The meaning of H

Suppose Ω is a region in \mathbb{R}^{2} with smooth boundary $\partial \Omega$ and

$$
\vec{x}(x, y)=(x, y, z(x, y))
$$

We have previously computed

$$
\begin{aligned}
& \vec{x}_{x}=\left(1,0, z_{x}\right) \\
& \vec{x}_{y}=\left(0,1, z_{y}\right)
\end{aligned}
$$

so

$$
E=1+z_{x}^{2}, \quad F=z_{x} z_{y}, \quad G=1+z_{y}^{2}
$$

Further,

$$
\vec{X}_{x} \times \vec{X}_{y}=\left(-z_{x},-z_{y}, 1\right)
$$

so

$$
\vec{n}=\frac{\left(-z_{x},-z_{y}, 1\right)}{\sqrt{1+z_{x}^{2}+z_{y}^{2}}}
$$

This means

$$
\begin{aligned}
& l=\left\langle\vec{x}_{x x}, \vec{n}\right\rangle=\frac{z_{x x}}{\sqrt{1+z_{x}^{2}+z_{y}^{2}}} \\
& m=\left\langle\vec{x}_{x y,} \vec{n}\right\rangle=\frac{z_{x y}}{\sqrt{1+z_{x}^{2}+z_{y}^{2}}} \\
& n=\left\langle\vec{x}_{y y,}, \vec{n}\right\rangle=\frac{z_{y y}}{\sqrt{1+z_{x}^{2}+z_{y}^{2}}}
\end{aligned}
$$

We want to compute the trace of the shape operator. Since

$$
S_{\rho}=\left[\begin{array}{ll}
E & F \\
F & G
\end{array}\right]^{-1}\left[\begin{array}{ll}
l & m \\
m & n
\end{array}\right]
$$

We can compute

$$
\begin{aligned}
S_{p} & =\frac{1}{E G-F^{2}}\left[\begin{array}{cc}
G & -F \\
-F & E
\end{array}\right]\left[\begin{array}{cc}
l & m \\
m & n
\end{array}\right] \\
& =\frac{1}{E G-F^{2}}\left[\begin{array}{ll}
G l-F_{m} & \\
\sim & -F_{m}+E_{n}
\end{array}\right]
\end{aligned}
$$

so

$$
\operatorname{tr} S_{p}=\frac{G l-2 F_{m}+E_{n}}{E G-F^{2}}
$$

and

$$
H=\frac{1}{2} \operatorname{tr} S_{p}=\frac{G l-2 F_{m}+E_{n}}{2\left(E G-F^{2}\right)}
$$

Now

$$
\begin{aligned}
E G-F^{2} & =\left(1+z_{x}^{2}\right)\left(1+z_{y}^{2}\right)-z_{x}^{2} z_{y}^{2} \\
& =1+z_{x}^{2}+z_{y}^{2}
\end{aligned}
$$

In the numerator, we get

$$
\begin{aligned}
& G l-2 F_{m}+E_{n}= \\
& \frac{\left(1+z_{y}^{2}\right) z_{x x}-2 z_{x} z_{y} z_{x y}+\left(1+z_{x}^{2}\right) z_{y y}}{\sqrt{1+z_{x}^{2}+z_{y}^{2}}}
\end{aligned}
$$

Theorem. For a graph surface $(x, y, z(x, y))$

$$
H=\frac{\left(1+z_{y}^{2}\right) z_{x x}-2 z_{x} z_{y} z_{x y}+\left(1+z_{x}^{2}\right) z_{y y}}{2\left(1+z_{x}^{2}+z_{y}^{2}\right)^{3 / 2}}
$$

We now count to interpret this!

$$
\begin{aligned}
\operatorname{Area}(z) & =\int_{\Omega} \sqrt{E G-F^{2}} d x d y \\
& =\int_{\Omega} \sqrt{1+z_{x}^{2}+z_{y}^{2}} d x d y \\
& =\int_{\Omega} \sqrt{1+\|\nabla z\|^{2}} d x d y
\end{aligned}
$$

Now suppose we want to compute the directional derivative

$$
D_{v} \operatorname{Area}(z)=\frac{d}{d t} \operatorname{Area}(z+t v)
$$

for some variation $v: \Omega \rightarrow \mathbb{R}$ with $v \equiv 0$ on $\partial \Omega$.

We can write down

$$
\begin{aligned}
& \left.\frac{d}{d t} \operatorname{Area}(z+t)\right|_{t=0}= \\
& \quad=\left.\int_{\Omega} \frac{d}{d t} \sqrt{1+(z+t v)_{x}^{2}+(z+t v)_{y}^{2}}\right|_{t=0} ^{d x d y}
\end{aligned}
$$

Now

$$
\begin{aligned}
\left.\frac{d}{d t}(z+(t))_{x}^{2}\right|_{t=0} & =\left.\frac{d}{d t}\left(z_{x}+t v_{x}\right)^{2}\right|_{t=0} \\
& =\left.2\left(z_{x}+t v_{x}\right) \cdot v_{x}\right|_{t=0} \\
& =2 z_{x} v_{x}
\end{aligned}
$$

Similarly,

$$
\left.\frac{d}{d t}(z+t v)_{y}\right|_{t=0}=2 z_{y} V_{y} .
$$

Therefore

$$
\begin{aligned}
& \left.\frac{d}{d t} \sqrt{1+(z+t v)_{x}^{2}+(z+t v)_{y}^{2}}\right|_{t=0}= \\
& \quad=\frac{1}{\not \partial \sqrt{1+z_{x}^{2}+z_{y}^{2}}} \cdot\left(2 z_{x} v_{x}+\partial 2 z_{y} v_{y}\right) \\
& \quad=\left\langle\frac{\nabla z}{\sqrt{1+\|\mid z\|^{2}}}, \nabla v\right\rangle
\end{aligned}
$$

Now in vector calculus, we learn to define the divergence of a vector field $\vec{F}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ by

$$
\operatorname{div} \vec{F}=\frac{\partial}{\partial x_{1}} F_{1}+\frac{\partial}{\partial x_{2}} F_{2}
$$

Thus, for any scalar function φ,

$$
\operatorname{div} \varphi \vec{F}=\frac{\partial}{\partial x_{1}} \varphi F_{1}+\frac{\partial}{\partial x_{2}} \varphi F_{2}
$$

$$
\begin{aligned}
& =\left(\frac{\partial}{\partial x_{1}} \varphi\right) F_{1}+\varphi\left(\frac{\partial}{\partial x_{1}} F_{1}\right)+\left(\frac{\partial}{\partial x_{2}} \varphi\right) F_{2}+\varphi\left(\frac{\partial}{\partial x_{2}} F_{2}\right) \\
& =\langle\nabla \varphi, F\rangle+\varphi \operatorname{div} F .
\end{aligned}
$$

We also learn the divergence theorem,

$$
\int_{\Omega} \operatorname{div} F d A_{e a}=\int_{\partial \Omega}\langle F ; \vec{n}\rangle d s
$$

where \vec{n} is the outward pointing unit normal to $\partial \Omega$.

Putting these together,

$$
\begin{aligned}
& \int_{\Omega}\left\langle\frac{\nabla_{z}}{\sqrt{1+\| \|_{z} \|^{2}}} \nabla_{v}\right\rangle d \text { Area }= \\
& =\int_{\Omega} \operatorname{div}\left(v \frac{\nabla_{z}}{\sqrt{1+\left\|\nabla_{z}\right\|^{2}}}\right)-v \operatorname{div}\left(\frac{\nabla_{z}}{\sqrt{1+\| \|_{z} \|^{2}}}\right) d \text { Area } \\
& =\int_{\partial \rho}\left\langle v \frac{\nabla_{z}}{\sqrt{1+\left\|\nabla_{z}\right\|^{2}}} \vec{n}\right\rangle d s-\int_{\Omega} v \operatorname{div}\left(\frac{\nabla_{z}}{\sqrt{1+\|\left.\nabla_{z}\right|^{2}}}\right) d \text { Area }
\end{aligned}
$$

O, because $\mathrm{V}=0$ on $\partial \Omega$
So D_{v} Area $(z)=0$ for all variations V if and only if $\operatorname{div}\left(\frac{\nabla z}{\sqrt{1+\mid \nabla z^{2}}}\right)=0$.

So now let's compute

$$
\begin{aligned}
& \operatorname{div}\left(\frac{1}{\sqrt{1+z_{x}^{2}+z_{y}^{2}}} \nabla z\right)=\left\langle\nabla\left(\frac{1}{\sqrt{1+z_{x}^{2}+z_{y}^{2}}}\right), \nabla z\right\rangle \\
&+\frac{z_{x x}+z_{y y}}{\sqrt{1+z_{x}^{2}+z_{y}^{2}}}
\end{aligned}
$$

Now

$$
\nabla\left(\frac{1}{\sqrt{1+z_{x}^{2}+z_{y}^{2}}}\right)=-\frac{1}{2} \frac{1}{\left(1+z_{x}^{2}+z_{y}^{2}\right)^{3 / 2}}\left[\begin{array}{l}
2 z_{x} z_{x x}+\not \partial z_{y} z_{y y} \\
z z_{x} z_{x y}+\not \partial z_{y} z_{y} z_{y}
\end{array}\right]
$$

so

$$
\begin{aligned}
&\left\langle\nabla \frac{1}{\sqrt{1+z_{x}^{2}-z_{y}^{2}}} \nabla z\right\rangle+\frac{z_{x x}+z_{y y}}{\sqrt{1+z_{x}^{2}+z_{y}^{2}}} \\
&= \frac{-z_{x}^{2} z_{x x}-z_{x} z_{y} z_{y x}-z_{x} z_{y} z_{x y}-z_{y}^{2} z_{y y}}{\left(1+z_{x}^{2}+z_{y}^{2}\right)^{3 / 2}} \\
&+\frac{\left(1+z_{x}^{2}+z_{y}^{2}\right)\left(z_{x x}+z_{y y}\right)}{\left(1+z_{x}^{2}+z_{y}^{2}\right)^{3 / 2}}
\end{aligned}
$$

$$
\begin{aligned}
= & \frac{\left(1+z_{y}^{2}\right) z_{x x}-2 z_{x} z_{y} z_{x y}+\left(1+z_{x}^{2}\right) z_{y y}}{\left(1+z_{x}^{2}+z_{y}^{2}\right)^{3 / 2}} \\
& +\frac{z_{x}^{2} z_{x x}-z_{x}^{2} z_{x x}+z_{y}^{2} z_{y y}-z_{y}^{2} z_{y y}}{\left(1+z_{x}^{2}+z_{y}^{2}\right)^{3 / 2}}
\end{aligned}
$$

which proves a striking theorem!
Theorem. $2 H$ is the first variation of area.
Surfaces with $H \equiv 0$ are area-critical we call them minimal surfaces.

Example $\left(x, y, \log \left(\frac{\cos x}{\cos y}\right)\right)$.
We compute

$$
z(x, y)=\log (\cos x)-\log (\cos y)
$$

So

$$
\begin{aligned}
& z_{x}=\frac{1}{\cos x} \cdot(-\sin x)=-\tan x \\
& z_{y}=-\frac{1}{\cos y}(-\sin y)=\tan y
\end{aligned}
$$

and

$$
\begin{aligned}
& z_{x x}=-\sec ^{2} x \\
& z_{x y}=0 \\
& z_{y y}=-\sec ^{2} y
\end{aligned}
$$

so

$$
\begin{aligned}
H & =\frac{\left(1+z_{y}^{2}\right) z_{x x}-2 z_{x} z_{y} z_{x y}+\left(1+z_{x}^{2}\right) z_{y y}}{2\left(1+z_{x}^{2}+z_{y}^{2}\right)^{3 / 2}} \\
& =\frac{-\left(1+\tan ^{2} y\right) \sec ^{2} x+\left(1+\tan ^{2} x\right) \sec ^{2} y}{2\left(1+\tan ^{2} x+\tan ^{2} y\right)^{3 / 2}}
\end{aligned}
$$

But $1+\tan ^{2} \theta=\sec ^{2} \theta$ for all θ, so

$$
\begin{aligned}
& =\frac{-\sec ^{2} y \sec ^{2} x+\sec ^{2} x \sec ^{2} y}{2\left(1+\tan ^{2} x+\tan ^{2} y\right)^{3 / 2}} \\
& =0
\end{aligned}
$$

and this is well-defined as long as $x, y \in(-\pi / 2, \pi / 2)$ so $\cos x, \cos y \neq 0$.

This is called Scherk's surface.

Example. In previous notes, we considered the surface of revolution

$$
\begin{gathered}
1)=\left(f(u) \cos v_{1}\right. \\
f(u) \sin v_{1} \\
u)
\end{gathered}
$$

and showed that

$$
H=\frac{\left(1+\left(f^{\prime}\right)^{2}\right)-f f^{\prime \prime}}{2 f\left(1+\left(f^{\prime}\right)^{2}\right)^{3 / 2}} \operatorname{sign}(f)
$$

This means that $H=0 \Leftrightarrow$

$$
\begin{aligned}
& \left(1+\left(f^{\prime}\right)^{2}\right)-f^{\prime \prime}=0 \\
& f^{\prime \prime}=\frac{1+\left(f^{\prime}\right)^{2}}{f}
\end{aligned}
$$

This is a and order ODE for f.

We can solve it by guessing and checking.

$$
\begin{aligned}
& f(u)=c \cosh \frac{u}{c} \\
& f^{\prime}(u)=\sinh \frac{u}{c} \\
& f^{\prime \prime}(u)=\frac{1}{c} \cosh \frac{u}{c}
\end{aligned}
$$

So

$$
\frac{1+f^{\prime}(u)^{2}}{f(u)}=\frac{1+\sinh ^{2} \frac{u}{c}}{c \cosh \frac{u}{c}}=\frac{\cosh ^{2} \frac{u}{c}}{c \cosh \frac{u}{c}}=f^{\prime \prime}(u)
$$

(In fact, I think this is the only real solution, as $f(u)=$ in also solves the ODE.J

The resulting surface is the catenoid!

