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A GEOMETRIC INEQUALITY FOR PLANE
CURVES WITH RESTRICTED CURVATURE

G. D. CHAKERIAN, H. H. JOHNSON AND A. VOGT

ABSTRACT. A geometric proof is given that a closed plane curve of length
L and curvature bounded by K can be contained inside a circle of radius
L/4 - (7w —2)/2K.

Let K be a positive constant and let E, be n-dimensional Euclidean space.
A continuously differentiable curve X in E, parametrized by arc length s is
called a K-curve if and only if [ X'(s;) — X'(sy)ll < K|s; — s,| for all 5; and s,.
The purpose of this note is to give a geometric proof of an inequality obtained
previously by calculus of variations methods [4]: namely, that if X is a closed
K-curve in E, of length L, then X lies in a circle of radius R where

)] R < L/A—(n—-2)/2K.

Since the components of X’ are functions of bounded variation, X”(s) and
k(s) = || X"(s)|| exist for almost all s and, when k(s) exists, k(s) < K. Thus, K-
curves are a generalization of C2 curves with curvature bounded by K. They
share many of the geometrical properties of the latter but are to be preferred
in several respects. Dubins [3] showed that among K-curves with prescribed
initial and terminal points and prescribed initial and terminal tangent vectors
there exists a K-curve of minimal length. We show below (Proposition 3) that
the convex envelope of a closed K-curve in E, is also a closed K-curve. Both
of these properties fail if K-curves are replaced by C? K-curves. In fact,
Proposition 3 fails if K-curves are replaced by piecewise C2 K-curves.

To prove inequality (1) we first generalize a theorem of Blaschke [1, p. 116]
to the case of convex K-curves, then apply a geometrical construction to show
that (1) holds for convex K-curves, and then extend (1) to all K-curves by
Proposition 3. An alternative geometric proof of (1) may be obtained by
combining results of Dubins [3, Proposition 1 and Theorem 1] with Theorem
2 of Johnson [4]. (We are indebted to the referee for alerting us to Dubins’
interesting work and to the existence of the alternative proof.) For information
on related problems, consult [2]-[4].

Let C be a closed convex K-curve in E, with arc length parameter s. (The
arc length parameter of a closed K-curve is understood to assume all real
values by periodic extension. Also, a closed K-curve in E, is convex if and only
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if it is simple and its inside is a convex set.) Let P be a point of C. With no
loss of generality we suppose that C(0) = P = (0,0), that C’(0) = (1,0), and
that C lies above the x-axis.

Let 7(s) be the unique continuous function such that 7(0) = 0 and C’(s)
= (cos 7(s), sin 7(s)) for all 5. Since C is convex, 7 is a nondecreasing function
of 5. Since C is a K-curve,

4 sin® [(r(s,) — 7(55))/2] = IC"(s;) = C"(sx)IF < K25, — s,

for all 5; and s,. With € > 0 fixed, it follows that |7(s;) — 7(s,)| < (K + ¢)
- |s; — 5| for |s; —s,| sufficiently small. By the triangle inequality the
restriction on s; and s, can be removed and, since ¢ is arbitrary, the inequality
I7(s) — 7(s,)] < K|s; — 55| holds for all 5; and s,.

We also have that

Cs) = ( [ costoyat, [ sine(o) dt)

and
N(s) = (sin7(s),— cos(s))

where N(s) is the outer-directed normal to C. Thus, the support function A(s),
representing the perpendicular distance from C(0) to the tangent line through
C(s), is given by

h(s) = N(s) - C(s) = fo * sin (r(s) — 7(¢)) dt
(ct. [1]).

Let T be a circle of radius 1/K tangent to C at P and lying on the same side
of the tangent line as C. If the circle I is parametrized by arc length o with
T'(0) = P = (0,0) and I'(0) = (1,0), then I'(6) = (cos Ka, sin Ko) for all o,
I' has a support function hy(o) analogous to that of C, and hy(o) =
(1 — cos Ko)/K by an elémentary computation.

Suppose I' crosses C. By the Mean Value Theorem there will exist points
I'(0) and C(s) where the tangent vectors I"(s) and C’(s) are the same and k(o)
is larger than A(s). The parameter values ¢ and s may be chosen to satisfy
Ko = 7(s) and without loss of generality we may assume that 0 < Ko = 7(s)
< 7. Then ¢ and s are positive and

ho(@) = - [ sin (2(6) = ) dr
= lim 2 sin (7(s) — 7(s;))(7(s;) — 7(5,-1)) /K

mesh—

< lim 2 sin (7(s) — 7(s;))(s; — si—1)

mesh—0 ;=1

- fo sin (7(s) — 7(¢)) dt = h(s).

Here sy < -+- < s, is a partition of [0,s] and 7(sy) < --- < 7(s,) is the
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corresponding partition of [0, 7(s)]. Our conclusion is that k(o) < A(s) con-
trary to hypothesis, and so we have proved

PROPOSITION 1 (BLASCHKE). Let C be a closed convex K-curve in E,. Then
through each point P of C passes a circle T of radius 1/K tangent to C at P and
lying inside C.

Now, if C has length L, let 4 = C(s;) and B = C(s; + L/2) be two points
where C’(s;) = —C’(s; + L/2). Such points exist by a continuity argument.
Let M be the midpoint of the line segment AB and let P be an arbitrary point
of C.

A and B divide C into two arcs, one of which contains P. Reflect the arc
containing P centrally through M to obtain a new curve C* (see Figure 1) of
the same length L but now symmetric about M.

Like C, C* is a closed convex K-curve. Hence, by Proposition 1, there is a
circle T' of radius 1/K tangent to C* at P and lying inside C*. Its central
reflection I through M also lies inside C*. Likewise, the convex envelope I'*
of I' U I lies inside C*. Let Py be the center of I'. Then the length of T* is
27/K + 4d(M, Py) and is less than or equal to L. But

d(M,P) < d(M, P,) + d(Py, P) = d(M, P,) + K.

Hence, d(M,P) < L/4 — (7 — 2)/2K. Since P was an arbitrary point of C,
we conclude that C lies inside a circle of radius < L/4 — (7 — 2)/2K
centered at M.

If d(M,P) = L/4 - (m —2)/2K for some point P as above, then the
inequalities become equalities and it follows that M, Py, and P are collinear in
that order and T™* = C*. In such a case C* is a “racetrack” curve, that is, C*
is the convex envelope of two circles of radius 1/K whose centers are a
distance L/2 — @/K apart. The arc APB of the original curve C is half of C*
and thus is half of a racetrack curve. If a point Q on the arc of C opposite to
APB can be found with d(M, Q) = L/4 — (7 — 2)/2K, then AQB is also half
of a racetrack curve and C = APB U AQB is a racetrack curve. If no such
point Q can be found, then d(M,A4) = d(M,B) < L/4 — (= — 2)/2K and the
center M can be shifted toward P so as to obtain a circle of radius
< L/4 — (7 — 2)/2K containing C.

We have proved

PROPOSITION 2. Let C be a closed convex K-curve in E, of length L. Then C
lies inside a circle of radius L/4 — (w — 2)/2K. The curve C may be contained
in no smaller circle precisely when C is a racetrack curve of length L and
radii 1/K.

Let X be a closed K-curve and let C be the convex envelope of X. Observe
that every point of C is either a point of X or else an interior point of a line
segment in C whose endpoints lie on X. At the latter points, of course, C has
its tangent line parallel to the line segment. At points of C N X there is
likewise a unique supporting line of C: for, if the supporting lines formed a
cone at such a point, X could not have a derivative there.

Let o be an arc length parameter for X and let s be an arc length parameter
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for C. By what has just been said, C’(s) is a well-defined tangent vector and at
points of C N X coincides up to sign with X’'(o).

Let & be a positive number and s( a particular value of s. We shall show that
for s sufficiently close to sq,

IC"(s) = C'(so)ll < (K + &)|s = s]-

Suppose to the contrary that there exists a sequence {s,} convergent to s,
such that ||C’(s,) = C'(sp)ll > (K + €)|s, — 5o for all n. If C(sy) is not on X,
then for n large C(s,) is on the line segment of C through C(sy). Thence, C'(s,)
equals C’(sy) for a contradiction. So, C(sy) must belong to C N X. We can
suppose too that, for each n, C(s,) belongs to C N X. Otherwise, the points
C(s,) would be interior points of line segments of C. Without affecting C'(s,,)
or increasing |s, — so|, we could then shift the points along the segments until
they met X.

The curve X has only a finite number of branches which go through C(sg).
By passing to a subsequence, we can suppose that the points C(s,) all lie on
the same branch of X. Thus, there exists a sequence {g,} converging to a
parameter value oy with X(oy) = C(sy) and X(g,) = C(s,) for all n. By
passing to subsequences once more, we can assume that, for all n, C'(s,)
= uX'(0,) where u = =1 is fixed. But {X’(g,)} converges to X’(sy). Hence,
{C’(s,)} converges to a limit which up to sign equals X’(oy) and, therefore, up
to sign equals C’(sy). Since C is a closed convex curve, it cannot reverse
direction abruptly. So {C’(s,)} converges to C’(sy) and C’(sy) = uX'(o;)-

Then,

(K + &5, — sol < IIC(sp) = C"(so)ll = llu(X"(0,) — X" (o))l
"X (0,,) -X (00)“ Klon - °0|

But for any positive number a < 1 and for n sufficiently large,

(X (a,) — X(ap))/(a, — o)l > 1 — a.

Hence,

(K + €)ls, — sol < Klo, — ap| < K| X(a,) — X(0p)Il/(1 - )
= K||C(s,) = Clsp)ll/1 = a < Kls, = 5o|/(1-0a)

for such n. Thus, K + ¢ < K/(1 — a) and, letting a vary, we conclude that
K + ¢ < K for a contradiction.

We have established that for each value sy and for each s sufficiently close
to sy, [|C’(s) — C'(s)|l < (K + €)|s — so|. By a compactness argument plus
the triangle inequality, it follows that C is a (K + €)-curve. Since this is true
for an arbitrary positive number ¢, C is a K-curve.

PROPOSITION 3. Let X be a closed K-curve in E,. Then the convex envelope C
of X is a closed convex K-curve.

Since the length of C is at most that of X, we have our main result by
combining Propositions 2 and 3.



126 G. D. CHAKERIAN, H. H. JOHNSON AND A. VOGT

THEOREM 1. Let X be a closed K-curve in E, of length L. Then X lies inside a
circle of radius L/4 — (m — 2)/2K. The curve X may be contained in no smaller
circle precisely when X is a racetrack curve of length L and radii 1/K.
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