Definition. For a unit-speed curve $\vec{\alpha}(s)$ in \mathbb{R}^{3} with $\vec{\alpha}^{\prime \prime}(s) \neq \overrightarrow{0}$, we say
$T(s)=\vec{\alpha}^{\prime}(s)$ is called the tangent vector $N(s)=\frac{\vec{\alpha}^{\prime \prime}(s)}{\left\|\vec{\alpha}^{\prime \prime}(s)\right\|}$ is called the normal vector $B(s)=T(s) \times N(s)$ is called the binormal.
Definition. The Frenet frame is the map $F(s)=[T(s) N(s) B(s)]: \mathbb{R} \rightarrow M_{a t} t_{3 \times 3}$.
Proposition The Frenet frame $F(s) \in S O(3)$, or (equivalently) T, N, B are always an orthonormal basis for \mathbb{R}^{3} so that $\operatorname{det}([T \sim B])=+1$.
Proof. Since $\vec{\alpha}$ is arclength parametrized, $T(s)=\vec{\alpha}^{\prime}(s)$ is unit length. So

$$
\frac{d}{d s}\langle T(s), T(s)\rangle=2\left\langle\vec{\alpha}^{\prime \prime}(s), \vec{\alpha}^{\prime}(s)\right\rangle=0
$$

Thus

$$
\langle N(s), T(s)\rangle=\left\langle\frac{\vec{\alpha}^{\prime \prime}(s)}{\left\|\vec{\alpha}^{\prime \prime}(s)\right\|}, \vec{\alpha}^{\prime}(s)\right\rangle=0 .
$$

and $T(s), N(s)$ are orthogonal unit vectors. Since $B(s)=T(s) \times N(s), B(s)$ is orthogonal to $T(S)$ and $N(S)$.

$$
\begin{aligned}
\|B(s)\|^{2} & =\|T(s) \times N(s)\|^{2} \\
& =\|T(s)\|^{2}\|N(s)\|^{2}-\langle T(s), N(s)\rangle^{2} \\
& =1
\end{aligned}
$$

Finally,

$$
\begin{aligned}
\operatorname{det}[T N B] & =\langle T, N \times B\rangle \\
& =\langle B, T \times N\rangle \\
& =\langle T \times N, T \times N\rangle=1
\end{aligned}
$$

Proposition. There are scalar functions $x>0$ and I so that

$$
\begin{aligned}
& T^{\prime}=K N \\
& N^{\prime}=-k T+\Psi B \\
& B^{\prime}=-\Psi N
\end{aligned}
$$

We call these the Frenet equations.
Proof. Since T, N, B is an orthonormal basis for \mathbb{R}^{3},

$$
\begin{aligned}
& T^{\prime}=\left\langle T^{\prime}, T\right\rangle T+\left\langle T_{0}^{\prime}, N\right\rangle N+\left\langle T^{\prime}, B\right\rangle B \\
& N^{\prime}=\left\langle N^{\prime}, T\right\rangle T+\left\langle N^{\prime}, N\right\rangle N+\left\langle N^{\prime}, B\right\rangle B \\
& B^{\prime}=\left\langle B^{\prime}, T\right\rangle T+\left\langle B^{\prime}, N\right\rangle N+\left\langle B^{\prime}, B\right\rangle B
\end{aligned}
$$

Since $\langle T, T\rangle \equiv\langle N, N\rangle \equiv\langle B, B\rangle \equiv 1$, differentiating writ S shows

$$
2\left\langle T^{\prime}, T\right\rangle \equiv 2\left\langle N_{1}^{\prime} N\right\rangle \equiv 2\left\langle B^{\prime}, B\right\rangle \equiv 0 .
$$

Similarly, since $\langle T, N\rangle=\langle N, B\rangle=\langle B, T\rangle=0$, we learn

$$
\begin{aligned}
& \left\langle T^{\prime}, N\right\rangle+\left\langle T, N^{\prime}\right\rangle=0 \\
& \left\langle N^{\prime}, B\right\rangle+\left\langle N, B^{\prime}\right\rangle=0 \\
& \left\langle T^{\prime}, B\right\rangle+\left\langle T, B^{\prime}\right\rangle=0
\end{aligned}
$$

Define $x=\left\|\vec{\alpha}^{\prime \prime}\right\|>0$. Then

$$
\left\langle T^{\prime}, N\right\rangle=\left\langle\vec{\alpha}^{\prime \prime}, \frac{\vec{\alpha}^{\prime \prime}}{\left\|\vec{\alpha}^{\prime \prime}\right\|}\right\rangle=\frac{\left\langle\vec{\alpha}^{\prime \prime}, \vec{\alpha}^{\prime \prime}\right\rangle}{\left\|\vec{\alpha}^{\prime \prime}\right\|}=\left\|\vec{\alpha}^{\prime \prime}\right\|=k
$$

Define $\tilde{\tau}=\left\langle N^{\prime}, B\right\rangle$. Finally y, observe that

$$
\left\langle\Gamma^{\prime}, B\right\rangle=\left\langle\vec{\alpha}^{\prime \prime}, B\right\rangle=\langle x N, B\rangle=0 .
$$

This completes the proof.
Definition. We call $K=\langle T, N\rangle$ and $Y=\left\langle N^{\prime}, B\right\rangle$ the curvature and torsion of the cone $\stackrel{\rightharpoonup}{\alpha}(s)$.

Geometric interpretation.
If $\vec{\alpha}(s)$ is the path of a rollercoaster moving at constant speed which oriented so that the rider's vertical direction is $N(s)$ and forward is $T(s)$ then
$X(s)=\|\vec{\alpha} "(s)\|=\begin{gathered}\text { "vertical" acceleration } \\ \text { experienced by rider }\end{gathered}$ experienced by rider

$$
\mathcal{T}(s)=\left\langle N^{\prime}, B\right\rangle=\text { "twisting" experienced }
$$ by rider.

See Duran, Tsuzuki 2018, "Procedural method for finding roller coaster rails centerlines based on heart-line acceleration criteria."

As we saw in the video, K and \mathcal{Y} describe how the Frenet frame changes.
Proposition. If $S=\left[\begin{array}{ccc}0 & -k & 0 \\ k & 0 & -\tau \\ 0 & \tau & 0\end{array}\right]$ and $F=\left[\begin{array}{lll}\uparrow & T & \uparrow \\ T & N & B \\ \downarrow & \downarrow & \downarrow\end{array}\right]$ is the Frenet frame, the Frenet equations are $F^{\prime}=F S$.
Proof. We just check

$$
\begin{aligned}
F S & =\left[\begin{array}{ccc}
\uparrow & \uparrow & \uparrow \\
T & N & B \\
\downarrow & \downarrow & \downarrow
\end{array}\right]\left[\begin{array}{ccc}
0 & -k & 0 \\
K & 0 & -\xi \\
0 & \zeta & 0
\end{array}\right] \\
& =\left[\begin{array}{ccc}
\uparrow & \uparrow & \uparrow \\
K N & -K T+\uparrow B & -\Im B \\
\downarrow & \downarrow & \downarrow
\end{array}\right] \\
& =\left[\begin{array}{ccc}
\uparrow & \uparrow & \uparrow \\
T^{\prime} & N^{\prime} & B^{\prime} \\
\downarrow & \downarrow & \downarrow
\end{array}\right]=F^{\prime}
\end{aligned}
$$

We are rarely in the case where $\vec{\alpha}(s)$ is arclength parametrized, so we prove:
Proposition. If $\vec{\alpha}(t)$ is a regular parametrized curve in \mathbb{R}^{3} with $\vec{\alpha}^{\prime \prime}(t) \neq \overrightarrow{0}$,

$$
\begin{aligned}
& T=\frac{\vec{\alpha}^{\prime}}{\left\|\vec{\alpha}^{\prime}\right\|} \\
& N=\frac{\left(\vec{\alpha}^{\prime} \times \vec{\alpha}^{\prime \prime}\right) \times \vec{\alpha}^{\prime}}{\left\|\vec{\alpha}^{\prime}\right\|\left\|\vec{\alpha}^{\prime} \times \vec{\alpha}^{\prime \prime}\right\|}=\frac{\left\langle\vec{\alpha}^{\prime}, \vec{\alpha}^{\prime}\right\rangle \vec{\alpha}^{\prime \prime}-\left\langle\vec{\alpha}^{\prime}, \vec{\alpha}^{\prime \prime}\right\rangle \vec{\alpha}^{\prime}}{\left\|\vec{\alpha}^{\prime}\right\| \vec{\alpha}^{\prime} \times \vec{\alpha}^{\prime} \|} \\
& B=\frac{\vec{\alpha}^{\prime} \times \vec{\alpha}^{\prime \prime}}{\left\|\vec{\alpha}^{\prime} \times \vec{\alpha}^{\prime \prime}\right\|}
\end{aligned}
$$

while

$$
K=\frac{\left\|\vec{\alpha} \times \vec{\alpha}^{\prime \prime}\right\|}{\left\|\vec{\alpha}^{\prime}\right\|^{3}} \text { and } r=\frac{\left\langle\vec{\alpha}^{\prime}, \vec{\alpha}^{\prime \prime} \times \vec{\alpha}^{\prime \prime \prime}\right\rangle}{\left\|\vec{\alpha}^{\prime} \times \vec{\alpha}^{\prime \prime}\right\|^{2}}
$$

Proof. Recall that for any regular $\vec{\alpha}(t)$

$$
S(t)=\int_{0}^{t}\left\|\vec{\alpha}^{\prime}(x)\right\| d x, \quad S^{\prime}(t)=\left\|\vec{\alpha}^{\prime}(t)\right\|
$$

has an inverse function $t(s)$ with $t^{\prime}(s)=\frac{1}{\left\|\vec{\alpha}^{\prime}(t(s))\right\|}$. (Here all the primes are t derivatives.) So

$$
T=\frac{d}{d s} \vec{\alpha}(t(s))=\vec{\alpha}^{\prime}(t) \cdot t^{\prime}(s)=\frac{\vec{\alpha}^{\prime}}{\left\|\vec{\alpha}^{\prime}\right\|}
$$

From the Frenet equations, $\frac{d}{d s} T=x N$, so

$$
\begin{aligned}
K N & =\frac{d^{2}}{d s^{2}} \vec{\alpha}(t(s))=\frac{d}{d s} \frac{\vec{\alpha}^{\prime}(t(s))}{\| \vec{\alpha}^{\prime}(t(s))} \\
& =\frac{\vec{\alpha}^{\prime \prime}}{\left\|\vec{\alpha}^{\prime}\right\|^{2}}+\left(\frac{d}{d s} \frac{1}{\left\|\vec{\alpha}^{\prime}(t(s))\right\|}\right) \vec{\alpha}^{\prime}
\end{aligned}
$$

So we know N is in the $\vec{\alpha}^{\prime}, \vec{\alpha}^{\prime \prime}$ plane with a positive $\vec{\alpha}^{\prime \prime}$ component.

This means that

$$
\begin{aligned}
B & =T \times N \\
& =\frac{\vec{\alpha}^{\prime}}{\left\|\vec{\alpha}^{\prime}\right\|} \times \frac{1}{k}\left(\frac{\vec{\alpha}^{\prime \prime}}{\left\|\vec{\alpha}^{\prime}\right\|^{2}}+\left(\frac{\left(\frac{d}{d s} \frac{1}{\left\|\vec{\alpha}^{\prime}(t(s))\right\|}\right)}{\text { scalar }}\right)^{\text {collinear }} \vec{\alpha}^{\prime}\right) \\
& =\frac{1}{k} \frac{\vec{\alpha}^{\prime} \times \vec{\alpha}^{\prime \prime}}{\left\|\vec{\alpha}^{\prime}\right\|^{3}} .
\end{aligned}
$$

But we know that $\|B\|=1$ and $k>0$, so we have

$$
B=\frac{\vec{\alpha}^{\prime} \times \vec{\alpha}^{\prime \prime}}{\left\|\vec{\alpha}^{\prime} \times \vec{\alpha}^{\prime \prime}\right\|} \text { and } K=\frac{\left\|\vec{\alpha}^{\prime} \times \vec{\alpha}^{\prime \prime}\right\|}{\left\|\vec{\alpha}^{\prime}\right\|^{3}}
$$

The torsion formula is homework, but is computed using the Frenet equation

$$
\begin{aligned}
-\mathcal{J} & =\left\langle\frac{d}{d s} B(t(s)), N\right\rangle \\
& =\left\langle\frac{B^{\prime}}{\left\|\vec{\alpha}^{\prime}\right\|^{\prime}} N\right\rangle
\end{aligned}
$$

Example. Consider the helix

$$
\vec{\alpha}(t)=(a \cos t, a \sin t, b t), a>0
$$

We compute

$$
\begin{aligned}
\vec{\alpha}^{\prime} & =(-a \sin t, a \cos t, b) \\
\vec{\alpha}^{\prime \prime} & =(-a \cos t,-a \sin t, 0) \\
\vec{\alpha}^{\prime \prime \prime} & =(a \sin t,-a \cos t, 0) \\
\left\|\vec{\alpha}^{\prime}\right\| & =\sqrt{a^{2} \sin ^{2} t+a^{2} \cos ^{2} t+b^{2}}=\sqrt{a^{2}+b^{2}} \\
\vec{\alpha}^{\prime} \times \vec{\alpha}^{\prime \prime} & =\left(-b a \sin t,-b a \cos t, a^{2} \sin ^{2} t+a^{2} \cos ^{2} t\right) \\
& =\left(b a \sin t,-b a \cos t, a^{2}\right) \\
\left\|\vec{\alpha}^{\prime} \times \vec{\alpha}^{\prime \prime}\right\| & =\sqrt{b^{2} a^{2} \sin ^{2} t+b^{2} a^{2} \cos ^{2} t+a^{4}} \\
& =\sqrt{b^{2} a^{2}+a^{4}}=a \sqrt{a^{2}+b^{2}} \\
\left\langle\vec{\alpha}^{\prime}, \vec{\alpha}^{\prime \prime} \times \vec{\alpha}^{\prime \prime \prime}\right\rangle & =\left\langle\vec{\alpha}^{\prime \prime \prime}, \vec{\alpha}^{\prime} \times \vec{\alpha}^{\prime \prime}\right\rangle \\
& =b a^{2} \sin ^{2} t+b a^{2} \cos ^{2} t=b a^{2} .
\end{aligned}
$$

and

$$
\begin{aligned}
\left(\alpha^{\prime} \times \vec{\alpha}^{\prime \prime}\right) \times \vec{\alpha}^{\prime}= & \left(b a \sin t,-b a \cos t, a^{2}\right) \times \\
& (-a \sin t, a \cos t, b) \\
= & \left(-b^{2} a \cos t-a^{3} \cos t,-b^{2} a \sin t-a^{3} \sin t,\right. \\
& \left.b a^{2} \sin t \cos t-b a^{2} \cos t \sin t\right) \\
= & \left(a^{2}+b^{2}\right)(-a \cos t,-a \sin t, 0)
\end{aligned}
$$

It follows that

$$
\begin{aligned}
& T=\frac{\vec{\alpha}^{\prime}}{\left\|\vec{\alpha}^{\prime}\right\|}=\left(-\frac{a}{\sqrt{a^{2}+b^{2}}} \sin t, \frac{a}{\sqrt{a^{2}+b^{2}}} \cos t, \frac{b}{\sqrt{a^{2}+b^{2}}} t\right) \\
& N=\frac{\left(\vec{\alpha}^{\prime} \times \vec{\alpha}^{\prime \prime}\right) \times \vec{\alpha}^{\prime}}{\left\|\vec{\alpha}^{\prime}\right\|\left\|\vec{\alpha}^{\prime} \times \vec{\alpha}^{\prime \prime}\right\|}=(-\cos t,-\sin t, 0) \\
& B=\frac{\vec{\alpha}^{\prime} \times \vec{\alpha}^{\prime \prime}}{\left\|\vec{\alpha}^{\prime} \times \vec{\alpha}^{\prime}\right\|}=\frac{\left(b \alpha \sin t,-b \alpha \cos t, a^{2}\right)}{a \sqrt{a^{2}+b^{2}}} \\
& =\left(\frac{b}{\sqrt{a^{2}+b^{2}}} \sin t, \frac{-b}{\sqrt{a^{2}+b^{2}}} \cos t, \frac{a}{\sqrt{a^{2}+b^{2}}}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
& K=\frac{\left\|\vec{\alpha}^{\times} \times \vec{\alpha}^{\prime \prime}\right\|}{\left\|\vec{\alpha}^{\prime}\right\|^{3}}=\frac{a \sqrt{a^{2}+b^{2}}}{\left(\sqrt{a^{2}+b^{2}}\right)^{3 / 2}}=\frac{a}{a^{2}+b^{2}} \\
& \tau=\frac{\left\langle\vec{\alpha}^{\prime}, \vec{\alpha}^{\prime \prime} \times \vec{\alpha}^{\prime \prime \prime}\right\rangle}{\left\|\vec{\alpha}^{\prime} \times \vec{\alpha}^{\prime \prime}\right\|^{2}}=\frac{b a^{2}}{\left(a \sqrt{a^{2}+b^{2}}\right)^{2}}=\frac{b}{a^{2}+b^{2}}
\end{aligned}
$$

We see that if θ is the pitch angle

and $\lim _{b \rightarrow 0} k=\frac{1}{a}, \quad \lim _{b \rightarrow \infty} k=0$.

