group action does not generally preserve fibers of this moment map,
it does preserve µ�1(~0) = Pol3(n;~r) and in this situation, we can perform what is known as a
symplectic reduction (or Marsden–Weinstein–Meyer reduction [49, 50]) to produce a symplectic
structure on the quotient of the fiber µ�1(~0) by the group action. This yields a symplectic structure
on the (2n � 6)-dimensional moduli space cPol3(n;~r). The symplectic measure induced by this
symplectic structure is equal to the standard measure given by pushing forward the subspace mea-
sure on Pol3(n;~r) to cPol3(n;~r) because the “parent” symplectic manifold Arm3(n;~r) is a Kähler
manifold [33].

The polygon space cPol3(n;~r) is singular if

"I(~r) :=
X

i2I

ri �
X

j /2I

rj

is zero for some I ⇢ {1, . . . , n}. Geometrically, this means it is possible to construct a linear
polygon with edgelengths given by ~r. Since linear polygons are fixed by rotations around the
axis on which they lie, the action of SO(3) is not free in this case and the symplectic reduction
develops singularities. Nonetheless, the reduction cPol3(n;~r) is a complex analytic space with
isolated singularities; in particular, the complement of the singularities is a symplectic (in fact
Kähler) manifold to which Theorem 13 applies.

Both the volume and the cohomology ring of cPol3(n;~r) are well-understood from this sym-
plectic perspective [11, 32, 36, 38, 39, 46, 66]. For example:

• Build the triangles from the edgelengths.
• Put the first one in a standard position.
• Place the rest using the dihedral angles.



Structure of the Moment Polytope

d1

d2

d3

(2,3,2)

(0,0,0)
(2,1,0)

The polytope Pn is defined by the triangle inequalities:

0 ≤ d1 ≤ 2
1 ≤ di + di+1
|di − di+1| ≤ 1

0 ≤ dn−3 ≤ 2



Sampling Algorithm

Theorem (with Duplantier, Shonkwiler, Uehara)
A direct sampling algorithm for equilateral closed polygons with
expected performance O(n5/2) per sample.
If we let

si = di − di−1, for 1 ≤ i ≤ n − 2

and si ∈ [−1,1], then di automatically have |di − di−1| ≤ 1.

Proposition (with Duplantier, Shonkwiler, Uehara)
If we build di from si sampled uniformly in [−1,1]n, the di obey

all triangle inequalities with probability ∼ 6
√

6/π n−3/2.

So rejection sample to build di , sample θi directly, and
reassemble the polygon as above.



Diagonal sampling in 3 lines of code

Not first direct sampling algorithm (Grosberg-Moore,
Diao-Ernst-Montemayor-Ziegler), but
numerically stable, simple and fast.



Expected Value of Chord Lengths

Proposition (with Shonkwiler)
The expected length of a chord skipping k edges in an n-edge
equilateral polygon is the (k − 1)st coordinate of the center of
mass of the moment polytope.

n k = 2 3 4 5 6 7 8

4 1

5 17
15

17
15

6 14
12

15
12

14
12

7 461
385

506
385

506
385

461
385

8 1,168
960

1,307
960

1,344
960

1,307
960

1,168
960

9 112,121
91,035

127,059
91,035

133,337
91,035

133,337
91,035

127,059
91,035

112,121
91,035

10 97,456
78,400

111,499
78,400

118,608
78,400

120,985
78,400

118,608
78,400

111,499
78,400

97,456
78,400



Expected Value of Chord Lengths

Proposition (with Shonkwiler)
The expected length of a chord skipping k edges in an n-edge
equilateral polygon is the (k − 1)st coordinate of the center of
mass of the moment polytope.

E(chord(37,112)) =

2586147629602481872372707134354784581828166239735638
002149884020577366687369964908185973277294293751533
821217655703978549111529802222311915321645998238455
195807966750595587484029858333822248095439325965569
561018977292296096419815679068203766009993261268626
707418082275677495669153244706677550690707937136027
424519117786555575048213829170264569628637315477158
307368641045097103310496820323457318243992395055104

≈ 4.60973



Current: Equilateral polygons in other dimensions

Proposition
The space of closed equilateral polygons in Rk is the quotient
of (almost all) of the space (Sk−1)n by the (diagonal) action of
the Möbius group on Sk−1.

Proof.
For each n point cloud on Sk−1 (where fewer than n/2 points
coincide) there is a unique (rotation-free) Möbius
transformation which takes the center of mass to the origin.
This associates a unique closed equilateral polygon with almost
every polygonal arm.

Current Project
Use this structure to provide robust coordinates for

equilateral polygons in all dimensions.



Current: Topologically Constrained Random Walks

A topologically constrained random walk (TCRW) is a
collection of random walks in R3 whose components are
required to realize the edges of some fixed multigraph.

Abstract graph TCRW



Current: Topologically Constrained Random Walks

Tezuka Lab, Tokyo Institute of Technology

A synthetic K3,3!
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