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Abstract

In this thesis the sparse least squares problem with box constraints is consid-
ered. This problem has the form min<, <, ||[Az — b||2, where some lower/upper
bounds may not be present. This ty_pe_of problem arises from, for example,
reconstruction problems in geodesy and tomography. Here methods based on
direct factorization methods for sparse matrix computation are explored. Two
completely different approaches for solving the problem are discussed and com-
pared, i.e. active set methods and primal-dual interior-point methods. An
active set block method suitable for sparse problems is developed and a conver-
gence proof is presented. The interior-point methods compared are all based
on Mehrotra’s predictor-corrector path following method. Different schemes
for choosing the barrier parameter p and for making multiple corrections are
discussed. The problem of solving the seemingly increasingly ill-conditioned
subproblems when the interior-point method converges is briefly analyzed.

Numerical comparison of different active set methods and interior-point
methods are given. The “best” method from each category are compared against
each other. A comparison of the behavior when the solution has different num-
ber of free variables is also given. The numerical tests show that the block
active set method is faster and gives better accuracy for both nondegenerate
and degenerate problems.
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1 Introduction

Many scientific modeling applications give rise to the Least Squares Problem.
In this thesis we will compare different ways to solve the Least Squares Problem
with simple constraints on each variable, the Bounded Least Squares (BLS)
Problem,

nl||Ax — b 1.1
min | Az — b, (1.1)

Q={z|l; <x; <wuy, Vi},

where —oco < I;; u; < oo, A € IR"*" is a sparse matrix and b € IR™. This
problem arises in different applications, e.g., from reconstruction problems in
geodesy and tomography, ocean circulation models, and construction of optical
mirrors. We will look at two different approaches to solving this optimization
problem, both using direct methods in the solution process. One of the methods
can be used to solve the bounded least squares system with almost the same
amount of work as solving the unconstrained least squares problem if no con-
straints are active. This means that safety bounds can be added to the problem
with almost no extra computational cost. A similar comparison of methods for
the nonnegative least squares problem was made Portugal, Judice and Vincente
[62].

The problem (1.1) can be reformulated as a convex quadratic programming
problem (QP) and then solved with one of several QP algorithms, see Coleman
and Hulbert [9], Monteiro and Adler [53] or the book by Fletcher [17]. However,
if the BLS is reformulated this way by forming the quadratic function we form
the matrix A”A. This can lead to numerical difficulties if the matrix A is ill-
conditioned, see [5]. In the algorithms presented here this can be avoided.

1.1 Outline of Thesis

Here in the first section we give a brief introduction to constrained optimization.
We state the general first order optimality conditions, the KKT-conditions.
Further we show that the least squares problem with box constrains can be
formulated as a convex quadratic programming problem. Some of the most
common software packages for quadratic programming problems are listed.

In the second section we introduce the reader to the linear least squares
problem. The basic methods for solving the least squares problem are discussed
together with the standard error analysis. Methods for computing solution
of a consistent underdetermined linear system of equations are also discussed.
Tterative refinement for both these problems are also described in this section.

In the third section techniques for sparse matrix computation are briefly sur-
veyed. Different storage schemes are discussed together with different orderings
of a matrix. A method for storing an implicit representation of ) from a multi-
frontal QR factorization is developed. Some numerical experiments demonstrate
the efficiency of this approach.
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In the fourth section the generation of test problems are presented together
with an algorithm for computing a solution with predetermined attributes. The
set of sparse test matrices consists of three different subsets. The first subset
is matrices from the Harwell-Boeing collection, the second subset of matrices is
from animal breeding science and the final subset of matrices is from a finite
element model problem. All the test problems have been used in the literature
as test problems for sparse least squares methods. In generating the test prob-
lems it is important to be able to compute the solution to an underdetermined
linear system to high accuracy. Therefore iterative refinement with residuals
in quadruple precision, 1s used. Two different types of test problems, type A
and type B are presented. Type A problems are nondegenerated and type B
problems have a degenerated solution.

The fifth and sixth sections contain the main issue of this thesis. Here two
different approaches for solving the least squares problem with box constraints
are studied. Section 5 covers so called active set methods. These methods
solve smaller unconstrained least squares problems in each iteration and at the
end the index set of the variables bounded at the solution are identified and
the solution obtained. Four slightly different block algorithms are tested and
evaluated. The comparison include the number of factorizations, time, and the
numerical accuracy of the solution. The solution of rank deficient problems is
also discussed.

In Section 6 the bounded least squares problem is tackled with a special
interior-point method first proposed by Mehrotra. We use the logarithmic
barrier function to introduce the interior-point method used. The method by
Mehrotra is a predictor-corrector method with a clever way of estimating the
barrier parameter. Different schemes to use multiple corrections are also dis-
cussed and numerical results given. The rank deficient case is solved by adding
a regularization term. We try an adaptive scheme for decreasing the regulariza-
tion parameter as we converge toward the solution.

In Section 7 the two different classes of methods from Section 5 and Section
6 are compared.

1.2 Constrained optimization

In most applications of mathematical models there is a natural underlying con-
straint, due to the finite resources in nature. These constraints do not always
interfere with the solution but when they do one must use a method that ensures
that the constraints are not violated at the solution. In constrained optimiza-
tion the Karush-Kuhn-Tucker conditions are used to characterize the solution.
We will here present some useful results in constrained optimization of convex
functions.

1.2.1 Some notations and background

In this section we will describe some of the notations commonly used in opti-
mization contexts. Our goal is to find the optimal value of a given objective



1.2 Constrained optimization 3

function, f(x) in a given domain, @ € [R". By the optimal value we mean the
maximal or minimal value in the domain. A maximization problem can easily
be rewritten as a minimization problem by substituting f(«) by —f(x). If the
domain is equal to the whole space we have an unconstrained optimization prob-
lem otherwise a constrained problem. We will assume that the domain Q is a
true subset of IR™, nonempty, and closed. The domain €2 can be either bounded
or unbounded.

A point in Q is called a feasible point and strictly feasible if it belongs to the
interior of . The domain € is usually defined by some set, of constraints. These
can be equality constraints, ¢;(2) = 0 or inequality constraints, ¢;(z) > 0. At
a given point x € €2 the constraints can be divided into two different sets, the
constraints that hold with equality, called active and the constraints which holds
with inequality, called free. If an active constraint is redundant, i.e., we get the
same solution with the constraint removed, we have a degenerate solution.

A feasible direction v at a point & €  is a direction such that = + av is
feasible for a infinite sequence a; — 0, a; > 0. Sometimes the zero vector is
included and this subspace of vectors x + awv is referred to as the tangent cone
at x. This means that ¢;(v) > 0, Vi € B and with equality if we have equality
constraints, for all i € B(x).

Linear constraints. If the constraints are linear they can be described by a
matrix C' € R™*" and a vector d € IR™ such that

Q={reR"|Cz—d>0} (1.2)

(m is the number of constraints and n the number of variables). Each row
cl'w — d; > 0 describe a half-space in IR" with ¢! as the normal to the hyper-
plane ¢! # — d; = 0. This hyper-plane can be viewed as a facet of the polytope
defined by C'w —d > 0. If (1.2) is nonempty then Caz —d > 0 is called consistent.
This set has an important property namely convexity. Convexity can be defined
as follows (there are more general ways to define convexity, but for our purposes
this definition is enough).

DEFINITION 1.1 A set Q # () is called conver if
z=Xx+ (1 — Ay e,
for all for all x,y € Q and XA € [0 1].

DEFINITION 1.2 A function f(x) is called convex in § if

x4+ (1 =XNy) <Af(z) + (1= A)f(y), (1.3)

for all for all ,y € Q@ and X € [0 1]. The function f(x) is strictly conver if
(1.3) holds with strict inequality.

It 1s easy to verify that a set €2 defined by linear inequalities is convex. An
optimization problem with a convex set € and a convex objective function f(x),
is called a convexr programming problem. The optimal point to an optimization
problem can be either a local or global optimum.
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DEFINITION 1.3 (LOCAL (CONSTRAINED) MINIMIZER) The point «* is a local
minimizer of the problem min f(x) subject to (1.2), if there exists a compact set

S such that
z*eint(S)NQ and  f(a™) = min{f(z) | v € SNQ}.

The minimizer is strict if there is no other point y in Q such that f(z*) = f(y).

DEFINITION 1.4 (GLOBAL (CONSTRAINED) MINIMIZER) The point @™ is a global
minimizer of the problem min f(x) subject to (1.2), if

* €Q and f(z*)=min{f(z) | z € Q}.
The global minimizer is strict if f(x*) < f(y) for all y # «* € Q.

The local and global optimal points to a convex programming problem has the
following property.

THreorREM 1.1 Consider a conver programming problem mingecq f(x). If 2™ is
a local optimal point then ©* is also a global optimum. Further, if f(x) is strictly
conver then x* 1s the unique optimum. The set of optimal solutions is convex.

Proof: Suppose there are two different local optima z and y. By the convexity
we have

fa+ (1= AN)y) <Af(x) + (1 =A)f(y).

But « and y are local optima so equality must hold and f(z) = f(y) or we have
a contradiction.

If f is strictly convex we have a strict inequality and thus get a contradiction
unless & = y is then the global unique optimum.

Denote the solution set as § = {y | f(y) = min}. Take 21,25 € S, and let
T =Ax;+ (1 =Ny, VA€ [0, 1]. By the convexity;

FAzr + (1 — Nze) < Af(x1) + (1 — A) f(22) = min f(x).
Therefore & € §, x and y arbitrary in S. It follows that § is convex. (|

To obtain a unique global optimal point when f(«) is not strictly convex,
one can impose the following condition on the solution.

COROLLARY 1.2 The problem
ming(z) = |lzll2, & ={x | f(x) = min},

from the convex programmaing problem above, has a unique minimum.
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Proof: g(x) is a strictly convex function, bounded below. § is convex and the
minimum point is unique. O

An important aspect of convex programs is that the the first order necessary
conditions are sufficient to determine a global optimum. This is important for
the interior and active set methods we derive. To show that our least squares
problem is convex we use the equivalent formulation as a quadratic programming
problem.

1

LEMMA 1.3 The function f(x) = 3||Ax — b]|3 is a convex function in IR" and

strictly convex of and only if A has full column rank.

Proof: We want to show that the convexity definition, Af(z) + (1 — A)f(y) —
F(Az+ (1 —=XA)y) > 0 holds for all A € [0 1] and # # y. By the definition of || - |2,
flz) = %wTATAwT — T ATy
Az ATAz — &"ATb) + (1 — X)(3y"ATAy — y"A"b)
— (%/\ZwTATAw —Xx"ATh + %(1 —A)2yTATAy
— (1= Ny ATy + A1 — N)2"ATAy (1.4)
M (2TATAz + y"ATAy — 22TATAy)

A1 —
I = N[ Az — y)lIF > 0.

If A has full column rank, & # y and A > 0 the last term will be strictly greater
than 0. Suppose f(x) strictly convex and let y =0 and « € [R" in (1.4). Then
we get,

TA(1 = A)||Az|]3 > 0, Va # 0 € R" < A has full column rank.

O

For further information on convex functions and sets, we refer to Mangasar-
ian [46] or the classical book by Rockafellar [63].
1.2.2 Optimality conditions

Assume that the objective function is twice continuously differentiable at x*.
Then the necessary conditions for the point x* to be a local minimizer is as
follows:

THEOREM 1.4 (UNCONSTRAINED LOCAL MINIMUM) The point «* is a local min-
imum to f(x), f two times differentiable, if

Vf(x®) =0, and H(x¥) positive semidefinite,

where V f is the gradient and H(x) is the Hessian to f (H; ; = o°f ).

Ow,; 0w ;



6 1 Introduction

A point z* satisfying the gradient condition V f(2*) = 0 is called a stationary
point.

The optimality conditions for a constrained problem must also take into
account the constraints. Assume that the function f(x) is continuously differ-
entiable, and the domain €2 is determined by inequality constraints. Then if
Vf is in the convex cone spanned by the normals to the active constraints,
there cannot be any descent direction. This is essentially Farkas” Lemma. It is
convenient to introduce the Lagrangian function,

7
L{w, A) = f(w) = > ei(w) A,
i=1
when stating the necessary optimality conditions. An optimal point to f(x) is

a saddle point to the Lagrangian function and the first order condition (often
called Karush-Kuhn-Tucker (KKT) conditions) is stated in Theorem 1.5.

THEOREM 1.5 (OPTIMALITY CONDITIONS FIRST ORDER (KKT)) Ifa* isalo-
cal minimizer to f(x) subject to Cx — d > 0, then there exists multipliers \*
such that x*, X\* satisfies the following system:

Vi L(z,A) =0,
Ce—d>0,
Ni(e]w —di) =0, Vi, (15)
Ai >0, Vi

el is the ith row of C.

The multipliers A} above are often refereed to as Lagrangian multipliers. The
condition A;(c¢/'x — d;) = 0 is called complementarity condition. This means
that if ¢/’ — d > 0 the i constraint is inactive and A} = 0. If the constraint and
the multiplier is zero at the same time, the solution is degenerate.

In unconstrained optimization a local optimum is strict if and only if the
Hessian is positive definite. However in constrained optimization it is only the
curvature in the feasible directions that is relevant. Therefore the restricted
Hessian is positive definite if s” Hs > 0 in all feasible directions s. This forms
the sufficient optimality condition in Theorem 1.6. These conditions can be
reformulated to cover the general case with equality constraints. The first order
conditions for inequality constraints are formulated as follows.

In case A has full column rank these conditions are always true, and we have
a unique optimum (as shown above). But even if A does not have full column
rank the optimum may be unique.

THEOREM 1.6 (SUFFICIENT OPTIMALITY CONDITIONS OF SECOND ORDER) Ifthe
first order optimality conditions at x* hold and

sTH(x*)s >0, Vs € {v | v feasible direction at =™}

then x* 1s a strict local minimum.
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Proofs of these theorems can be found in basic textbooks on constrained
optimization, Fletcher [17, Chap. 9], Gill, Murray and Wright [31, Chap. T].
1.2.3 Quadratic programming problems

The problem we are looking at is a special case of a wider class of problems, the
general quadratic programming (QP) problem,

1
minimize q(z) = §wTGw + g,
subject to Ce <d, (1.6)
Fe = f,

where (¢ is a symmetric matrix, definite or indefinite, and the relative inte-
rior of the feasible domain is non-empty. If (G is positive definite or positive
semidefinite, a bounded global optimal solution exists. If (G is positive defi-
nite the optimum is also unique. This follows from the convexity of ¢(z) and
the constraints. If we let G = ATA and ¢ = —A”7b we will obtain the the con-
strained Least Squares Problem in the quadratic formulation. 7 is then positive
semidefinite and the problem has a bounded global optimum. The quadratic
programming problem with an indefinite matrix (¢ is much harder to solve.
Even if only one eigenvalue has different sign the problem is in NP, see [67]

The problem (1.6) has been studied thoroughly in the literature and various
approaches developed. Two of the mostly common approaches are active set
methods and interior-point methods. The active set methods for general QP
problems with general bounds have been treated in [17, 30, 29, 31, 56]. Active set
methods for quadratic programming problems with simple bounds are developed
in Section 5. General interior-point methods for QP can be found in [8, 53,
59, 68, 69]. Other interesting methods that are closely related to block active
set methods are the projected gradient methods [7] and the reflective Newton
method [10]. These methods apply to optimization problems with a general
quadratic function and bounds on some variables.

1.2.4 Optimality conditions for quadratic programming problems

The optimum point of (1.6) can be characterized by the first order conditions,
the Karush-Kuhn-Tucker (KKT) conditions. The second order conditions in-
clude the Hessian GG of ¢(x) which is by our assumptions positive definite or
positive semidefinite. In either case, as shown, the stationary point that satis-
fies KK'T condition is also a global optimal point, but not necessary unique if
(5 is positive semidefinite.

1.3 General quadratic programming software

There is a great commercial interest in codes for solving linear and quadratic
programming problems. This is reflected in the the amount of commercial codes
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that are available on the net. Several of the codes are distributed by software
vendors closely connected to universities. The packages listed in Table 1.1, are
solvers for constrained linear or quadratic problems. Omne could use a more
general solver for the problem studied here, a nonlinear optimization code, but
this will lead to a great loss of efficiency due to the fact that one then neglects
important knowledge of the aspects of the quadratic problem.

In this thesis we look at a quadratic programming problem with a special
structure, a least squares problem. If the algorithms are implemented properly
one can avoid forming the normal equations A”Axz = A"b and therefore gain
accuracy in the solution of ill-posed problems.

In Table 1.1 and Table 1.2 below is an overview of existing quadratic pro-
gramming software. This information can also be found at NEOS Guide: Opti-
mazation software at URL:
http://www.mcs.anl.gov/home/otc/Guide/SoftwareGuide/. This www site
is based on the book by Coleman and Li [57], but moved to a web-site in order
to always be up-to-date.

Table 1.1: Solvers for QP problems, description and authors.

Package | Description Author

BQPD quadratic programming. R. Fletcher
CPLEX | linear, quadratic, and network linear
programming.

LINDO | linear, mixed-integer and quadratic

programming.
LOQO linear, quadratic programming R. J. Vanderbei
LSSOL least squares problems.
OSL linear, quadratic and mixed-integer

programrming.

PORT 3 | minimization, least squares, etc.
SQOPT | large-scale linear and convex quadr | Gill, Murray, Saunders
progr.
SNOPT | large-scale linear, quadr. and nonlinear | Gill, Murray Saunders
progr. problems (including nonconvex
quadratic progr.)

QL convex quadratic programming. K. Schittkowski
QPOPT | linear and quadratic problems. W. Murray, P. E. Gill
OPTIM | linear and quadratic programming and | MATLAB

contrained least squares problems
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Table 1.2: Solvers for QP problems, method and distribution.

Package | Method Distribution
BQPD active set Univ. of Dundee
CPLEX | prim, dual simplex, interior- | CPLEX Optimization, Inc.
point
LINDO | simplex, active set LINDO Systems, Inc.
LOQO interior-point Princeton University
LSSOL active set Stanford Business Software, Inc.
OSL prim, dual simplex, interior- | OSL Development, IBM Corp.
point
PORT 3 | trust region, interior-point ac- | netlib
tive set
SQOPT Stanford Business Software, Inc.
SNOPT Stanford Business Software, Inc.
QL dual method of Goldfarb, | Univ. of Bayreuth
Idnani
QPOPT Univ of California, San Diego
OPTIM | simplex, active set MathWorks
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2 The linear least squares problem

In many applications there is a mathematical model describing the physical
aspects involved. Measurements of some kind are made to determine the pa-
rameters of the model. Errors are introduced by the measurement method. By
taking more samples than needed the influence of errors on the solution can
be reduced. The system of equations that arises is overdetermined, i.e. it has
more equations than variables. The method for solving the overdetermined sys-
tem should give a “better” answer in some sense, if more measurements exist.
The least squares solution minimizes the residual in the 2-norm, and is the best
linear unbiased estimate of the solution to the overdetermined system, see [5].
In this section methods for solving the linear least squares problem,

min |[|[Az —b|l., Ae R™"™ be R™, (2.1)

will be introduced. Only direct methods based on the QR factorization of A or
the Cholesky factorization of the matrix of normal equations will be discussed.

The problem of computing the solution with the minimal norm to an under-
determined system will also be discussed. The matrix A in this section will be
assumed to be dense. The sparse case will be discussed in the next section. For
a more complete treatment of the subject Bjorck [5] and Lawson and Hanson

[38].

2.1 History of the sum of residuals

The principle of linear least squares for solving a overdetermined system of
equations has been known for a long time. The method of least squares was
first published by Legendre 1805 in a paper entitled “Nouvelles méthodes pour la
détermination des orbites des cométes”. Gauss proved the statistical properties
of the solution in 1809, and remarked at the same time that he knew of the
method already 1795 (at the age of 18). Most historians think that (Gauss has
right to his claim because of his predictions concerning the comet Ceres in 1801.

Gauss wrote two memoirs in 1821 and 1823 which treats the least squares
problem and its statistical properties. The memoirs have been translated into
English by Stewart [19]. Gauss proves here a theorem about the optimality of
the least squares estimate without any assumptions about the distribution of
the random variables. This theorem was later rediscovered by Markoff in 1912.

The method of normal equations was the standard numerical method used to
compute the least squares estimate until 1965 when Golub [32] proposed solving
the least squares problem by orthogonal Householder transformations [36].

2.2 Solving unconstrained least squares problems

Consider the linear system Az = b, A € R™*”. This is an overdetermined
problem when m > n. If b ¢ R(A) a solution to this system does not exist,
R(A) denotes the range of A. Later the null space of A will be denoted N (A).
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However, a solution that minimizes the residual » = b — Ax in the 2-norm can
always be found. The following theorem will characterize the solutions by a
simple orthogonality relation.

THEOREM 2.1 Let the set of all solutions to the least squares problem (2.1) be
equal to S, then
reS &  A'(b— Ax)=0.

The set § 1s not empty.

Proof: The usual way to prove this is an algebraic proof by contradiction. Here
a proof based on the optimality condition in Theorem 1.4 is given. If we let

1 1 1
o) = 5llAz — b||3 = §mTATAw — 2 ATh + 5bTb,

then Vf(z) = AT(Az — b) and H(x) = ATA. From Theorem 1.4 it follows that

z 1s a local minimizer if
Via)=0 < AT(b— Az) =0 ATAx = A",

The last system of equations is called the normal equations and is always consis-
tent since ATh € R(AT) = R(ATA). The set of stationary points (8) are there-
fore not empty. The second condition in Theorem 1.4, x"Hax = ||Az||2 > 0, is
trivially satisfied. The points in S are local and also global minimizers to f(x)
due to the convexity of f(x). |

The geometric interpretation of this characterization of a solution © € § is
that the residual r = b— Az is orthogonal to all vectors in the subspace R(A).

2.2.1 Sensitivity of the least squares solution

Due to the limitations of floating point arithmetic the data A and b can not be
represented exactly and the computed solution will have an error that depends
on the floating point system used. In the floating point system IFEEFE double
precision used in the numerical computations here, a real number can be repre-
sented with a relative error no larger than u = %ﬂ“‘l, [ =2 and t = 53. This
quantity is called unit roundoff, [35, p. 42]

By the forward error in y* = f(x)446 we mean the absolute error § in y* that
occurred during the computation of f(x) in finite arithmetic. This can often
be bounded by some function times the wunit roundoff, u. A backward error
is the smallest error in x that in exact arithmetic produces the same result
y* = f(xz+dx). If we can not store the input data exact, we have to be satisfied
if the solution to our problem is the exact solution to a nearby problem (with
a deviation bounded in some norm by a constant times u). For a normwise
backwards stable method this property is fulfilled for all problems in a specific
class. The output of a backward stable method is the exact solution to a nearby
problem in the same problem class with input data perturbed by a factor O(u).
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A forward error stable algorithm is usually defined by the requirement that the
relative error in the solution is bounded by xu, where & is a condition number
of the problem.

The condition number of a rectangular matrix can be defined as follows.

DErINITION 2.1 The condition number of A € R™*" (A # 0) is defined as
K:(A) = o-maz/o-min;
where op,q. and 0., are the largest and smallest positive singular value to A.

With this definition the sensitivity of the solution to (2.1) in regard to errors in
A and b can be formulated as follows.

THEOREM 2.2 Assume that rank(A + §A) = rank(A), and let

0A
oAl

[[98]]2
~ < €p.
1Al

l1oll> —

Then if n = kea < 1 the perturbation dx and dr in the least squares solution x
and the residual r = b — Ax satisfy

K b "
loells < = (EAHwHW,, e, Al

K + eakllz||2, 2.2
Al T ||A||z) anflellz (22)

and
167]l> < ealll[2[|All2 + eol[b]] + ear]|r|]--

The last term in (2.2) vanishes if A has full rank.

Proof: See Bjorck [5] p. 31. O
In the error bound for = we have a term proportional to &?||r||2. This term

shows that the error in the solution do not only depend on the matrix A as in

the linear equation case, but also on the right hand side 5. When A has the full

column rank and e, = 0, the condition number for the least squares system can

be written as

K =K . &
rs(A,b) = w(A) (H' (A)||A||2||w||z) '

The error in the solution can therefore become very large if the residual is large.

2.2.2 Normal equations

The most common way to solve the least squares problem is to form the normal
equations ATAz = ATb and solve this system for . If A has full rank the normal
equations can be solved by Gaussian elimination applied to A”A without row
and column interchanges in a numerically stable way. By using the symmetric
and positive definite nature of the matrix ATA the work in the factorization can
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be reduced approximately with a factor two using a Cholesky factorization of
ATA. The procedure for solving the least squares problem then becomes,

C=A"TA, d= ATp,
RTR = C, R triangular,
Ry =d,

Rx =y.

This solution process requires n?(m + n/3) flops. By forming the cross-product
ATA, the matrix A is compressed from a m x n to a symmetric n X n system.
However, in the process of forming this cross-product backward stability for the
least squares problem is lost. It is easy to show! that x(A%A) = k%(A); therefore
some of the information is lost when forming A”A. The Cholesky method may
fail already when k(A) is close to 1//u.

Solving symmetric, positive definite linear system with the Cholesky factor-
ization is a backwards stable method. The computed solution x* satisfies,

(C+B)a™ = AT, ||Ells < 250% ) Al
with the error bound,
o — alls < 2.20% 0k (A) ]| (2.3

However, as pointed out before, this does not give a backward stable method for
the least squares problem. By carefully studying the proof of the error bound
above Bjorck found that one factor k(A) in the bound above can be replaced
with the “column scaled” condition number k’(A) = minp x(AD), where D is a
diagonal matrix with positive elements. Observe that this scaling does not have
to be carried out on the matrix A before doing the Cholesky factorization. This
is important in the interior-point methods where we get large scaling factors
when the method converges to the solution.

The solution obtained from the normal equations can be improved by making
fixed precision iterative refinement,

r==b— Aux,
RY(Réx) = A'r,
ré—x+on.

When the iterative refinement is carried out the error bound of (2.3) is initially
reduced by a factor proportional to

§ ~ & (A)u,

for each iteration. The refinement will converge until the errors from computing
the residual r is the dominating factor. If the residual is computed in higher

!By using the singular value decomposition, A = UXV 7.
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precision this error is not dominant and the refinement will often converge to a
solution accurate to full machine precision.

The LAPACK routine _POSV(X) solves a dense symmetric positive definite
system with Cholesky factorization, see [2].

2.2.3 Methods based on QR factorization

In the last section we remarked that in forming the matrix product A”A and
ATb, information was lost and so was the backward stability. This can be
avoided by using orthogonal transformations when solving the least squares
problem. One can show with a constructive proof that A can be transformed by
an orthogonal transformation from the left to a triangular matrix B. We write
the QR factorization

R
A=(Q1 Q) ( 0 ) : (2.4)
where (@1 Q2) is orthogonal, @, € R™™ Qy € R™*(™L") and R € R"*™.
The following important relationships hold, R(Q1) = R(A) and R(Q2) =
N(AT). There are several ways to compute the QR factorization for dense
matrices. It is usually carried out by Householder transformations

2 T

The cost for computing the QR factorization by Householder transformations
is 2n%(m — n/3) if @ is not explicitly computed but stored as the Householder
vectors. This is twice the work for the Cholesky factorization if m > n. The R
obtained in exact arithmetic by QR is identical to R from Cholesky except from
possible sign changes of the rows. This follows from A”A = RTQ"QR = R"R
and the essential uniqueness of the Cholesky factorization.

By using the QR factorization together with the invariance of the 2-norm?

the following equivalent problem can be obtained,

min[[Q7 (A — B)ll2 & min|Rz — dals + |-

where Q"6 = (di d3)". The solution is obtained by solving the triangular
system, Ra = dy and the residual norm is given by ||ds||2.

If & is the computed solution to the least squares problem solved by House-
holder QR it is possible to show that T is the solution to the nearby problem

min||(A +8A)e + (b +b)]|»,

where the perturbations satisfy

[8A]l> < can'?[[All2, — ||dbll> < cul[b]],

2||Q1’||g =z'Q"Qx = ||z||g, @ orthogonal.
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¢ is a low order polynomial in m and n, see Lawson and Hanson [38]. The
solution is therefore normwise backwards stable.

In some large-scale applications the orthogonal matrix ) can not be stored
efficiently. If the right-hand side is not known at factorization time then the
product Q76 can not be computed. However, if the original A is still available
then the semi normal equations (SNE),

RTRa = A”b,

R from QR, can be used. Even though A”A is not formed, this equation does
not have any better stability properties than the normal equations. However,
if the SNE is used together with one step of iterative refinement we obtain the
corrected seminormal equations (CSNE).

R=Q"A,
RY(Rx) = A™b,
r==b— Aux,
R'(Réx) = A'r,
L. =x +0x.

An error analysis of this combination was done by Bjorck [3] and the error in
x. computed from CSNE satisfies,

[l — ]| < crun?(A) (exun(A)) [|]|..

If cur?(A) < 1 this is no worse that the backward error of the QR factorization.
The error bound can be sharpened by replacing x%(A) with x(A)x’(A) and the
last k by &', & = minp k(AD), D is a diagonal matrix with d;; > 0. The rate of
convergence if more steps of iterative refinement is carried out is proportional
to

§ ~ur'(A).

This is a factor k(A) better than the convergence rate of iterative refinement
with R computed by the Cholesky factorization.

2.3 The underdetermined system

A problem closely related to the least squares problem is finding the minimum
norm solution of the underdetermined system ATy = ¢, A € R™*"(m > n). If
¢ € R(AT) then the system has infinite number of solutions. To obtain a unique
solution, we consider to the solution of smallest 2-norm

mingll,, ATy = (2.5)

A perturbation analysis can be obtained in the same manner as for the least
squares problem.
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THEOREM 2.3 Suppose rank(A) =n < m and ¢ # 0 and let

oAl Lol
A1l 11l

If e = max{ea, ep} < Tpmin(A) then the error dy in the solution will satisfy

€A

169ll2 < w(A)(ca min{2,m —n+1} + e)||y]l + O(c?).
Proof: See Golub and van Loan [33], p. 273. O
Here there is no k2 term as in the least squares problem.

If the problem (2.5) is consistent the solution will satisfy the normal equa-
tions of the second kind,

ATAz = ¢, y= Az (2.6)
If A has full rank (2.6) can be solved by a Cholesky factorization. If a QR

factorization (2.4) is available we can compute the solution from
R'w=c¢, y=Qw.

This method is backward stable [35]. Finally if the orthogonal matrix can
not be stored a similar version for the semi-normal equations can be used,

RTRz=¢, y= Az
An error bound for SNE that depends on x(A) and not x*(A) as in the least
squares has been proved by Paige [61]. The bound on the solution is,

ly = " l2 < cun(A)[y]]2,

where ¢ = ¢(m,n) is a polynomial of low degree. However, this method is not
backward stable, and the residuals can be of order k(A)u.

By iterative refinement as in the least squares case the accuracy of a com-
puted solution can be improved. The iterative refinement with the normal
equations of the second kind should be done in the following way, Bjorck and
Paige [6, ALGORITHM 7.3],

s=c— Az,
RY(Réy) = —s, (2.7)
x < x — Ady.

The following observation will be used when constructing the test problems
in section 4.

OBSERVATION 2.4 The mintmum norm solution to the underdetermined system
ATy = ¢ is unchanged if we instead minimize

min|ly — Az|ls, ATy =c¢, =€ R" arbitrary. (2.8)
y
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Proof: Let yt be the minimum norm solution to ATy = b. The solution y to
(2.8) can be written as y = y* +u, ATy =c+ ATu = ATu=0suec N(AT) =
R(A)L.

lly — Azl = [ly* — Axll5 + [Jull; + 2u"y* — 22740 =

(2.9)
— Jly* — A3+ fJull3.

Here u”'y* = 0 because u € R(A)* and yt € R(A) from the normal equations
of the second kind. Hence (2.9) is minimized when u = 0. O
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3 Sparse matrix computation

An early characterization of a sparse matrix was given by Wilkinson; a sparse
matrix 1s a matrix with enough zeros so its advantageous to use this sparsity.
In sparse matrix computation the sparsity pattern, the pattern of non zero ele-
ments, is analyzed and an ordering of the columns/rows is made so the number
of new elements appearing during the calculation and the storage requirements
are minimized.

The simplest class of sparse matrices is the class of banded matrices. To
solve a banded n x n linear system it requires about 2npqg flops® where p and ¢
is the number of diagonals over respectively under the main diagonal and n is
the size of the system. The saving in computational effort compared to a dense
solver, which requires 2n3/3 flops, can be enormous when n is large.

In sparse techniques for solving linear systems there is a trade-off between the
amount of fill-in, i.e. the non zero elements introduced during the computation,
and the stability issue. For example, when solving a linear system of equations
by LU factorization the fill-in in I, and U is strongly dependent on the column
and row ordering. However, from a numerical point of view the optimal ordering
can be a bad choice. In our application to the least squares problem the row
order does not influence the fill-in in the final factorization, but we must choose a
good column ordering to minimize the fill-in. The choice of column permutation
of A does not influence the stability of the QR factorization. The same is true
for the Cholesky factorization.

An introduction to sparse techniques is given by Duff et al. [14] and by
George and Liu [23]. The later treats computational methods for solving sparse
positive definite systems.

3.1 Sparse storage schemes

There are several ways to store a sparse matrix. The most efficient way to store
the matrix is dependent on the structure of the matrix and in what context
the matrix is used. The storage scheme plays an important role for the speed
of manipulating the matrix. For example, the most straightforward storage
scheme for a matrix is to use a coordinate scheme. For each nonzero element
in A we store the triple (a;;, 4, 7). This requires nnz reals and 2 - nnz integers,
where nnz is the number of nonzero elements in A. The main drawback, except
for the expensive memory requirement, is the difficulty of retrieving a specific
element. If the elements are not sorted in any order, we have to search through
all elements to decide if an element is zero. The only good thing about this
storage scheme is that it’s easy to move the sparse matrix between different
numerical packages. Then a conversion can be made to a storage scheme suitable
for the application.

Another storage scheme currently used in MaTLAB Vb, see Gilbert, Moler
and Schreiber [26], is the compressed sparse column scheme. In this storage

3Provided no pivoting are done.
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scheme each column in A is compressed into a dense array. These dense arrays
are stored in a one dimensional vector, VAL. To each element, the row index
is stored in a integer array IRN. The third array of n4+1 integers JPTR. JPTR
holds pointers to the first element in each column. It is often convenient to let
the n 4+ 1 element in JPTR be equal to nnz. The total storage needed in this
scheme is nnz reals and nnz + n + 1 integers. This scheme could as easily be
used on the rows instead of the columns.

The first three columns of matrix in Figure 3.1 is represented in the sparse
compressed column scheme in Table 3.1.

Table 3.1: The compressed column scheme for storing a sparse matrix.

VAL a1 a1 ag1 a1z Az A3z Az dz3  A33 (A43 dz3
IRN 1 2 6 1 2 3 6 2 3 4 H
JPTR 1 4 8 12

A technique to speed up certain computations is used in MATLAB . When
a column 1s used in a computation the compress column is expanded into a full
vector, or the sparse accumulator. Now each element can be accessed in constant
time and if the routines are built up by SAXPY* operations they can be very
efficient. When the column is not needed anymore it is compressed and stored
in the sparse format. The fact that the matrix is stored in column-wise order is
important when implementing sparse algorithms in MATLAB. The access time
can be up to one magnitude slower if the matrix is accessed by rows instead of
columns.

3.2 Graph representation

An important tool to analyze the sparsity pattern of a sparse matrix is graph
theory. A general sparse matrix can be represented by a directed graph G(X, E)
consisting of a set of numbered nodes; X and the set of edges between the nodes,
E. If the entry a;; # 0 then the edge (4, j) from node n; to n; belongs in the
set /. An edge between nodes usually is marked with a arrow and is therefore
called a directed graph. If A is symmetrical each edge will be double, one in
each direction. Therefore we can discard the direction of the edges and then
look at an undirected graph. Figure 3.1 gives an example of a symmetric matrix
and its graph representation.

By analyzing the graph connected with a matrix we can order the calculation
to minimize unnecessary fill-in during the calculation.

3.3 Sparse orderings

The order of the rows/columns is very important in sparse computations. When
solving a dense linear system the row and column ordering is usually chosen so

4A SAXPY operationis ax + y, a scalar z, y vectors
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Figure 3.1: Graph representation of a sparse matrix. The numbers corresponds
to the column of the matrix.

the numerical solution process is stable. In sparse computations the ordering is
often chosen to minimize fill-in. An example of this is the following matrix,

X X X X x 0 0 x
x x 0 0 0 x 0 x
x 0 x 0 0 0 x x
x 0 0 x X X X X
Original order Reversed order

If the system of equations is solved with the original ordering, all zeros will be
destroyed in the intermediate process. On the contrary, if the columns and rows
are ordered in reverse order, there will be no fill-in when solving the system.
However, the numerical process may not be stable and therefore some threshold
parameter is often introduced to relax the pivot strategy from dense matrix
computation. When solving symmetrical positive definite systems we can always
use symmetrical pivoting without affecting the numerical numerical stability.

The problem of computing the best ordering in the sense of least fill-in is an
NP-complete problem. Therefore only an approximation of the minimum fill-in
can be computed for large problem. Different heuristic algorithms have been
developed and are good at different problem classes. Here a brief overview of
the basic concepts are given for the most popular ordering schemes. For more
complete descriptions of the orderings we refer to Duff et al. [14] and George and
Liu [23]. Now the research interest has moved to find equivalent orderings that
enhance desirable properties in the computed factors or reduce intermediate
fillin during the computation, see [34, 20].

The most popular general-purpose algorithm is the minimum degree ordering
or Tinney scheme 2, by Tinney and Walker [66]. This is a special case of the
unsymmetric Markowitz algorithm [47]. The minimum degree algorithm uses a
local minimizing aspect. In each elimination step the pivot is chosen to generate
the least fill-in in the current step. The name minimum degree relates to the
interpretation of the effect on the graph from a symmetric matrix. In each step
the node with the least number of edges is eliminated. This scheme has been very
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successful and it is easy to see that for a graph without any cycles; a tree, this
method generates no fill-in. The minimum degree algorithm is a local strategy
and there are examples where the global fill-in is not minimized with this scheme.
There has been a lot of effort to find good tie-break strategies, i.e, to determine
which pivot to choose if several has the same degree, and to perform a fast
approximate updating of the current elimination graph [1, 34, 40]. A survey of
the minimum degree algorithm and recent ideas for speed improvement is given
by George and Liu [24].

If is often natural to order a matrix in a way that gives a small bandwidth.
The Cholesky factor R of a positive definite n x n symmetric matrix, C = R R,
has the property that R has no element outside the band structure of C'. If the
bandwidth of (' is minimized the bandwidth of R will also become small as well.
Cuthill and McKee purposed an algorithm in 1963 which minimized the band-
width locally. The Cuthill-McKee algorithm can be expressed in the following
way. Choose a starting node, label this with one and continue to number the
neighboring nodes to the first. Repeat this procedure with the second node and
number only nodes that do not have a number already. A renumbering of the
nodes corresponds to a symmetric permutation of a symmetric matrix.

A minimum bandwidth ordering corresponds to collecting the dependencies
to the current pivot element as close as possible. In 1971 George found that if the
Cuthill-McKee ordering was reversed the fill-in usually decreased significantly.
This procedure is called the Reverse Cuthill-McKee ordering.

The nested dissection ordering tries to remove a set of nodes from the graph
of a symmetric matrix in order of obtain two or more disconnected graphs. The
set of the removed nodes is called a separator set and should be made as small as
possible. The disconnected graphs can themselves be divided by new separator
sets to any depth. It is also advantageous if the disconnected graphs are roughly
of the same size. The structure after the first separation will be,

All 0 A13
PAPT — 0 A22 A23 ;
A31 ASZ A33

Aij, © # j corresponds to the separator set. Kach block Aj;; can be treated
separately and the blocks A;; are updated and eliminated in the end. If the
separator sets are small the blocks A; ; are also small. The method of nested
dissection is especially successful on matrices from finite element problems and
geodetic problems. Gilbert showed that this ordering was optimal in the order
of magnitude for a matrix associated with an n x n rectangular grid [25, 23].

3.4 Sparse factorizations

The basic tools for computing the least squares problem are the QR and Cholesky
factorizations. These factorizations have an advantage to Gaussian elimination
of a linear n x n system. A permutation of A can be computed in advance with-
out any regard to numerical stability provided A has full column rank. After the
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permutation is chosen a symbolic factorization is made to predict and allocate
storage for the R factor. The numerical factorization is then carried out with a
static memory structure of R.

The factorization process of a matrix A can be split into three different steps:

1. Ordering: compute an ordering P so that PATAPT = R R produces a
sparse R factor.

2. Symbolic factorization: compute the structure of R symbolically and set
up the data structure associated with nonzero elements of R.

3. Numerical factorization: compute the numerical factorization R.

The symbolic factorization phase can be as expensive as the numerical factoriza-
tion, see [49]. Therefore, if several factorizations are carried out with different
matrices sharing the same structure, much can be gained by reusing the symbolic
information. We will later see that the matrices generated by the interior-point
method, share the same symbolic structure.

3.4.1 Sparse QR factorization

The basic tool for computing a backward stable solution to the least squares
problem is the QR factorization. The currently most effective method for
computing the sparse QR factorization is the multi-frontal QR algorithm, see
[16, 39, 49, 64]. The multi-frontal algorithm rearranges the elements in A into
small dense submatrices, frontal matrices, which can be handled more efficiently
on vector computers and parallel computers. The basic concept is to create an
elimination tree of the matrix A, which captures the dependencies between dif-
ferent rows. For a description of the elimination tree and its use in sparse
factorizations we refer to Liu [40].

Selected rows from A can, with the information in the elimination tree, be
packed into smaller dense frontal matrices. Each frontal matrix are completely
reduced to upper triangular form by a dense QR factorization. Now, depending
on the elimination tree, at least one row of the triangular matrix is moved to the
final R. The remaining rows are put onto a stack for later usage in the frontal
matrix corresponding to the parent node in the elimination tree. The different
branches in the elimination tree can be processed independently and this can
be used for a coarse grain parallelism.

We have used the semi-normal equations or solved the least squares problem
with the Cholesky factorization, because in the interior-point the right hand
side is not always known in advance. An alternative would be to compute the @)
factor or at least a representation allowing us to apply Q7 on a vector. However,
the method for computing the @) factor in the programming environment we
have used is not satisfactory. The implementation in MATLAB computes ) by
applying orthogonal transformations on the matrix (A7), where [ is the m x m
identity matrix. This is not an efficient way of computing ¢ and should be
avoided. Further, even if the ) factor would be computed in an efficient way,
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Table 3.2: The number of nonzero elements for different representations of ().

Matrix | nnz(A) | nnz(R) | nnz(Q) | density @ | nnz(Y) | density YV
1 1557 1924 61409 0.64 3405 0.03

5 1916 2898 | 473426 0.52 12257 0.01

6 4732 2580 | 517074 0.48 11033 0.01

12 8758 7649 | 1674022 0.49 27421 0.008

and stored by its Householder vectors, it would still not be efficient. Gilbert,
Ng and Peyton [28] analyzed the nonzero count for the ¢ matrix and matrix
consisting of the Householder vectors, H. The result they obtained for a certain
class of matrices with so called \/n-separable graphs is the following, for a
n X m matrix A, the nonzero count of H satisfies the following nonzero count,
nnz(H) = O(nlogn + (m — n)y/n). This compared with the nonzero count of
@, nz(Q) = O(m+/n) is good when m & n but if we have a more rectangular
matrix A the difference will not be as satisfactory. In Table 3.2 we compare the
number of nonzero element in the @ factor obtain from MATLAB compared to
the initial number of nonzero elements in A and in the R factor. This clearly
shows how inefficient this approach is. We have used the minimum degree
ordering in all cases.

In the multi-frontal setting we do not work directly on the matrix A, instead
we collect certain rows and form frontal matrices. The natural way here to
store a representation of () would be to store the Householder transformations
from each frontal matrix, Y;. The information in the matrices Y; together with
the elimination tree is all that is needed to apply @ or Q7 to a vector. Lu
and Barlow [43] investigated the nonzero count, nnz(Y) = 3" (nnz(Y;)), from
the same class of matrices that Gilbert, et al. considered. They obtained the
following bound on the number of nonzeros by storing the Householder vectors
from the frontal matrices, nnz(Y') = O(nlogn). In last two column of Table 3.2
we have used a modified version of sqr, by Matstoms [48], to compute nnz(Y).
As could be expected we see a dramatic reduction of the storage needed for a
representation of ). The number of nonzero for the ) matrix obtained from
MATLAB is unnecessary large, only the n first columns are needed in general.

3.4.2 Sparse Cholesky factorization

Since the R factor from the Cholesky decomposition mathematically is the same
as from the QR factorization, except some sign differences, the symbolic step in
the Cholesky factorization is much the same as for the QR method. Techniques
to merge several columns with the “same” structure into larger super nodes are
important to gain efficiency when computing the Cholesky factorization, see
[41, 27]. Until recent time it has been common to use the given ordering and
compute the Cholesky factor straight away. Now some research is done to adjust
the ordering; so as to get equivalent orderings in regard to nonzero elements in
R, but with more desirable properties in R.
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4 Test problems for the BLS problem

Here we will describe the different test problems used in the comparison of the
different methods. We have not used any randomly generated matrices with a
randomly generated sparsity pattern due to the fact that these have very special
properties and are not representative. Here the matrices used will be presented
with their properties. Then the non trivial problem of generating a test problem
with a known solution will be discussed. The method for generation of the test
problems presented here is a small generalization of the method in Portugal et.

al. [62].

4.1 Sparse test matrices

The matrices used to create the test problems come from three different sets.
Each of the matrices is rectangular, with the number of rows greater than the
number of columns, A € IR™*” m > n, where A has full column rank. The
condition number, k(A), for the matrices will be given except for the really
large matrices. There a lower estimation of the condition number in 1-norm is
given instead. The LAPACK estimator (in MATLAB condest) have been used
to compute the lower bound. For details of the estimator, see Higham [35,
Chapter 14].

The first set is a subset from the much used Harwell-Boeing test matrix col-
lection ® Duff, Grimes and Lewis [15]. Table 4.1 summarizes some different prop-
erties of the Harwell-Boeing matrices. In the matrices ABBnnn and ASHnnn,
the original data is replaced elementwise with uniformly distributed random
numbers in the interval [—1, 1]. The matrices WELLnnnn are provided by M.
A. Saunders and arises from gravity-meter observations. ILLCnnnn has the
same structure as WELLnnnn but is ill-conditioned. The matrices ARTFnnnn
are artificially constructed and are not included in the Harwell-Boeing collection
set. They are built up in the following way

A ( WELLnnnn ) _ (4.1)

El ASHnnn

All these matrices are from the late 70’s and are quite small compared to large
sparse problems solved today. This set of matrices is used here because the
Harwell-Boeing collection has been previously used in several articles see George,
Heath and Ng [22], Heggernes and Matstoms [34], Lu and Barlow [43] and
Matstoms [49, 50].

The second set, listed in Table 4.2, are some matrices from animal breeding
science. Several parameters, for example, growth factor, final weight and quality
of meat was measured. The model included several different environmental
and generic effects to describe the evolution of the animal. The interest was
to maximize economical value by selecting good animals for breeding. This

5The Harwell-Boeing collection and many other sparse matrices can be obtained from
Matrix Market, URL:http://math.nist.gov/MatrixMarket/
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Table 4.1: A subset of the Harwell-Boeing collection; nnz denotes the number
of nonzero elements in the matrix and C'ond 1s the condition number in 2-norm.

No. Matrix m n nnz Cond Description
1 | ABB313 313 | 176 1557 | 1.5-10" || Survey of Sudan
2 | ASH219 219 85 438 | 7.7-10° || Surv. of UK, Holland
3 | ASH331 331 | 104 662 | 5.2-10° || Surv. of UK, Holland
4 | ASH608 608 | 188 1216 | 6.3-10° || Surv. of UK, Holland
5 | ASH958 958 | 292 1916 | 6.9 -10° || Surv. of UK, Holland
6 | WELL1033 || 1033 | 320 4732 | 1.7-102 || Gravity-meter obs.
7 | ILLC1033 1033 | 320 4732 | 1.9-10* || Gravity-meter obs.
8 | ARTF1252 || 1252 | 320 5170 | 3.6 -10" || 8 + 2 (artificial)
9 | ARTF1364 || 1364 | 320 5394 | 3.6 - 10" || 8 + 1 (artificial)
10 | ARTF1641 || 1641 | 320 5948 | 4.1-10° || 8 + 4 (artificial)
11 | ARTF1991 || 1991 | 320 6648 | 3.9-10° || 8 + 5 (artificial)
12 | WELL1850 || 1850 | 712 8758 | 1.1-10% || Gravity-meter obs.
13 | ILLC1850 1850 | 712 8758 | 1.4-10% || Gravity-meter obs.
14 | ARTF2808 || 2808 | 712 | 10674 | 2.8 -10" || 12 + 5 (artificial)

particular set has been used for pig breeding in Switzerland and was supplied
by A. Hofer. A more detailed description can be found in [49, Appendix A].

Table 4.2: Matrices from breeding science. nnz denotes the number of nonzero
elements in the matrix and C'ond is the condition number in 2-norm.

No. Matrix m n nnz Cond Description
15 | SBREED 3140 1987 8506 5.9-102 Breeding prob.
16 | IBREED 9397 | 6118 | 24997 9.1-10? Breeding prob.
17 | LBREED || 28254 | 17263 | 75002 | > 2.1-10% || Breeding prob.

The third set of matrices arises in the natural factor formulation of finite
element methods and has been used as least squares test problems by George
et al. [22]. This problem has also served as a model problem by Lu and Barlow
[43] when investigating the lower bound of the nonzero count in the Householder
factors from the multi-frontal Q R, see Section 3.4.1. Bach grid consists of (k—1)?
small squares. To each of the k2 grid points a variable is associated and to each
small square there are four observations involving the four corner variables. This
leads to an overdetermined system of equations with m = 4 - (n — 1)? rows and
n = k? columns. The nonzero entries in the matrix are uniformly distributed
random numbers in the interval [0, 1] see Table 4.3.
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Table 4.3: Matrices NFAC arises from &k by £ grid in a FEM calculation; nnz
denotes the number of nonzero elements in the matrix and C'ond is the condition
number in 2-norm.

No. | Matrix m n nnz Cond Description
18 | NFACI10 324 100 1296 1.1-10! FEM 10x10 grid
19 | NFAC20 1444 | 400 5776 1.4-10! FEM 20x20 grid
20 | NFAC30 3364 | 900 13456 1.3-10! FEM 30x30 grid
21 | NFAC40 6084 | 1600 24336 1.3-10! FEM 40x40 grid
22 | NFACH0 9604 | 2500 38416 1.2-10! FEM 50x50 grid
23 | NFAC60 || 13924 | 3600 55696 1.2-10! FEM 60x60 grid
24 | NFACT0 || 19044 | 4900 76176 1.2-10! FEM 70x70 grid
25 | NFACS0 || 24964 | 6400 99856 | > 1.8-10' || FEM 80x80 grid
26 | NFAC90 || 31684 | 8100 | 126736 | > 1.9-10" || FEM 90x90 grid

4.2 Generation of test problems

If we want to be able to determine the accuracy we have obtained in the solution
from the methods we have studied, we want to have numerical test examples
with a solution known with an accuracy equal to machine precision. We also
want to be able to change the characteristics of the test problem for a given
matrix A, for example the degeneracy of the solution.

For unconstrained least squares problem we can create a consistent problem
with a known solution z by letting b = Ax. By adding a vector r € N(A) a
problem with a nonzero residual vector is obtained.

The same construction cannot be done with constrained least squares prob-
lem, because these problems can not be separated into a constrained and an
unconstrained part with no relationship between them. A degenerated problem
could be created by the method above, if we let the upper or lower bound be
equal to the solution x; for some i. However, this kind of problem is not in
general of interest.

For the general quadratic programming problem, ¢(z) = %wTAw — 27y, with
only upper and lower bounds the standard way to generate a test problem is
to set the solution to . To guarantee that x is the solution to the quadratic
programming problem we determine the vector ¢ = Ax — r, where r is the
Lagrangian multipliers. The components of r are determined as follows,

r; =0 1€ F,

rp >0 1€ B,

r; < 0 1€ By.
The amount of degeneracy can be specified by choosing the magnitude of r;, see
Moré and Toraldo [56] and Coleman and Hulbert [9].

In least squares problems we have the term —zTA7b instead of —z"g. There-
fore we have to solve the underdetermined problem A”h = ¢ to obtain the vector
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b. This has an infinite number of solutions, so we are satisfied by the minimum
norm solution given by the normal equations of the second kind.

We now describe a way to generate the test problems so that, we have
the possibility to predetermine the following different characteristics of the test
problem. We can chose the solution z, the number of variables bounded to
upper and lower bounds, the number of constraints degenerate at the solution,
and the size of the Lagrange multipliers to the active constraints.

For simplicity, consider the problem,

min||Az — b2,
s. b, 0<e<u.

A problem with arbitrary upper and lower bounds can then be obtained by a
simple translation of this problem.

The components z; of the solution to this problem belong in one of the
following five sets; the free variables F, the bounded variables with nonzero
Lagrange multiplier L5 and U, and the bounded variables where the associated
Lagrange multiplier is zero, Lp and Up. These last two sets determine the
degenerate constraints.

Let v and y denote the Lagrange multiplier associated with the lower and
upper bounds, The value of the Lagrange multipliers is constrained by the pa-
rameter «. The sets are characterized by the following:

1) x; =0 v; =0 1€ Lp
11) x; =0 v; >0 1€ Lp
iv) Tp = Uu; yi >0 1€ Up

V) h<zi<u v=y=0 i(eF

Let w = v — y and observe that v; and y; can never be greater than zero
at the same time. Let L = Lg U Lp and U in the same way. Let x; = 0 for
all i € £, #; = u; for all ¢ € U and generate uniform random numbers to all
remaining z;, ¢ € F. Let w; = 0 for all : € Lp UUp U F and generate proper
random numbers so the conditions above are satisfied. The construction of the
right hand side b can then be done in the following way. From the feasibility
condition we have the following relation:

w= A"(Ax —b). (4.2)

Partition A into the following parts A = (Az Ay Ar), where Az are the column
corresponding to the variables x;, ¢ € L etc. If the characteristics of the sets are
used with 4.2, we obtain with this partitioning of A the following:

A%Dq
Aisq —Wr
ATh = AZDq =c, qg= Ayry + Arxx. (43)
AZBQ —wr
A;]f}'
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This forms an under-determined system which can have infinite number of so-
lutions. The solution which gives the smallest residual in 2-norm is given by,

min || — Az, Al =c.
By using Observation 2.4, this can be rewritten as the equivalent problem,

min| [z, Al =c.

If this system is consistent and of rank n, the solution is given by the normal
equations of the second kind, see Bjorck [5],

ATAz =¢, b= Az.

By computing R in a sparse QR decomposition of A, we obtain the solution
b from the corrected semi normal equations (SNE),

Since SNE is not backward stable, see Section 2.3, we use iterative improve-
ment to obtain an accurate solution. Higher precision arithmetic (quadruple
precision, 128 bits) was used to calculate the residual in the iterative refine-
ment. In most cases the iterative refinement converges quickly. Bjorck and
Paige [6] have shown that if uk? < 1, only one step of iterative refinement can
give an acceptable-error solution. This algorithm was implemented in the

ALGORITHM 4.1 (Generation of test problem)
Choose the vector u and parameter «
Partition the set [1, 2,..., n]=FULgULp UU UlUp
re =0, vy = uy, vx = rand([e1, u; —&1])
w(cpuupuF) =0
we, = rand([es, ]), wy, = rand([—a, —e3])
¢ Is given by (4.3)

Compute the QR factorization of A

Solve SNE: R'"Rz = ¢, b= Az

do iterative refinement three times
Compute in higher precision s = ¢ — ATb
Solve RTRdy = —s
b=c— Ady

end

MATLAB routine makexb.
Algorithm 4.1 was used with each test matrix to create two different kinds
of test problem, type A and B;

e Type A are nondegenerate and have variables Y, bounded to the lower
bound, '/, bounded to the upper bound and Y/, free.

e Type B are degenerate and have '/, free variables; the other are equally
divided between the remaining four sets.
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The upper limit for all problems was set to 10, the lower limit to 0 and the
maximum value of the Lagrange multipliers was set to 10. All random values
are uniformly distributed in the interval. The MaATLAB function rand was used
to create the random numbers. Quadruple precision (128 bits) was used in the
iterative refinement phase to compute an accurate right hand side b.



30 5 Active set methods

5 Active set methods

In the well known simplex method for linear programming (LP) problems, the
solution is found by trying to identify the active constraints at the solution, the
active set of constraints. In the simplex algorithm this set is obtained by walking
from vertex to vertex of the feasible domain towards the solution. In the meth-
ods called active set methods a temporary working set of constraints are treated
as equality constraints and a new solution is computed from the smaller uncon-
strained problem. In each iteration constraints are either added or removed
from the active set until the optimum of the constrained problem is found. In
the simplex algorithm only one constraint, in general, is added/removed from
the active set in each iteration. This can be inefficient when the number of
constrains are large. If only one constraint is moved in each iteration a lower
limit for the number of iterations before the method can converge is the differ-
ence between the number of active constraints in at starting point and at the
solution. A block method where several constraints are moved in each iteration
can therefore be more efficient.

We will in this section present several block methods that work well for large
problems. Convergence proofs of the single pivot method and a certain block
method will be given. If the matrix A is rank deficient a unique solution may
not exist, and a method for computing the minimum norm solution for such
problems will be presented.

For the active set methods given here, upper and/or lower bounds may not
be present. This can be formulated in the following way:

min, ||[Az — b||2,
subject to L <y <ouy, i=1,..., k, (5.1)
liSlL’i, 2:k+1aalsn)

where A is large and sparse. Problems with an upper bound on z; but no
lower bound can be reformulated as (5.1) by changing sign of the corresponding
variable z; and column of A and defining the lower bound [; as —u;.

5.1 Previous work

Several papers have been written on active set methods for definite and indefi-
nite QP problems with simple bounds. In Lawson and Hanson, [38], an active
set method NNLS is used for dense nonnegative LS problems (z > 0). This
algorithm is currently used in the routine with the same name in MATLAB V5.
NNLS is a single pivoting method and may not be suitable for large scale prob-
lems. A sparse version of NNLS was developed by Oreborn [60]. An extension
of this method to sparse least squares problem with lower and upper bounds has
been proposed by Bjorck [4]. The emphasis of this work is on how to efficiently
update the QR factorization of the active columns of A.

Lotstedt [42] takes a similar approach but uses a preconditioned cg method
to solve the linear system of equations. A method for finding the solution with
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minimal norm in the rank deficient case is also discussed here. The method was
developed to solve a sequence of problems with slowly varying data found in
rigid mechanics.

For a treatment of general QP problems with simple bounds, see Coleman
and Hulbert [9], or Gill and Murray [29] for general dense quadratic program-
ming problems. Moré and Toraldo [56] suggest a combined active set and gra-
dient projection algorithm for quadratic programming problems with bounds.
In the article the projected gradient is used for computing the search directions
and a proof of convergence is presented. They report a decrease of iterations by
at least a factor 10, but the cost of solving the system of equation will increase.
One of the algorithms we develop in the following, has a close relationship with
the Algorithm BCQP suggested in the paper above.

In a recent paper by Dostal [13] an alternative to the projected gradient is
proposed. He shows the convergence in a finite number of steps for an algorithm
driven by proportioning with conjugate gradients.

The block method was first suggested for a certain class of functions by
Kostreva [37] for the linear complementarity problem. A comparison of the
single and block pivoting method and interior-point methods for the nonnegative
least squares problem has been given in [62].

5.2 Characterization of the solution and optimality con-
ditions

We will now show how we can obtain the solution to (5.1) if information about
the bounded and the free variables is known. The index set of an arbitrary point
x in the feasible domain can be divided into two different subsets, [1...n] =
F U B. The set B is the active set and consists of the index set of variables at
the limits,

B(l‘) = {l Ly = 51,51 = li, or 51 = Uz}
The remaining indexes of the variables form the free set,
F)={i:l; <z <u}

If the partition of the sets at optimal point to (5.1) is known we can use this
partition to obtain a problem with equality constraints instead of upper and
lower bounds. This problem is now solved by,

I;liIlHA]:l‘]:* (b*ABl‘B)HQ, (52)

and we have the solution to (5.1).

By using the sets defined above we can formulate the first order optimality
conditions from Theorem 1.5. Let the sets F and B be defined as above and
divide the set B into two sets corresponding to the variables bounded by the
upper constraint, Bz, and by the lower constraint 5. The first order optimality
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conditions can then be expressed in the following way,

ys, = Alp,(b— Ax), (5.3)
—vg, = Alp.(b— Ax),
ys, =yr = vp, =vF =10,
vile; — ;) = 0, Vi,
yi(u; —x;) = 0, Vi,
v,y > 0,

where y and —v are the Lagrangian multipliers to the upper and lower con-
straints. If the optimum is not found when we have evaluated the multipliers
above, we can reduce the objective function further by releasing the index of a
bound variable with a negative multiplier to the set F. The optimum is found
when z £ is a stationary point and y, v corresponding to the variables in B have
positive signs.

If the matrix A is rank deficient, rank(A) = » < n then the solution is not
unique if N(A)NW # (, W is base for all feasible directions at x. The solution
with minimum norm can then be found by solving min||z + p||2, p € N (A)NW
subject to the constraints, see section 5.5

5.3 Single pivoting methods

The usual way to implement the active set methods as done, e.g, in the MATLAB
algorithm NNLS [38, p. 161] is to solve the unconstrained problem in the free
variables in each iteration. Let 2(") be the solution after n iterations with the
single pivoting algorithm. To compute the next iterate we solve,

minf| (=" + Zr,p) —bll2, pE R, 1= |F], (5.5)
P

where Zx € R™™ is a matrix which consists of the columns ¢;, i € F,,
where ¢; is the i:th column from the identity matrix. If p{") solves (5.5) we set
et = 200 L o)z 5 with o = max{a : 1 < 2 + oMz p?) < u)
as shown in Figure 5.1. If @ < 1 we can not reach the global minimizer to
(5.5) without violating some constraints, and the indices of the variables at the
boundary are moved from the set F,, to B,. In general, the single pivoting
methods move only one variable between the subsets in each iteration. More
than one variable can be bound if more than one constraint are satisfied exactly
for the same value of . This is repeated until we find a global minimizer to (5.5).
Then «("*1) is checked for optimality by calculating the Lagrange multipliers.
If there is a negative Lagrange multiplier the objective function can be reduced
by allowing the corresponding constraint to become free in the next iteration.
If more than one variable is not optimal, there are several ways to determine
which one that should be moved. The simplest way to choose the multiplier is
to take the one with lowest index, Murty’s method [62],

minz, Vi:wv; or y; < 0.
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Figure 5.1: Iteration to convergence with the single pivoting strategy.

Alternatively one can choose the Lagrange multiplier with the largest absolute
value (used in NNLS),

min(v; y;), i € Bz and j € By.
i,

In other words, we choose the variable with which we can obtain the largest
reduction of the objective function per unit step. This work well in practice,
but one disadvantage is that it is not invariant to scalings of the constraints.
When we have simple bounds in form of box constraints it is easy to nor-
malize the constraints so that this quantity becomes invariant by solving

rnjn( i Y ),z‘eBﬁ and j € By. (5.6)
2 U; — lz u; — lj

The main weakness of the single pivoting active set method is that it takes
at least ||B*| — |By|| number of iterations to converge, where |B*| and |By| are
the number of active constraints in the solution, and the number of active con-
straints initially respectively. This number can be very large for large-scale
problem, see Table 5.1.

There are several ways to choose the initial active set B, in the algorithm
NNLS. In Portugal et. al. [62], all constraints are taken to be active initially,
By = [1,...,n]. This is not a good choice if there are few bounded variables
at the solution, and in particular if no constraint is active. As in Oreborn [60]
we have chosen the starting point as P[z*], where 2* is the solution to the
unconstrained problem and P[-] is the orthogonal projection onto the feasible
domain. In the case of simple bounds this projection is very easy to compute,
in O(n) operations. We have,

Plz] = mid(l, u, x),
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where mid(l, u, ) is the vector whose i-th component is the median of the set
li, ui, x;. If this starting point is chosen the algorithm will converge after the
first iteration if no constraint is active at the solution. In our experience the
number of iterations has decreased significantly by choosing this starting point.

ALGORITHM 5.1 (SINGLE. Single pivot active set.)
Choose a column permutation P and permute A, [ and u.

Compute (]0%) = Q"A and (2) = Q"b by QR factorization.

Solve unconstrained problem x* : ||Ra* — ¢||2 = min.
() = Plz*]; n=0
Calculate Lagrange multipliers y and v by (5.3)-(5.4).
Initiate the index sets F, L and U accordingly.
while not optimal point.

while not constrained point.

Update R: QY (Rz, Rp, | ¢) = (

Solve U, Tx, = d,, — Snwgln)
Find E : E]:n S l]:n
FindU :ur, <ZTr,

Calculate [, Z] = min (M ou-Eu>

Trlepd) vy Loy
et =20 4oz (TF, — w(]?n))
Fop1 =F, \(LUU)z
Bhy1 =B, U(LUU)z
n=n-4+1
end while

U, Sp
0 Vv,

Calculate Lagrange multipliers y and v.
Use (5.6) to relase a variable from £ or U to F, 4.
end while

Initially we compute the QR factorization of the matrix A to solve the first
unconstrained problem. The main work is to update the QR factorization in
each step, therefore it is important that this procedure is as efficient as possible,
see Bjorck [4]. Tt is easy to show that all Rz, factors can then be stored in the
the initial R factor if the columns always keep their relative position to each
other. A static data structure can be predicted from the initial factorization of
A and kept throughout the iterations.

Portugal et. al. [62] start with all variables at their bound, if this is done
none of the important features mentioned above will be available.

5.3.1 Convergence of single pivoting active set

Convergence in a finite number of steps for the single pivoting method was
proved for the NNLS problem by Lawson and Hanson [38]. Lotstedt in [42]
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outlined a proof for the BLS problem. A more general proof for the convergence
of the single pivoting algorithm to a local minimum for a quadratic function with
box constraints was given by Coleman and Hulbert [9]. The proof below follows
the proof by Coleman and Hulbert. A small generalization is made in the choice
of how to reintroduce a bound variable into the free set.

Define the corresponding quadratic function to the least squares problem by,
q(];) = %l’TATA]f — Z’TATb.

The gradient to ¢(z) is g(x) = AT(Ax —b). Let ax = ZEx, A = ZEA, and
define the reduced gradient by gz = ZLg. If x5 is a stationary point then

gr = Zrg=ZEAT(Ax —b) = AL(Azzr — (b— Aprp)) = 0.

Lemma 5.1 The innermost while loop terminates after a finite number of iter-
ations.

Proof: The set F is finite and in each iteration we move one element from the
set. If this is not the case, the point is a stationary constrained point and the
loop terminates. If the set F is empty we consider £ a stationary constrained
point. O

LEmMaA 5.2 The function value at successive constrained stationary points is
monotonic decreasing.

Proof: Let & be the current stationary constrained point with F as the free set.
Then gz(zz) = 0. We move some index set f from B to F, let F = F U f and

B=28 \ f. Then we have gr(zx) = (0), where v; # 0, and v has the same
v

length as f. If the step size a is equal to zero in the next iteration we move
index from F to B, this variable can not be the one of those we reintroduced
into F, because these still represent feasible descent directions into the domain.
The maximum number of iterations with step length 0 can be as most, [F|. Then
we have to take a step with positive a.

If the step size « is greater than zero the following will happen. In the next
iteration we solve ming, ||[AxTr — EHZ, b= (b — Agxg). This solution satisfies
the normal equations A;A]:E = A;E and if we define the direction p = Txr—x £,
we get

A;A]:p = A;A]:(E]: — ]f]:)

= AEE*AEA]:];]: = *g]:(l‘),

so the vector p defines a descent direction to ¢(«). If the matrix Az has full
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column rank we get

1
q(z + aZp) —q(x) = §a2pTA£A]:p + a(ATAz — A0 Zrp

1
3O 0F(AFAF) g + g’ Zrp

1
50129;(14;14?)“% —agr(AZAF) " gF

1
<§a2 — a) gr(ALAZ) gy < 0. (5.7)

If the matrix AL Az is positive definite then the inverse has the same property,
and therefore (5.7) is strictly negative for all @ € (0, 2). Choose the largest
a < 1such that { < 2+ aZp < u then q(z + aZp) < q(x). If A is rank deficient
we have multiple solutions when we solve the least squares problem. The term
(AL Ax)*" will be replaced by the pseudo-inverse, (A% Ax)T. Then the solution
Z must be chosen so the vector p is not in the null space of ATA. Tf this is done
there will be reduction as before. If  can not be chosen in this way then x is
the optimal solution. O

Now we put these lemmas together and prove the convergence of the single
pivoting active set method.

THEOREM 5.3 The single pivoting active set method converges in finite number
of steps.

Proof: The inner loop terminates in a finite number of steps, so what is left
is to prove that the outer loop terminates in a finite number of steps. FEach
constrained stationary point 2(*) is the global solution to ming(z) with z; =1;
or u;, 1 € B, a equality constrained problem. By Lemma 5.2 the function value
is strictly less for two following stationary points. Since there is only a finite
number of equality constrained problems and q(.’v(k)) decreases with k& we can
not cycle. The outer loop terminates in a finite number of steps. This point
satisfies the KK'T' conditions and is therefore the global minimizer. |

We will see later that a block method can be constructed so that this kind
of reasoning will prove the convergence of the block method.

5.4 Block pivoting

One of the first to propose the block pivoting strategy was Kostreva [37], who
used it for solving the nonlinear complementarity problem for a special class of
functions called P-functions. For a nondegenerate problem the convergence of
the block algorithm is proved for this type of functions, but the proof breaks
down in the degenerate case. In [62] another block method was proposed and
applied to the sparse nonnegative constrained least squares problem. Algorithm
5.3 below is an extension of this algorithm to lower and upper bounds. The
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different block algorithms will be compared and a proof of the convergence of
Algorithm 5.4 will be presented.

In block methods we try to move more than one variable between the active
and the free set in each iteration. We can do this by projecting the solution
of the unconstrained problem onto the domain by a orthogonal projection, see
Figure 5.2, instead of taking a point on the line between the new point and the
old. However, there is no guaranty that the objective function will decrease at
the new point and in some rare cases a cyclic behavior will emerge. Figure 5.3
shows an iteration with no decrease in the objective function (but no cycling
will occur here). Because of this behavior a safeguard must be built into the
algorithm to detect the cyclic behavior.

Figure 5.2: Iteration to convergence with the the block pivoting strategy in
Algorithm 5.2.

In Algorithm 5.2, we have extended the single pivot algorithm by using
projections when we determine the next iteration point. In each inner iteration
several variables will be bound at their constraints and therefore it is not efficient
to update the QR factorization in each step.

Since all variables in the active set methods always are feasible, we will
denote an infeasible variable as a bounded variable with negative Lagrangian
multiplier, or a free variable for which belongs to the solution to the uncon-
strained least squares problem (5.2) but do not belong in the feasible domain.

To ensure convergence a heuristic method for detecting cycling has been in-
cluded. This heuristic counts the number of infeasible variables in each iteration
and switches to a single pivot algorithm if no reduction was found in the last T’
iterations. The single pivot algorithm is used until a reduction of this quantity
is obtained.

Portugal et. al. [62] have followed another approach for generalizing a single
pivot strategy to a block method. They begin with the single pivoting method
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Figure 5.3: Block pivoting algorithm with no reduction of the objective function.

ALGORITHM 5.2 (BLOCK1. Block pivoting active set.)
Choose a column permutation P and permute A, [ and u.
Initiate the index sets Fy = {1 : n} and By = 0.
Set (%) =0
while not optimal point.
while xx_  not stationary point.
Solve ming,. |[Ar, xr, — (b— Ap,xs,)]||2
Find C:xr, <lF,
FindU 1ur, <zr,
Fop1 =Fa N\ (LUU)
B,y =B, ULUlU
p(n+l) — Z]:np[l‘]:n] =+ ZB,L];B,L
end while
Calculate Lagrange multipliers.
Release infeasible variables from B.
if no reduction of the number of infeasible variables has been made
during the last T" iterations switch to single pivoting mode
until reduction made in the number of infeasible variables.

end while
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by Murty [58] and create a block variant by moving all infeasible variables w;
to B. At the same time they release all variables corresponding to Lagrange
multipliers with wrong sing. In the single pivoting method by Murty only one
index is moved in each iteration either to B or from B. This scheme has proven
very effective for the test problems, but the algorithm may cycle. Hence as for
the BLOCK1 algorithm the safeguard to switch to a single pivot strategy must be
included. Tt is shown later 1 Table 5.5, that this method can be quite ineffective
if the algorithm switches over to the single pivoting mode.

ALGORITHM 5.3 (BLOCK2. Ext. of the BLOCK in Portugal et. al.,[62])
Choose a column permutation P and permute A, l and u
Initiate the index sets F = {1 :n} and B=10
while not optimal point
solve min, . ||Ax xx, —(b— A, x5, )|
Calculate Lagrange multipliers y, v
Hi={ie€F:u; <ljorz>u}
Hy={ieB:v;<0ory <0}
F = (.7: n 7‘[2) \7‘[1
B = (B n 7‘[1) \7‘[2
p(n+l) — Z]:P[l‘]:] + /Bri
if no reduction of the number of infeasible variables has been made
during the last T" iterations switch to single pivoting mode
until reduction made in the number of infeasible variables.
end while

By modifying the first block algorithm, BLOCK1, we can ensure that Lemma
5.2 is true for the block algorithm and therefore the convergence proof holds,
see Theorem 5.4. We know that we can obtain a reduction of q(w(”)) by binding
the first constraint we approach as in the single pivoting algorithm. However,
since the BLOCK2 algorithm is so efficient we want to bind as many constraints
as possible and still obtain a reduction of the objective function. This could be
achieved if we could compute,

a = max{a | q(P[x(") +apl) < q(w(”))},

but this would be very expensive. An approximation of this a could be obtained
by first computing all a such that a new constraint is violated. This computation
is cheap, O(n) and is already made in each step of the single pivot algorithm
for finding the smallest . When we have this quantity we can solve,

a = max{q; | q(P[w(”) + a;p]) < q(w(”))},
o= (S ), (5.8)
Ty — &g Ty — Ty

To be able to obtain the largest a; we compute the quantity ||AP[z)+a;p]—b]|3
starting with the largest «; in descending order until a reduction is obtained.
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This is called a backtracking procedure by Dembo and Tulowitzski [12]. The
main part of each computation is a matrix-vector multiplication, O(nnz), and is
not too expensive compared to the factorization at each step. We can expect a
decrease in efficacy if we have to compute ¢ for many different «. Observe that
a part of the computation of ¢ is needed for the computation of the Lagrange
multipliers y and v. Hence if we obtain a reduction with a full step, « = 1 there
is almost no extra cost for this computation.

ALGORITHM 5.4 (BLOCK3. Extension of algorithm BLOCK1.)
Choose a column permutation P and permute A, [ and u.
Initiate the index sets Fy = {1 : n} and By = 0.

Set (%) =0
while not optimal point.
while xx_ not constrained point.
solve min, . |Az,zx, —(b— Ag, g, )||2
p="25,(Tr, —az’)
Calculate o; by (5.8).
a=1
while ¢(P[z") + ap]) > ¢(="))
a = max(a; < a)
end while
et = Plet) 4 ap)
Update the sets F,,, B,,.
end while
Calculate Lagrange multipliers.
Release infeasible variables from B.
end while

The requirement that the objective function must decrease during the itera-
tions can easily be implemented into the algorithm proposed by Portugal. This
is done in Algorithm 5.5.

5.4.1 Convergence proof of the BLOCK3 method

In the convergence proof for the single pivoting strategy, we relied on that the
objective function was reduced between two successive stationary points. This
is not achieved in BLOCK1 and BLOCK2, but the BLOCK3 algorithm was designed
with this as a criteria. This implies that convergence in the same way can be
proved.

THEOREM 5.4 The BLOCK3 algorithm converges in a finite number of iterations.

Proof: The inner loop terminates in a finite number of steps, by the same rea-
son as in Lemma 5.1. FEach stationary point is a global solution to the equality
constrained problem, min ¢(x) with x; = [; or u;, i € B. The objective function
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ALGORITHM 5.5 (BLOCK4. Extension of the BLOCK2.)
Choose a column permutation P and permute A, l and u
Initiate the index sets Fy = {1 : n} and By =0
while not optimal point

solve min, . . |Az,zx, — (b — Ag,xg,)||2
p= 25, (Tr, — %))
Calculate o; by (5.8)
a=1
while ¢(P[z") + ap]) > q(z,)
a = maz(a; < @)
end while
2"t = Pl 4 ap]
Calculate Lagrange multipliers y, v
Update the sets F,,, B,
end while

value decreases by the construction of the algorithm and there is only a finite
number of equality constrained problems. Therefore the algorithm will converge
in a finite number of steps to a point satisfying the KK'T conditions. O

5.5 Rank deficient problems

Here we will outline a method for finding the minimum norm solution of the BLS
problem when A is rank deficient and the null-space to A has low dimension.

When A is rank deficient, rank(A4) = r < n, the solution to the BLS problem
may have multiple solutions, see Figure 5.4. However, there is always a unique
solution of minimum norm. The corresponding minimum norm problem can be
stated as follows,

minljz + w||s,
w

s. bt [ <az4w<uy, (5.9)
w € N(A),

where x is any solution to the BLS problem. To solve this problem a basis of
N (A) is needed. One way to obtain a representation of the basis is the following.
Suppose we have the factorization,

R S

T

A=

an=( 50,

where R has full column rank. To obtain a matrix W whose columns spans

N (A), we can solve AW = 0. By using the factorization above we get,
QTAW = RW, + SW, = 0,
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Figure 5.4: Different solutions with a rank deficient A. In the upper left plot
A has full rank. The chain line marks the unconstrained optimal solution and
if the constrained optimum is not unique the solutions is marked with a thick
line.

Wy € R™>P, Wy € IRP*P and p = n — r. Since R has full column rank we may
choose the matrix Wy arbitrary. If we let Wy = —1I, then W, = RS, The
matrix W = (W{ WJ])" is now a representation of the basis for N (A). W
can now be orthogonalized with the modified Gram-Schmidt orthogonalization
method to a matrix U. However, U will almost certainly be full. However, since
N (A) is of low dimension, this will not, cause a problem. If we can compute the
Q@ factor from the QR factorization, we can use the last p columns in () instead.

When an orthogonal basis for the null-space of A is known the problem (5.9)
can be reformulated. The vector x can be split into two mutually orthogonal
parts @ = ag + zx, tr € R(AT), xx € N(A). Since ||z||2 = ||zr]||% + ||zarl]2
we obtain the problem

min||z ||z,
2%

s.t. I <zy+aer <u, (5.10)
A € N(A).

Since N (A) is spanned by U € IR"*P there is a z such that Uz = z s therefore
(5.10) becomes

min||z||s,
‘ (5.11)
s. t. (I <Uz4ar <u,
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where z € RP. The part of & in R(A) must also be known, but it can be
computed by xg = (I —UUT)a.

This is a dense least distance problem with an quadratic objective function of
p variables. It can be solved with an active set method for dense QP problems.
An algorithm for this problem can be found in Lotstedt [42] based on a QP
algorithm by Gill and Murray [29].

5.6 Implementation issues

In this section we will address some of the implementations issues for the active
set methods. We will discuss when we should update the factorization and when
to refactorize. We will also discuss the termination criteria and the criteria to
switch to the single pivoting mode in the block methods that uses this to ensure
convergence. The choice of factorization method will also be discussed.

The single pivoting methods are attractive for dense matrix computation.
When dealing with dense matrices the number of unknown are usually not as
great as with sparse computation. The updating methods for dense matrices
are also very efficient. This together with the first sparse QR methods based
on a row sequential scheme for computing the QR factorization, led to the
use the single pivoting algorithm together with the efficient updating technique
developed by Bjorck [4]. When the multi-frontal methods for computing the
QR factorization were developed, more interest for methods that could exploit
the efficiency of this new method. We will now present some arguments for and
against the choice of block methods instead of single pivoting methods;

e Higher performance can be obtained by using block operations (BLAS 2-
3) instead of manipulating single elements. This is especially true when
using MATLAB as an implementation language.

e A code using block operations is easier to parallelize.

e Multi-frontal techniques are more efficient for factorization of sparse ma-
trices. However, there are no efficient ways yet, to update the QR factor-
ization using multi-frontal techniques.

e There has to be big differences in concurrent blocks for block schemes to
be efficient.

The best thing should be to combine the different approaches; i.e., to use
updating techniques when there is a small change in the number of variables
and refactorize when large changes occur. In Portugal et al. [62] a heuristic rule
for determining if the R factor should be updated or recomputed is given. They
use the quantity

5 [CUUUH]
FN(LUUUH)
where |- | denotes the size of a set. H is the index set of Lagrangian multipliers

to variables z;, ¢+ € F with negative sign. They conclude that if A > 0.2 it is
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cheaper to recompute R from scratch; otherwise an update should be done. This
heuristic value is determined using a sparse row sequential QR factorization,
described in [21] and should be higher if the a multi-frontal code is used. We have
not tested the heuristic, but believe that in MATLAB, the heuristic value should
also be much higher since there is a great performance loss when manipulating
sparse matrices not using built-in functions.

To be able to terminate the iteration process in both single pivoting and
block methods, we use a stopping criteria based on the Lagrange multipliers.
If all variables at their bounds have Lagrange multipliers larger then > —tol
and all variables in the free set is feasible, we terminate the iteration process.
If is tempting to set tol to zero since the first order optimality conditions state
that the Lagrange multipliers should be nonnegative. We have noticed that
this tolerance will work for the nondegenerate problems since the Lagrange
multipliers corresponding to active constraints are bounded away from zero.
However, for the degenerate case, when the active set is not unique and the
Lagrange multipliers could be zero, then the algorithms usually do not stop,
even if the solution is found. The algorithms will usually bind and release
degenerated variables in a cyclic manner.

The choice of tol did not make any differences for the nondegenerate prob-
lems. However, we noticed differences in the number of iterations when solving
degenerated test problems. We found that by using a tolerance of nu - 10% or
nu - 103, where n is the number of variables, the methods converged fast and
gave good accuracy for our test problems.

To decide when the block methods can switch to single pivoting mode we
have used the criteria to switch if no reduction of the infeasible variables has
occurred in T' = 3 iterations. This is more strict than in Portugal et al. [62]
where they used T' = 10. We tried different values of this parameter but our
choice was best for our problems. In single pivoting mode we have used the
quantity (5.6) to choose the next index to free. This was also used in the single
pivoting algorithm, single.

The test problems presented in section 4 all have full rank and is not ill-
conditioned. Therefore we can compute Rz by a Cholesky factorization of
A;A]:. The least squares problem in each iteration is then solved with the
method of normal equations (NE). In each iteration we solve for a descent di-
rection. High accuracy of this direction is not crucial for the convergence of the
method, since it is the partition of the variables at the solution we want. How-
ever, as the last step we recompute the solution by using the QR factorization of
Azx. This ensures good accuracy of the solution if the active set is correct. This
last step will degrade the performance of the active set method implemented
in MATLAB. Since, the Cholesky factorization in MATLAB since the chol is
very fast, up to 10 times the speed of the QR factorization routine qr. This
fact does not affect the comparison done in the next section since we have used
the recomputation in all algorithms. However, in the final comparison with the
interior-point method we have to keep this in mind.
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5.7 Numerical experience

In this section we will start with results for the single pivoting algorithm single
in section 5.3. These results motivate the use of the projected starting point in
the single pivoting algorithm. Then we will compare the different block methods
introduced in section 5.4

For all the numerical experiments in this section we used MATLAB V5 on an
ALPHA STATION 200 4/166, 64 M-byte memory with operating system OSF1
V4.0. The test problems were generated according to Section 4.2. The optimal
point was detected when all variables were feasible and the Lagrangian variables
were larger then —tol where tol = nu - 102, The columns of A were ordered by
the minimum degree ordering to reduce fill in R.

5.7.1 Single pivoting algorithms

In Table 5.1 the number of iterations needed for convergence for the single
pivoting algorithm are presented. No timings are given since the updating
technique described by Bjorck [4] was not used. For some of the problems
we see that the initial guess P[2*] is very good and only a few iterations are
needed to obtain the optimal value. In test problems 10 and 11 the number of
iterations needed to converge when all variables were in B from the beginning
is at least 10 times the number needed in table below. Problems of type A are
nondegenerated and type B degenerated.

Table 5.1: Number of iterations for the single pivoting algorithm. The test
problems of type A and B were generated according to section 4.2

Nr. 1 2 3 4 ) 6 7 8 9
A |33 6 ) 16 23 285 298 274 259
B |32 26 3 ) 9 328 467 260 226
Nr. | 10 11 12 13 14 15 16 17

A |11 14 513 548 318 2040 5H83 >17263
B |58 2 510 780 252 1843 4131 >17263

5.7.2 Block methods

Here we will compare how the different block methods perform on a set of
test problems. Both block and single pivoting steps are computed by a refac-
torization of R and not with the updating technique presented by Bjorck [4].
However, for most of the problems this did not influence the computational time
since single pivoting occurred only for problem 7 and 13.

In Table 5.2 5.4 the result from the tests are accounted for. In table 5.2
we give the number of factorizations for the different block methods. This
number does not include the last QR factorization since that is optional. We
can conclude from this table that the overall performance of all the algorithms
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are very good. Usually only 3 to 7 factorizations are needed to solve the bounded
least squares problem. For the problems 18 26, corresponding to finite element
matrices, each method uses almost a constant number of factorizations. This
indicates that the methods are not dependent on the size of the problems. For
most of the test problems a full step @ = 1, is taken in each iteration. This
means that BLOCK3 and BLOCK4 will behave in the same manner as BLOCK2. The
BLOCK3 algorithm can in the worst case act like the single pivoting algorithm,
but this was not noticed in our test problem suite. We tried to use the QR
algorithm to compute R, but we did not notice any difference in the number of
factorizations needed to solve the test problems. The accuracy was also exactly
the same since we recomputed the solution with the QR method as the last step.

For problem 7 the step length was reduced during several concurrent steps.
This interested us so we made a comparison with the same matrix and limits,
but with different random solutions. Then we used the BLOCK2 and BLOCK3 al-
gorithm to compute the solution, see Table 5.5. The conclusion from this table
is that the BLOCK2 algorithm can have an order of magnitude more factoriza-
tions than the BLOCK3 method. However, this is not as bad as one may think,
because most factorizations are from the single pivoting steps. It is therefore
very important to use an efficient updating technique for the R factor if the
BLOCK2 algorithm is used. Otherwise we will lose a great deal of efficiency for
some problems. The BLOCK3 algorithm was forced to reduce the step length
during several steps to ensure reduction of the objective function. However,
this approach did indeed prove more efficient in this case.

In Table 5.3 we show the relative forward accuracy measured in the 2-norm.
For the nondegenerate case, type A problems, we obtain the same active set for
all algorithms and therefore the accuracy is the same for all test problems. All
the solutions were obtained with a satisfactory high accuracy when considering
to the condition number of the matrix. For the degenerate problems there is
not a unique active set at the solution and therefore we obtain slightly different
accuracy for the different algorithms. However, for all the degenerate problems
we obtained a solution with an accuracy comparable to the solution of the
corresponding nondegenerate problem. We clearly noticed that by refactorizing
R with QR as a last step did indeed increase the accuracy of the solution. We
strongly recommend this procedure.

Table 5.4 show the computational time measured in seconds for the complete
algorithm. We see that for problems 1 17 the BLOCK2 method was almost always
the fastest algorithm. This is due to the simplicity of the algorithm and that it
used the same number of factorizations or fewer than the BLOCK3 and BLOCK4
algorithms, except for problem 7, type B. For this particular problem BLOCK2
was faster than BLOCK3 and BLOCK4 even if BLOCK2 used 6 respectively 11 ad-
ditional factorizations. However, this problem is of small size, so the extensive
search for the next descent point became relatively time consuming and made
the BLOCK3 and BLOCK4 algorithms slow. For the larger finite element problems
the BLOCK3 and BLOCK4 algorithms were faster than the BLOCK2 algorithm by
using fewer factorizations.

Figures 5.5 and 5.6 show the number of factorizations and the computational
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time for all test problems relative the BLOCK1 algorithm.

We conclude that overall the heuristic algorithm BLOCK2 is the most efficient
algorithm. However, it should be used with an efficient technique for updating
R when columns are added or removed in A. Algorithm BLOCK3 is almost as
effective as BLOCK2 for the smaller problems and when the factorization time is
more dominant as in test problem 25 and 26 it is more efficient than BLOCK2.
We would recommend to use BLOCK2 when an efficient updating technique is
implemented otherwise, use the BLOCK3 algorithm.

Table 5.2: Comparison of the different block methods. Number of factorizations.

Nondegenerate, A Degenerate, B

Prob. || B.1 B2 B3 B4 | B.1 B2 B3 B4
1 5 4 4 4 6 4 4 4
2 6 4 4 4 5 3 3 3
3 3 3 3 3 3 3 3 3
4 4 3 3 3 3 3 3 3
5 4 4 4 4 3 3 3 3
6 9 5 5 5 9 6 6 6
7 2210 14 15| 30 25 19 14
8 9 6 6 6 10 6 6 6
9 7 5 5 5 6 5 5 5
10 4 3 3 3 4 3 3 3
11 3 3 3 3 3 3 3
12 11 7 7 T 11 7 7 7
13 22 14 13 25 15 12 14 12
14 8 5 5 5 11 6 6 6
15 14 8 8 8 17 8 8 8
16 17 9 9 91 26 10 10 10
17 17 9 9 9 18 8 8 8
18 4 4 4 4 4 4 4 4
19 7 5 5 5 6 5 4 4
20 5 6 5 5 5 ) ) )
21 7 6 5 5 8 6 ) )
22 6 6 5 5 7 ) ) )
23 6 6 5 5 7 ) ) )
24 6 6 5 5 15 5 ) )
25 7 6 5 5 6 ) ) )
26 7 6 5 5 7 6 ) )
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Table 5.3: Comparison of the different block methods. Relative error in solution.
In the nondegenerate case the same solution was obtained.

Nondegen., A Degenerate, B

Prob. || BLOCKI1 4 | BLOCK1 BLOCK2 BLOCK3 BLOCK4
1 2.3-10116 4.0-10% 28.101% 2.3.10+'% 2.3.10%'6
2 1.6-10+16 2.0-10+  25-101' 2.3.10+'% 2.3.10%4'¢
3 1.8-10+16 2.8-10+%  22.101' 23.10+'% 2.3.10%4'¢
4 2.0-1016 2410+ 2.7-101' 2.4.10+'% 24.10416
5 2.6-10116 2.1-10+  26-101 2.8-.10+'% 2.8.10+1¢
6 1.9-10+1 1.0-10+" 1.2-10+'* 1.2-10t™ 1.2.10+"
7 3.0-10+10 3.2-10+  3.2-10t" 29.10+0 3.2.10+10
8 1.1-10+15 73101 771056 1.0-104"5 1.0- 10418
9 1.3-10+15 1.0-10+"  1.2-10+' 1.0-101"™ 1.0-10*+'®
10 8.1-10+16 7.0-10+"%  81-10%6  81-10+16  8.1-10L16
11 1.0-10+15 85-1011%  8.8-106 7.2.10116  7.9.10L16
12 1.7-10+1 3.5-10™ 15-10+" 1.6-104'* 1.6-10t
13 7.4-10+" 5.8 .10 2.6-10" 37108 2.0-10+"
14 1.8-10+15 2.0-10+  2.0-10t' 20-10+ 2.0-10%+1°
15 5.6-10+16 89-10+'%  1.0-10L™ 6.0-10+'6  6.0- 10116
16 5.5-10+08 3.6-10+%  3.6-10L9 3.6-10+" 3.6-10L98
17 1.8-10+15 1.7-10+"  1.9-10+'  1.7-101' 1.7.1011'®
18 5.5-10+16 5.0-10+'6  7.6-10t 6.1-10+'6  6.1-10L16
19 7.1-10+16 7.4-1046  7.3.101 6.5-10+'6  6.5.10L16
20 7.9-10+16 7.4-1046  7.0-101  7.6-10+'6  7.6.-10L16
21 8.3-10+16 8210+ 7.7-10%6  81-10+'6  8.1-10L16
22 8.7-10+16 861011 8.6-1016 8210116 8210416
23 8.8.10L16 85-10+16 8.9.10L' 88.10+'6 8.8.10L16
24 8.5-10+16 9.1-10+'6  8.9.10L' 86-10+'6 8.6-10L16
25 9.8.10+16 9.6-10+'6 9.8.10L% 89.10+'6 8.9.10L16
26 9.6-10+16 9.3-10+'6  1.0-10t™ 9.7-10+'6  9.7.10L16
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Table 5.4: Comparison of the different block methods. Computational time is

given in seconds.

Nondegenerate, A Degenerate, B

Prob. B.1 B2 B3 B4 | Bl B2 B3 B4
11030 023 030 030|023 0.18 0.23 0.23
2012 0.10 0.13 0.13 | 0.12 0.083 0.10 0.12
34 0.10 0.10 0.12 0.13 | 0.10  0.10 0.13 0.12
411 0.18 0.15 0.18 0.18 | 0.17  0.18 0.20 0.20
51 0.28 028 0.32 0331025 028 0.32 0.32
6 || 0.63 043 0.50 0501|063 052 0.58 0.60
7 1.1 067 1.0 1.1 1.5 1.4 23 22
81 0.95 080 0.85 0.83 1.0 0.82 093 0.92
91093 082 092 091 09 085 090 0.92
10 14 13 13 13 1.4 1.2 13 13
11 1.8 1.7 1.7 1.7 18 1.8 1.7 18
12 1.5 12 14 13 1.7 1.3 14 14
13 23 1.7 29 51 1.9 1.8 34 25
14 64 57 60 60| 7.7 6.1 6.2 6.2
15 28 21 26 27| 42 29 29 29
16 14 10 11 11 27 16 18 17
17 75 63 74 74 98 85 90 90
181 0.13 0.13 0.18 0.17 | 0.13  0.15 0.17 0.17
19 0.8 0.68 075 0.751]0.76 0.72 0.67 0.67
20 20 21 21 21| 20 20 22 21
21 47 44 42 42| 5.1 47 44 44
22 82 82 78 17| 92 81 82 8.0
23 13 13 12 12 14 13 13 12
24 19 19 18 18 33 20 19 19
25 32 30 29 29 33 32 30 30
26 43 41 40 40 46 47 42 42

Table 5.5: Number of factorizations for 10 test problem constructed with the
same matrix ILLC1033 (test matrix 7) but with different random solutions .
The problems were degenerated, type B.

Method | Factorizations
BLOCK2 | 106 33 140 94 114 213 143 22 21 16
BLOCK3 19 21 21 15 22 16 23 27 16 15
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Figure 5.5: Nondegenerate test problems corresponding to Table 5.2, 5.4.
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Figure 5.6: Degenerate test problems corresponding to Table 5.2, 5.4.
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6 A path following predictor-corrector interior-
point method

The interior-point methods got a dramatic attention of the scientists in the
middle of 1980s. When Karmakar published his famous paper about a method
for solving linear programming problems in polynomial time, it made the first
page in New York Times. The area exploded, and there was a revival of the
barrier methods from the 60’s, since many of the interior-point methods have
their origin in barrier function methods. Here we will discuss a certain class
of the interior-point methods called path following. Our main interest is in a
method introduced by Mehrotra. The class of interior-point methods based on
potential reduction methods will not be discussed here.

6.1 Barrier function

By adding a penalty function that grows large when we approach a constraint we
can transform a constrained optimization problem to an unconstrained problem.
A barrier penalty function can be constructed by placing a singularity at the
constraints. The singularity is regulated with a barrier parameter, g > 0, and
when p tends to zero the original problem is obtained in the limit. By using a
sequence of decreasing p;, we solve a sequence of global optimization problems
and in the limit we obtain the constrained optimum. The barrier term forces the
solution away from the boundaries of the domain, to be centered in the domain.
Consider the general convex programming problem,
min g(x) s.t. oe(x)>0,i=1, ..., m. (6.1)
xr

The two most important barrier functions, the logarithmic barrier function and
the wnverse barrier function, are expressed in the following way,

Blaop) = a(z) —pY " Infes(o), (6.2)

B, p) = gq(x) + p Z(Cz’(w))“-

The logarithmic barrier function was introduced 1955 by Frisch and analyzed in
the 1960s. Unfortunately the barrier functions methods suffer from numerical
difficulties when approaching the limit point and the methods lost interest dur-
ing the 1970s. However, the close relationship of the barrier methods with the
polynomial time methods as Karmakars, have brought back the interest. The
generic barrier algorithm, in simple terms, consists of choosing a strictly feasible
point 7 and gy > 0. The unconstrained optimum is now computed with for
example, Newton’s method. If the solution do not satisfy the prescribed accu-
racy we choose a new value ps satisfying 0 < py < pp, and the unconstrained
optimum recomputed. The convergence of the logarithmic barrier method for
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convex programming problems is formulated in the following theorem from M.

H. Wright [68].

THrEOREM 5 (M. H. WRrIGHT [66, pP. 360 361]) Consider the convex program
of minimizing f(x) subject to ¢;(x) > 0,1 =1, ..., m. Let F denote the feasible
region for this problem, and assume that strict(F ) is nonempty. Let {ug} be
a decreasing sequence of positive barrier parameters such that limg_, o pgp = 0.
Assume that the set M of constrained local minimizers of the conver program
18 nonempty and bounded, and let f* denote the optimal value of f. Then

(i) the logarithmic barrier function B(x, pg) is convex in strict(F );

(ii) B(x, px) has a finite unconstrained minimizer in strict(F ) for every p, >
0, and the set My, of unconstrained minimizers of B(x, pg) in strict(F)
18 convex and compact for every k;

(ii1) any unconstrained local minimizer of B(x, ug) in strict(F ) is also a global
unconstrained minimizer of B(x, ug);

(iv) let y, denote an unconstrained minimizer of B(x, pg) in strict(F); then,
for all k,

Flysen) < flye) and =3 Inei(ye) <D Inei(yesr)
i=1

i=1

v) there exist a compact set 8 such that, for all k, every minimizing point yy
p 7 7 y g p y
of B(:E, Mk) lies in S strz'ct(T-);

(vi) any sequence {yx} of unconstrained minimizers of B(x, py) has at least one
convergent subsequence, and every limit point of {yx } is a local constrained
minimazer of the convexr program;

vit) let {x,} denote a convergent subsequence of unconstrained minimizers o
q q
Bz, pg); then lim f(axg) = f*;
k— o0

vier) lim By = f* |, where By denotes B(wg, pug)-
X H
—00

Here strict(F) is the set of point in the feasible domain F where the con-
straints are satisfied with a strict inequality. If this theorem is applied to our
least squares problem with box constraints, then if A has full column rank any
sequence of unconstrained minimizes x; will converge to the unique optimum of
the convex programming problem. This is clear since all subsequences has the
same convergence point.

An important result from duality theory is the following bound on the op-
timal solution. If zg is the unconstrained optimum to B(x,ug), then 0 <
q(2k) — q(2*) < mpg, where m is the number of constraints. This result is
independent of the objective function of the convex program and is used later
in the interior-point method presented below. The rate of convergence of the
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barrier method is clearly related to the choice of the barrier parameter pg. How
should we choose the next pg4q and with what accuracy do we need to solve
each unconstrained problemI' Several heuristic methods for choosing pg4q1 will
be tested later in section 6.2.2.

The optimal point for a fixed value of g = pg in B(x, u) is given by the
conditions that the gradient of B vanishes,

VB(x,ug) = g(x) — Z Ci/(ili) d;

= g(x) — pD"CH (p)e,

where g(x) is the gradient of ¢(x), D is the Jacobian matrix of ¢(z), C' = diag(¢;)
and e is a vector with all ones. This implies that the gradient of ¢(z) can
be written as a linear combination of the gradients of the constraints. The
KKT condition (1.5) says that the gradient at the optimum of ¢(z) is a linear
combination of the active constraints. By this analogy we can suspect that the
coefficient p/c¢;(p) is direct analogous to the Lagrangian multiplier A;. It can be
shown that if the sufficient optimality conditions in Theorem 1.6 hold and the
gradients of the active constraints are linearly independent, the quantity z/c;(p)
converges to the Lagrangian multipliers. Under these conditions there exist a
differentiable path I' = 2(u) in the neighborhood of 4 = 0. In our problem
of interest it can be shown that the path exists for all ¢ > 0 when A has full
column rank. This path is called the barrier trajectory or sometimes, in linear
programming, the central path. In Figure 6.1 an example of this path is shown
together with the level set of the quadratic objective function. The constrained
optimum is located at (2, 0). In the interior-point methods called path-following
methods, the properties of this trajectory is used and the method follows the
path to the solution. Since we do not want to solve an unconstrained problem
in each iteration, it suffices if the current iteration point is in a neighborhood
of the path.

6.2 Primal-Dual interior-point methods

The name Primal-Dual methods refers to methods generating points feasible for
both the primal and dual problem. The first to propose a primal-dual method for
the linear programming problem was Megiddo 1986. This was later implemented
by Kojima, Mizuno and Yoshise 1988. Monteiro and Adler [54, 53] used these
ideas and developed a faster algorithm for the linear and quadratic programming
problem. This was achieved by using the logarithmic barrier function together
with Newton’s method. The barrier parameter u was determined in each itera-
tion as the decreasing sequence pgy1 = (1 — d/y/n)pg, where § €]0, y/n[. They
proved convergence in O(n?1) operations for the quadratic case, where L is a
measure of the problem size.

It is not clear how to choose a good way to reduce p in each step. Ideally we
want to reduce p to zero as fast as possible. This may imply that choosing the
next pg 41 dynamically rather than a having a fixed ratio could be more efficient.
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Central path T’

00 0.5 1 1.5 2 2.5 3

Figure 6.1: The level set of the quadratic objective function together with the
central path projected onto the x space. 0 < x5 <3

Later we will describe a method by Mehrotra that uses the information from
the predictor step and the path to determine how well the method is advancing
and chooses next p accordingly. A convergence proof for a primal-dual short
step methods that uses the fixed factor above can be found in [55, 69]. For a
monograph covering primal-dual interior-point methods for the linear program-
ming problem and to a certain extent also quadratic and convex programs, see,
S. Wright [69].

Now we will consider problem of BLS. We reformulate this problem as the
equivalent quadratic program,

minimize q(z) = %.’ETATA:E — 2TATh,
xr

subject to 0<wi—1;,1=1,..,1<nmn, (6.3)
0<wu;—x, i=1,..., k<n.

The dual problem is given by,

maximize %.’ETATA:E — 2TATH 4+ 7" (l—z)+ y’ (v — u),
(z,v,y) €SN

Q:{(w,v,y)ER?’X” AT Az —b)+y—v=0, v,y >0, l’Zl} (6.4)

The set  defines points (z, v, y) feasible for both the primal and dual problem.
The complementarity gap 1s then given by the difference between primal
(6.3) and the the dual (6.4) problem,

gz, v, y) =" (x — 1) +y" (u— ). (6.5)
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The optimality conditions for the problem above is given by the KKT con-
ditions (1.5). Introduce slack variables

s=u—ax, and t=x—1. (6.6)

If no lower (upper) limit exists the corresponding components in v (y) are set
to zero, s and ¢ likewise. The KKT conditions will be the following,

AT(Az —b) —v+y 0,
rp— U+ 8 = Oaizla"'alsna
li—wi+t; = 0,i=1,..., k<nmn,
- 6.7
tivi = 0, Vi, (6.7)
S;Yi = 0, Vl,
(s,t,v,y) > 0.
To simplify the notations later on we introduce the variable
w= (s, t, v, y, ). (6.8)

Observe that this system of equations would be almost identical, if we had a
positive definite quadratic programming problem subject to simple bounds in
the variables. We will later point out what changes is needed for solving such
problems instead of solving the least squares problem.

If we would attack this problem straight on, we could use the Newton method
on the nonlinear system defined by (6.7), due to its quadratic convergence rate.
When the search direction is obtained we restrict the step length to ensure that
the next iterate is in the interior of 2. This is to avoid spurious solutions to
(6.7) that can appear if we move outside the domain. However, to apply the
Newton’s method direct at (6.7) turns out to be impractical if the optimum is
not in the interior of the domain. The Newton iterations tend to move very
quickly outside the domain and the step restriction will make convergence slow,
if it will converge at all.

The primal-dual interior-point method modifies the basic Newton method in
two important ways. First the search direction generated by the Newton method
is biased toward the interior of the feasible domain. The second important
objective is to keep the iterates away from the boundaries of the orthant. The
search directions computed near a boundary tend to be distorted.

These two changes makes the method able to take longer steps towards the
solution of (6.7). We use the logarithmic barrier function as the means to make
the changes. The logarithmic barrier function with the nonnegative barrier
parameter p to (6.3) becomes,

l k
1
min B(z, p) = §wTATAw — 2TATy — (Z In(t;) + Zln(si)) , (6.9)
i=1 i=1

where t; and s; are slack variables (6.6). B(x, u) is a convex function and the
domain is convex so i1t has a unique global optimum for each g. This optimum
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is can be obtain by differentiating (6.9),
Ve B(x, 1) = AT(Ax — b) — u(TTe — Ste) = 0.

Here T"is the diagonal matrix with ¢; on the diagonal and zeros when no lower
bound exist. 77 is the pseudo-inverse, tj‘l if #; # 0 and 0 if ¢; = 0 on the
diagonal, ST likewise. Let

plTe =Ve, and pSTe=VYe,
then we obtain the following nonlinear system,

AT(Aw—b)—v+y
r—u-+s
fulw) = l—x+1t
TVe— pe
SYe— pe

Il
<

(6.10)

This system of equations is similar to the (6.7) except for the terms pe in
the complementarity conditions. Observe that v and y are not the Lagrange
multiplier as in (6.7). However, in the limit as g — 07 v and y will converge
to the Lagrange multipliersin (6.7). If A has full column rank, it can be shown
with the implicit function theorem that the equation (6.10) defines a continuous
differentiable path depending on p, T'() = w,, where wy, is the solution to (6.10)
for different fixed p. When p — 0 the optimal solution is to the original problem
(6.3) is obtained, since by Theorem 5 all sequences w, — w*.

If Newton’s method is applied to (6.10) for a fixed p, the last two equations
will move the search direction away from the boundary of the feasible domain.
By introducing a centering parameter o, o € [0, 1], and replacing p with ou
in the algorithm, we can control if the search direction will try to move to the
solution of (6.7), with ¢ = 0 and reduce pu, or move the next iterate toward
the solution of the unconstrained problem, the central path, with ¢ = 1. When
o = 0 we call the step an affine step and with ¢ = 1 a centering step is obtained.
By using a ¢ between zero and one we make a combination of moving towards
the path and trying to reduce u. We call g the duality measure and define it as,

vt +yTs  g(w)
= = . 6.11
a 2n 2n ( )

If we have a point close to the path, this will give an estimations of a pu that
yields a point on the path close to the our current point. For a point strictly
on the path I'(u) this relation can be obtained from the last two equations in
(6.10). The short step methods mentioned above use a conservative centering
parameter close to one. These methods can usually take a unit step in the
Newton direction but make a slow progress towards the solution.

The Newton step for (6.10) is obtained by differentiating f. We get the
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following Jacobian,

0 0 —I I A"A
I 0 0 0 I
B
F(w) = ’;(w): o 1 0 0 —I |. (6.12)
v 0OV T 0 0
Y 0 0 S 0

The corrections in the Newton step are then obtained by solving the following

system,
—dv+ dy+ ATAdx = AT(b —Az)+v—y,
ds+dv = wu—uw—s,
dt —dex = —l—t+ =, (6.13)
Tdv+Vdt = —TVe+ opue,
Yds+ Sdy = —YSe+ opue.

In a predictor-corrector setting the predictor step tries to reduce the duality
measure by setting ¢ = (. The corrector step, ¢ = 1, will then move the iteration
back towards the path T to obtain a good starting point for the next iteration.
The barrier parameter u is estimated after the affine step. Each step will require
the solution of the linear equation system above. This means an evaluation and
factorization in each step. However, we could reuse the factorization in more
than one step and save computational effort.

6.2.1 Mehrotra’s Predictor-Corrector methods

The most commonly used interior-point codes since 1990 are based on Mehro-
tra’s predictor-corrector algorithm [51]. Motivated by the use of higher order
approximations of the central path and ideas of Lustig, Marsten and Shanno
[44], Mehrotra describes a method that alternates between taking a predictor
(affine) step and a corrector (centering) step. In addition to this he uses a clever
way to estimate the progress of the Newton direction in the predictor step and
uses this information in the correction step. The factorization from the affine
step i1s reused in the corrector step, but also a correction for the nonlinearity
is added to the correction step. In [562] Mehrotra used a second-order Taylor
expansion of the central path to motivate the algorithm. Mehrotra’s algorithm
is further analyzed and discussed by Lustig et al. [45]. A comparison of the the
different linear programming problems from Netlib®, is also given there. They
report that Mehrotra’s algorithm outperformed the primal-dual method (OB1
[44]) on iteration count in 85 out of 86 problems and that the execution time
was smaller for 71 of the 86 problems.

Carpenter et al. [8] discuss the use of multiple corrections in each itera-
tion and show the equivalence to the composite Newton method and generalize

SURL: http://www.netlib.org
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Mehrotra’s algorithm for quadratic programming problems. Tapia et al. [65]
also discusses the equivalence to a damped level-1 composite Newton method.

The algorithm proposed by Mehrotra uses the predictor step to adaptively
determine the parameter ¢ with a heuristic rule. If a large reduction of the
complementarity gap, g(w) was made, the current point is well centered and
the corrector step can be used to reduce g(w) further. Otherwise the correction
step uses a o close to one to center the iteration to the path. Mehrotra’s method
uses the same factorization to compute the predictor and the corrector step but
makes the following correction for nonlinearity in the corrector step. Consider
equation (6.10) with the current iterate and the correction so that w4+ dw solves

(6.10). We then have,

AT(A(e +dr) —8) — (0 + do) + (g + dy)
(v +de) —u+ (s+ds)
flw+dw) = [ — (2 +de)+ (t+dt) =0.
(T'+dTYV +dV)e — pe (6.14)
(S+dS)(Y +dY)e — pe

This equation system can easily be rewritten as

—dv 4+ dy + ATAdz = AT(b —Az)+v—y,
ds+dv = wu—ux—s,
dt —dev = —l—t+ux, (6.15)
Tdv+Vdt = —TVe—dldVe+ oue,
Yds+ Sdy = —YSe—dSdYe+ oue.

This is very close to the linearized equation system given by (6.13). The only
difference is the nonlinear terms in the last two equations. Mehrotra used the
corrections computed from the affine system of equations to approximate these
two terms in the corrector step. This will use second order information of the
path and also reduce work compared to the usual predictor-corrector methods,
which computes a new factorization in each step.

Due to the fact that we cannot stay on the path, we will solve a slightly
different equation system in each iteration. The variables x, s, ¢, v and y will
then have the same importance. In other words, the variable s will not be
computed in each iteration to satisfy the constraint u — « 4+ s = 0, but will
have the same status as x and be iterated to convergence as all the others. It
has been reported in [45] that better stability for problems with tight bounds
is obtained if all variables are given the same status. The affine Newton step,

o =0 for (6.10) is,

—dv+dy+ AT Ade = AT(b—Aw) +v—y,
ds+de = u—s—u,
dt —de = —l—t+ux, (6.16)
Tdv+Vdt = —TVey,

Yds+ Sdy = —YSey,
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and the full corrector step with the correction of Mehrotra is,

—dv +dy + AT Adz = AT(bwa) +v—y,
ds+dr = wu—s—u,
dt —di = —l—t+u, (6.17)
Tdo+Vdt = —TVe, —dl'dVe, + open,
Yds+ Sdy = —YSey —dYdSes 4+ oues.

The corrector step is called full because the affine correction is included in
the new correction obtained from the system of equations above. We could
compute the corrector correction separately and add both corrections to the
initial w. However, by solving the corrections by (6.17), it will be easier to im-
plement multiple corrections later. Here e; and ey are vectors with ones where
lower /upper bounds are present and zeros otherwise. In the outline of Mehro-
tra’s predictor-corrector method shown below, 7 is slightly smaller than one
(usually 0.95 or 0.9995) to keep the next iterate safely away from the boundary.

ALGORITHM 6.1 (Outline of Mehrotra’s method)
do until convergence.
Factorize system of equations f'(w).
Solve equation (6.16) for dw.
Estimate op from w,, and dw.
Solve equation (6.17) for dw.
Compute step length a.
W41 = Wy + Tadw.

end do

In the algorithm for linear programming problems, Mehrotra used different
step length for the primal and dual variables. However, since # appears in the
dual constraint in the quadratic programming case, the same step length is taken
here to avoid increasing infeasibility. In Figure 6.2 the level set of a quadratic
objective function together with the central path and the predictor-corrector
iterations, in the z-space, from Mehrotra’s algorithm are shown.

6.2.2 Estimating the centering parameter

One of the new features in Mehrotra’s algorithm was to estimate the centering
needed in each step. The method used in the first paper by Mehrotra [51] was
the following heuristic value for linear programming problems,

- = ((w%dw)T(sasds))”, (6.18)

Z’TS

with v = 3 and dz, ds are the affine corrections from the Newton step corre-
sponding to (6.16) for the linear programming problem. The use of this heuristic



60 6 A path following predictor-corrector interior-point method

Central path T' and predictor—corrector iterations

2 T

x x  Predictor step

1.8k + +  Corrector step

Figure 6.2: The level set of the quadratic objective function together with the
central path and predictor-corrector factorizations from Mehrotra’s method pro-
jected into the x space.

value can be motivated by formulating (6.18) in the following way. Consider,

(x — azdw);(s — ayds) _ /,Laﬂ" (6.19)
s

@ It

where p.e is the duality measure from the affine step. If p.g 1s much smaller
than p we have obtained a good search direction with the affine direction and
in the corrector step we continue to try to decrease pu. On the other hand
if pag has not decreased significant the affine direction was not good, and we
use the corrector step to move closer to the path. Hopefully we then have a
better starting point for the next iteration. Later Mehrotra [52] tried the values
v =2, 3, 4, but concluded that v = 3 was the best choice. However, little
difference for v between two and four was reported.

Lustig et al. [45] report that by choosing p by (6.18) there can be numerical
difficulties as the optimum is approached. Instead they used (6.18) with v = 2
when the complementarity gap g(w) was greater then one, and the following
heuristic value when g(w) < 1,

(6.20)

g Et W q)(n)_{nE if n < 5000,
n

®(n) 3 if n > 5000.

We did not detect any of these difficulties by using (6.19) instead of using (6.20).
In Table 6.1 we show results for a subset of our test problems using the
different values of v together with two other alternatives. The first alternative,
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Table 6.1: Number of factorizations from Mehrotra’s predictor-corrector algo-
rithm with different heuristic v in equation (6.18). The alternatives are defined
by (6.11) and (6.20).

Nondegenerate
Problem || v=2 | v=3 | v=4 | alt. 1 | alt. 2
2 10 9 10 10 15
7 11 11 11 14 14
16 13 13 14 14 18
19 11 11 11 12 14
26 11 11 11 12 16
Degenerate
Problem || v=2 | v=3 | v=4 | alt. 1 | alt. 2
2 24 24 24 24 25
7 25 25 25 25 28
16 30 29 29 33 37
19 25 25 25 25 27
26 25 25 25 25 27

alt 1., is the heuristic value (6.20), proposed by Lustig et al. In the second
alternative, alt. 2, we used the duality measure given by (6.11). This is the same
as using o = 1 in the corrector step. In most cases we get the fewest number
of factorizations when we use v = 3. We will use v = 3 in all the comparisons
from here on. No significant difference in the accuracy of the solution could be
found using the different estimates of pu.

6.2.3 Solving for the Newton direction

The main part of the work in the algorithm is in solving for the Newton direction.
If A is ill-conditioned we would like to avoid forming A”A because of the squaring
of the condition number. We can avoid this by reducing the system to a more
convenient form. The equation systems (6.16) (6.17) is sparse if A is sparse
and this has to be accounted for when making the reformulation of the system.
Consider the system from the affine Newton step (6.16),

—dv+dy+ A" Ade = AT(b— Ax)4 vy, (6.21)
ds+der = u—s—ux, ( )

dt —de = —I—t+=x, (6.23)

Tdv+ Vdt = —TVe, ( )

Yds+ Sdy = —YSe. ( )
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Multiplying (6.22) with —Y from the left we get
—Yds —Yde =Ys+Y(r—u).

Adding this to equation (6.25) and multiplying all equation from the left with
—S1t1 we obtain

—dy+ ST'Ydr = SHY (x — u). (6.26)

Make a similar transformation of equation (6.23) but multiply with —V from the
left, add (6.24) and multiply from the left with 7+, We will get the following,

dv+ T " Vde =TV (- x). (6.27)
Now add together (6.26), (6.27) and (6.21) and we get,
(ATA4 DYde = AT (b — Azx) +v — y+ ST Y (u — )+ TH V(I —x), (6.28)

where ) = S1'Y 4+ 7T4+'V_ This can be interpreted as the normal equation to
the following least squares problem,

() (2)

by =b— Az, by=D"* (v —y+ STV (u—z)+ TV~ x)).

min
dx

, (6.29)

2

where

If s =wu—1and t = 2 — [ then by would be equal to zero, but we let s and
t iterate to convergence as pointed out before. The remaining corrections are
obtained by,

ds = —dx +u—s—ux,
dt =de — 1 —t+ x,
dy = —y — STYds,
dv=—v—TY'Vdt.

In the corrector step the only difference is a new term in by. The new right
hand side becomes,

by = by + DEV2 (SN (dY ds — pe) — T (dTdv — pe)),
and the corrections in the corrector step are obtained from,
ds = —dv +u—s—x,
dt =di — 1 —t+x,
dj = —y— ST (Yds+dYds — pe),
di = —v — T+ (Vdf+ dldv — /,Le).
The only change in solving for the Newton directions above for a positive
definite quadratic programming problem, minz"Qx — z”¢, subject to simple

constrains, would be to change ATA to @ and A”b to ¢ in (6.28) and then we
can use the Cholesky factorization to solve the system of linear equations.
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6.2.4 Multiple corrections

Carpenter et al. [8] suggested to use each factorization further by performing
multiple corrections in each step. Each correction would only cost two triangular
solves and if the total number of factorizations would decrease there could be a
computational gain in the scheme. They tried the following ideas for selecting
the number of corrections for the quadratic programming problem.

1-correction. The method suggested by Mehrotra.
3-correction. One to three corrections in each step.
99-correction. One to 99 corrections in each step

0.5 heuristic. One to three corrections. A new correction is tested
only if the steplength was greater than 0.5.

For the linear programming problem they also tried several other methods for
example 10-correction, another variant of the 99 correction scheme, estimation
of p dynamically in each correction and a heuristic method for choosing if a
new correction is needed. We will use these on the quadratic problem and add
a scheme depending on the closeness to the path. The generic algorithm for
multiple correction scheme with a fixt maximum number of iterations scheme

will be,

ALGORITHM 6.2 (Outline of multiple correction method)
do until convergence.

Compute factorization.

Solve for dwq: f§(w,)0wq = — fo(wy,)

Estimate pu from w and dw.

1=0

while reduction of g and i < n.
i=i+1
Solve equation (6.17) for duw;.
Compute step length «;.
Wy, 5 = Wy, + Tadw;
Compute gap, g(wn, ;).

end for

Compute step length a.

Win41) = Wn + Tadw;

end do

In the n-correction scheme the new correction was only used if the com-
plementarity gap was reduced. If the validity of the new correction could be
determined in advance, much could be saved. In other path following methods
not based on Mehrotra’s algorithm different neighborhoods of the paths are used
to keep the iterations close to the path. The two most popular domains used

are,

NoB) = {(s..00) €Q1ISY — pells < 0 and [TV — el < O}
Niw(®) = {(s,y,t,v) € Q| siyi > 0p and t;v; > Op}.
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The domain A is quite restrictive and is used by short step methods. The N o
on the other hand uses only a one-sided bound that pushes the iteration point
away from the boundary. It is easy to add the bound N, as a constraint in
Mehrotra’s algorithm with multiple corrections. One way to do this is to correct
until the new point belongs in A| .. We use § = 0.001 as suggested by Wright
[69].

For all the methods above the opu was calculated before the multiple correc-
tions was carried out. In the last method oy is recalculated after each calcula-
tion and a maximum of three corrections was carried out. This scheme is called
dynamic mu-3.

We summarize the different ways to make the multiple corrections below and
the results from the test problems can be found in Table 6.2.

1-correction. Maximum of 1 correction.

2-correction. Maximum of 2 correction.

3-correction. Maximum of 3 correction.

H-correction. Maximum of 5 correction.

10-correction. Maximum of 10 correction.

99-correction. Maximum of 99 correction.

10-correction, Nj . Correct until w"+! € N ., (1013)

or max 10 corrections.

e dynamic mu-3. Estimate p dynamically and max 3 corrections.

The relative error for all the different schemes are comparable; very small vari-
ations occured. In the degenerate case methods with many corrections often
yield a slightly smaller relative error than the single correction algorithm. The
computation was done on a SPARC Ultra and the computation times here can
not be compared with the active set method in Section 5. In most of the test
problems the 1-correction method runs faster then multiple, but for the large
problems there can be a gain in multiple corrections due to the expensive fac-
torization cost. For the degenerate case the number of factorizations can be cut
by half if a maximum of 99 corrections are used. The limit of 99 corrections was
set to reflect an unbounded number of iterations but for all degenerate problems
this bound was reached for some iteration.

The method of using corrections until the iteration point was inside the N o
did not yield a better result than the initial method. This may depend on the
fact that is was only the first iterations that in some cases were outside A| 4.
All iterations in the end belonged to the domain.

The conclusion is to use only one correction for small and nondegenerate
problems and up to five correnctions for large degenerate problems with a ma-
trix that is expensive to factorize. If the QR factorization is used instead we
noted that two to five corrections are preferable to use. This can be explained
with the fact that the implementation of sparse QR factorization in MATLAB is
undeservedly slow compared with the sparse Cholesky factorization.
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Table 6.2: Number of iterations for type A and type B test problems defined in
section 4.2.

Factorizations, type A problems
Problem 1 2 3051099 | Moo | dyn p
2 10| 8 8 |71 6 6 9 8
T ]10(1 9 |8 8 8 10 10
16 (| 13111710191 9 9 10 11
19 (11107 9 [8] 8 8 10 10
26 |11 |10 9 | 8] 7 6 11 10

Factorizations, type B problems
Problem 1 2 3 5} 10| 99 | Nieo | dyn p
20024 (201715 | 12| 8 22 18
T1025 (21 | 19| 17| 15| 13 24 22
16 || 30 | 26 | 24 | 23 | 21 | 21 27 25
191 25 | 21 | 19|16 | 13 | 10 23 19
26 | 2621|1916 | 13| 10 24 19

Table 6.3: Computational time for type A and type B test problems defined in
section 4.2.

Time in seconds, type A problems
Problem 1 2 3 5} 10 99 Nic | dyn p
2 0.21 0.22 0.25 0.28 0.33 0.45 0.22 0.26
7 0.66 0.75 0.78 0.87 0.96 0.96 0.67 0.82
16 || 16.33 | 16.25 | 16.47 | 17.41 | 19.85 | 19.86 | 17.83 | 17.69
19 0.95 1.08 1.11 1.19 1.40 1.59 1.27 1.23
26 || 46.76 | 48.57 | 47.08 | 45.37 | 48.93 | 53.66 | 47.64 | 52.44

Time in seconds, type B problems
Problem 1 2 3 5} 10 99 Nic | dyn p
2 0.53 0.57 0.58 0.71 0.97 2.36 0.61 0.64

7 1.43 1.53 1.61 1.84 2.45 4.36 1.53 1.75

16 36.9 | 38.22 | 39.39 | 42.77 | 50.3 | 77.31 | 40.71 | 40.24

19 2.07 2.19 2.33 2.57 3.36 7.29 2.18 2.31

26 || 112.0 | 104.2 | 103.5 | 101.7 | 112.6 | 204.4 | 112.1 | 102.3
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6.2.5 Stopping criteria and implementation issues

In the active set methods we could verify that the obtained active set was
the optimal by inspecting the Lagrange multipliers. After the active set was
determined the solution could be recomputed with a QR factorization to obtain
an accurate solution. The interior-point method will only produce points in
the interior of the domain and the active bounds will never be exactly satisfied.
Therefore a good way is needed to stop the iteration when a sufficiently accurate
solution has been found. One quantity for measuring the convergence is the
duality gap, g(w), but this only gives information about the closeness of the
objective function to the optimal value, not the accuracy in . The stopping
criteria we have used here are based on the duality gap and the primal and
dual feasibility. When the following four conditions are satisfied we stop the

iteration,
T T
Cordy
e —utslls < e
W—atills < e
||AT(A:E—b)+y—v||2 < eq.

In Figures 6.3 6.4 the relation between the number of iterations and the
relative forward error in 2-norm for different values of g1 are plotted for a selected
number of test problems. Note that the matrix number 7 is more ill-conditioned
than the others. The value of €5 is not as important as €7, in general it is the
first stopping criteria that is the restriction. We see that for the degenerate case
we have much slower convergence rate than in the nondegenerate case. For the
nondegenerate case the error is improved in a quadratic fashion. This behavior
can be expected since Newton’s method on unconstrained problems converges
at least quadratically for simple roots. From Figure 6.3 we see that for the
nondegenerate case a good value of €1 is around 1011®. Then high accuracy has
been obtained for all problems. However, for the nondegenerate case we get a

acceptable error first when €, is chosen as 10+2°

, see Figure 6.4. These values
of 1 did yield an equally accurate result for problems with other magnitudes
of the Lagrange multipliers than the range specified in Section 4.2.

When the algorithm converges the elements in D'/? corresponding to vari-

ables bounded at the solution will become very large. It is easy to show that
the condition number of (AT Dl/Z)T will tend to infinity if any variables are at
their bounds in the solution. Will the computed Newton direction then become
inaccuratel’ This question was the big problem for the barrier methods during
the 60’s.

We now make an informal analysis of what happens when the barrier param-
eter goes to zero. For simplicity we consider problems with only lower bounds.
The reasoning, however, can be applied to both upper and lower bounds. As-
sume that the problem is nondegenerate and that the current iterate is close the
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the path and very near the solution. Partition the solution into two different
sets, the free and bounded at the solution 7 = (wg wg)T. Partition A and D
likewise and observe that we now have D = T4V . Then we can write the least
squares problem (6.29) as

2

Ar  Asp J b
min D;_-/Z 0 ( w]:) — | bxn
dx 1/2 dl‘B b

0 Dy 22/ ||,

To analyze this closer we split this into three different parts,

n(}in{HA]:dw]: + Apdaeg — (b — Aw)”%

2

TEVeltr + 15 —
+HD}_(dw}_ T .7-'(.’:'_1‘“_7-' l’]—'))
TV )
T Wt + 15 — E
+HDB (dws 5 Vslls 1 “‘)) - (6.30)
Ta'Vis )

Consider the last term of (6.30). Since we are close to convergence the difference
t+1— x is close to zero, and since the solution is nondegenerate, Vi is bounded
away from zero. Assuming the current iterate is close to the central path, the
elements in D &~ Vj/u diverge to oo when g — 0. If the iterate is on the
path the term ¢ + 1 — x will vanish). The term dxp will therefore make the
difference 15 + g — xp as small as possible, otherwise the residual of this term
will dominate the minimization problem.

If we now study the middle term, 7' is bounded away from zero but V —
0% and therefore D &~ T2 — 0F. This term will not influence the solution
much if we are close to convergence. Observe that the correction dt is computed
in each iteration to make t satisfy £ + /1 — # = 0 and therefore the difference
t + [ — x will be very close to zero near convergence.

Since the last term will influence the solution of dz;, and make this term
very close to zero, the remaining variables, xz, will be governed by the first
term. If we look at iterative improvement for the unconstrained problem when
the bounded variables are fixed at their bounds we get,

r = (b *ABZ‘B) *A]:]f]: =b— Al‘,
min||Adz — r||s,
dx
r—x+dr.
This is very close to the first term when duxg is suppressed by the last term of
(6.30). The iteration will be very similar to iterative refinement close to the

solution and therefore it will not be necessary to carry out any further iterative
improvement to increase the accuracy of the solution.
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Table 6.4: Condition number &(A4) and scaled condition number x(A) during
the iterations for two nondegenerate problem.

ash219 ILLC1033

Tt k(A) KZ(A) k(A) KZ(A)

0 7.8 2.1 | 1.9-10* | 1.9-10*
1| 14-10%2 | 27 | 44-10" | 1.4-10"
2 | 4.2-10" 3.7 | 6.4-107 8.6

3| 1.7-102 | 5.8 | 5.1-10% | 2.6-10"
4 1 36-10° | 76 | 1.0-10° | 1.5-10?
5 1 52-1010 1 7.7 | 2.9-10% | 1.4-10?
6 | 3.5-10" | 7.7 | 5.7-10% | 3.0-10%
70 72-10° | 7.7 | 45-10" | 2.3.10°
8 | 24-10" | 7.7 | 4.0-10" | 8.6-10°
9 | 2.7-10" | 7.7 |29-10™ | 1.0-10°
10 5.2-10' | 1.1-10°

The condition number of the matrix (ATDl/Z)T will become very large when
i — 0F. However, this will not give inaccurate search direction, since the large
condition number arises from badly scaled columns in A. If we rescale the
columns to have unit norm, the condition number will not increase as much as
without the scaling, see Table 6.4. As pointed out in Section 2.2.2, the scaled
condition number can be used in the error analysis of the Cholesky factorization.

In our implementation we solve the least squares problems by solving the
normal equations with the Cholesky factorization. One problem that could
affect the performance is that when the small elements d;; in D are less than
Val|a;]|* they will disappear when forming the normal equations due to round
off. If we work with the Q) R factorization we have the square root of d;; and the
terms would therefore influence the solution of the least squares problem longer.
However we did not notice any difference at all during the iterations using the
normal equations instead of QR when solving nondegenerate problems.

We observed that when the small elements in 1) became smaller than \/a]|a;||?
we did not get any improvement of the solution by either the normal equation
or QR method. This is understandable because the small elements in ) affect
are just a scaling of u by the Lagrange multipliers associated with this variable
when close to convergence. So in essence when the elements d;; are small enough
to be in danger of round off, we have already converged. We did also try this
with Lagrange multipliers of different magnitude and all results was the same.
Note it is important that the right hand side is computed A7(b — Ax) and not
ATb — ATAz for this reasoning to be justified.

For the degenerate case we could expect a greater difference between using
the normal equations and the QR method since we have to iterate longer to
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obtain the same accuracy as for the nondegenerate problem. However, we noted
that when the small elements d;; were smaller than \/ul|a;||? it took only two
or three iterations until they was smaller than ul|a;||* and could not influence
the solution even when using the QR method. So in the last iterations the
elements were so small that it did not matter if the normal equations or the
QR method was used. This was also verified numerically, the solution by using
QR instead of normal equations was not significantly better. Note however that
the condition number of the test problems were all less than 2 - 10%. As is well
known the Cholesky algorithm may fail, unless 2n3/2u1€2(A) < 0.1. However our
observation is consistent with that of Foster [18] and Bjorck [5, sec. 6.5.5] that
if A is not very ill-conditioned then the Cholesky factorization with iterative
refinement will just be as accurate as QR methods.

The sparsity pattern of ATA + D (6.29) is constant in each iteration and
therefore we can compute the column ordering in the beginning and allocate
memory for the R factor from the QR or Cholesky factorization. This will
reduce computational cost, since the cost of the symbolic analysis phase can be
of the same order of magnitude as the cost of the numerical factorization phase,
see Matstoms [49].

If we initially compute the R factor by a QR factorization we may be able
to reduce the cost for computing the solution to the least squares problem
by replacing A by R and factorize (RTD1/2)T instead. This approach was
investigated by Matstoms [49] who concluded is that for the multi-frontal QR
method we get better efficiency only if the nonzero count for R is smaller than

A.

6.3 The rank deficient case

If the matrix A is rank deficient there may be multiple solutions to problem BLS
as shown in Section 5. The question arises: which solution does the interior-
point method converge tol In Lemma 6.1 we show that if the solution set is not
bounded then the central path is not bounded and the method will diverge to
the solution at oo.

LEMMA 6.1 The central path T'(p) defined by (6.10) is bounded if and only if
the solution set to (6.3) is bounded.

Proof. We will prove both directions by indirect proofs. First assume that I'(u)
is not bounded for any p. We show that then the solution set to (6.3) is also
unbounded. If T'(x) is not bounded for any g, then there exist a vector v such
that B(z + av,u) = —oco, @ > 0 and « + awv is feasible for all « > 0. Then
v € N(A) because vT ATAv grows faster than the corresponding logarithmic
terms. However, if v € N(A) and = + av is feasible, then the solution set to
(6.3) is also unbounded. This shows that if the solution set to (6.3) is bounded
then the path T'(x) is bounded.

Now assume the solution set is not bounded. We show that I'(u) is not
bounded for any p. If the solution set to B(x, 0) is not bounded then there exist
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a vector v € N(A) so 2* + av, a > 0 and where 2™ is a solution to (6.3). Then
clearly B(x,p) — —oo when @ — oo and I'(p) is not bounded for any . This
concludes the proof. O

The interior-point method will not converge to a solution if the solution set
of (6.3) is not bounded. If the solution set consists of more than one point it
can often be of interest to obtain the minimum norm solution. Will the interior-
point method generate this solutionI' With the following counter example we
will show that the minimum norm solution is not obtained by the interior-point
methods. Suppose N (A) = e; and that 0 < z; < 1. Then the minimum norm
solution will have x; = 0, but the solution from the interior-point method will
converge to 1/27.

A way of modifying the interior-point method so that it converges to the
minimum norm solution, is to add a smoothing (regularization) term. The
smoothing term will modify the matrix A to have full column rank and then the
problem has a unique solution. A well known method is Tikhonov regularization,

min|[ Az — bl[5 + All[|5.

(ar) o= (0)

This problem has the same structure as systems solved in the interior point

This can be reformulated as,

min
TES

(6.31)

2

methods and is easy to implement since it will not alter the nonzero structure
of R in the solution of the unconstrained least squares problems.
The unconstrained solution of this problem is

o-z.u;!b
lL’(A) = Z 70_'2 T AZ’

i=1

which converges to the pseudo-inverse solution as A — 0%. Here o; and u; are
the singular values and the left singular vectors to A.

A difficulty is to choose the regularization parameter A. If A is too large we
loose accuracy in the solution and if A is chosen too small the method will fail
to converge to the minimum norm solution. In Figure 6.5 the typical behavior
of the central path when the regularization parameter is added is shown. When
p is large the regularization parameter does not influence the solution path but
when the elements in Dz < A the regularization parameter affects the solution
and the iterates converges to the minimum norm solution. If we choose A really
small there will be a sharp corner on the path T'.

It is always difficult to choose the right regularization parameter. If our
problem is not “ill-conditioned” in the sense that we have small singular values
due to noise and other disturbances in data, we would like to have A as small as

"This result is obtained by minimizing the barrier function respect to z;
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Central path I" and predictor—corrector iterations
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Figure 6.5: Regularized solution path and the interior-point iterations, regular-
ization parameter A = 1044

possible. If A is chosen too large we will get an error in the solution due to the
regularization. If A is chosen too small it will not influence the solution at all,
since the interior-point method will converge to the wrong solution before the
regularization affects the solution. What we want is an adaptive way to decrease
the regularization parameter as the iterates tends to the solution. Since there
are already some heuristic features in the interior-point method, it does not feel
awkward to add an adaptive choice of A\. We have had some success by choosing
the regularization parameter as,

A = min (10L4, /,L1/4) .
We have using a larger exponent than 1/4, but then the regularization parameter

gets too small and does not influence the solution enough to yield the minimum
norm solution.
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7 Numerical comparison

In this section we make a comparison between the two different approaches
presented in Section 5 and 6 for solving the least squares problem with box
constraints. We will choose one active set method and compare it against one of
the interior-point methods. We use our standard test problem suite introduced
in section 4. The comparison was carried out on a Sun Ultra Sparc 2200, 200
MHz and 1 GB primary memory using MaTLAB 5.1.0. The first comparison
we make is with the test problems denoted as type A and B in section 4.2.
Thereafter we present another test problem suite to compare how the different
methods deal with different numbers of free variables at the solution.

7.1 Numerical results

The active set method we have chosen to be our candidate in this comparison is
the Algorithm 5.4, denoted BLOCK3. This method was slightly slower than the
BLOCK2 method, Algorithm 5.3, in general. However, we feel that this method
is more stable than BLOCK2 since we have a convergence proof for the method
and we do not have to use a single pivoting mechanism to ensure convergence.
The optimal point is assumed to be detected when all variables are feasible and
the Lagrangian is positive with a tolerance of nu- 102, where n is the number of
variables. When the active set is found the solution is recomputed with a QR
factorization to obtain higher accuracy.

For the interior-point method, denoted IP hereafter, we used one correction
since it was only for the largest matrix more corrections gave any improvement
in the MATLAB implementation. The intermediate least squares problems were
solved with a Cholesky factorization of ATA. However, since the Cholesky fac-
torization may fail when A is badly conditioned, a safeguard was implemented to
carry out a QR factorization if the Cholesky factorization failed. The Cholesky
factorization did not fail for the test problems here, but in our experience we did
encounter other problems where the Cholesky factorization failed. In particular,
this can happen for rank deficient problems with an added regularization term,
see Section 6.3.

In the interior-point method we used different tolerances in the stopping
criteria for the nondegenerate and degenerate problems to be able to obtain the
same accuracy of the solution. In the nondegenerate case, type A problems,
we used €; = 101'® and in the degenerate case, type B problems ¢; = 101%°
was used. The second tolerance, €5 was set to 10112 in both cases. When the
interior-point method terminates, the solution is not recomputed with a QR
factorization. The minimum degree ordering was used for all matrices to reduce
the fill-in in the R factor.

In Table 7.1 we have compared the number of factorizations and the compu-
tational time for solving the test problems. For the nondegenerate test problems
the BLOCK3 was superior for most of the problems. We can note that it was only
in the more ill-conditioned problem 7 and 13 BLOCK3 used more factorizations
than IP. However, only for problems 13 and 14 was BLOCK3 slower than IP.
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In problem 14 BLOCK3 is slower due to the last resolving phase. However, the
accuracy drops significantly if the QR factorization is not used.

In Figure 7.1 the relative error of the solution measured in the 2-norm is
shown. We see here, surprisingly, that for the nondegenerate problems the
interior-point method yields a more accurate solution that the active set method.
However, this may not be entirely true, since the error in the reference solution
is of the same magnitude as the error shown in the plot. For the degenerate
problems we have a larger difference in the accuracy between the two methods.
The accuracy of the interior-point method is one to two magnitudes worse than
for the active set method.

Nondegenerate problems, type A

——  BLOCK3
- P

Relative error

—— BLOCK3

Relative error

Il
5 10 15 20 25
Test problem

Figure 7.1: Comparison of the relative error in the solution for the BLOCK3 and
IP.

An alternative we considered was to make a hybrid algorithm, by combining
the rapid convergence of the interior-point algorithm in the beginning with the
active set method. This can be done by using a weaker stopping criteria in
IP and then switching to the active set method by identifying the active set
and using this information as a warm start. However, we found that we did
not gain any computational effort using this hybrid scheme instead of using the
active set method from the beginning. In the first few iterations with the active
set the method finds most of the members in the different sets, and the last
iterations only make fine adjustments to the sets. Computational effort could
be gained compared to the interior-point method with this scheme, but we would
loose one of the attractive features of the interior-point method, namely that a
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Table 7.1: Comparison of BLOCK3 against Mehrotra’s interior-point method,
IP. Left table shows number of factorizations and the right table shows the
computational time in seconds.

Nondeg., A | Deg., B Nondeg., A Deg., B
Prob. | B3 IP B3 | IP Prob. B3 IP B3 IP
11 4 10 4 1 32 11012 ] 0.41 | 0.16 | 1.12
2| 4 9 3 |32 2 10.07 1 0.19 | 0.06 | 0.57
31 3 9 3 |32 310.06 1 0.22]0.06 | 0.66
41 3 8 3 |32 41012 025 | 0.11 | 1.11
51 4 9 3 |32 510171 042 | 0.15 | 1.44
61 5 16 6 | 33 61028 ] 094 ] 0.35 | 1.56
7113 10 18 | 35 71044 | 054 | 1.18 | 1.81
81 6 9 6 | 32 8 1051 | 0.67 ] 0.48 | 1.95
915 9 5 | 32 910531 0.68]0.49 | 2.08
101 3 8 3 |32 10 1 0.72 | 0.63 | 0.75 | 2.60
11| 3 9 3 | 32 11 | 1.11 | 1.29 | 1.07 | 4.04
121 7 9 T |33 12 1 0.73 | 1.00 | 0.82 | 3.80
13 | 13 11 22 | 37 13 | 1.51 | 1.41 | 2.63 | 4.36
14| 5 9 6 | 32 14 | 3.46 | 2.55 | 3.41 | 8.50
15| 8 12 8 | 35 15 | 1.57 | 2.62 | 1.1 | 7.79
16| 9 13 16 | 36 16 | 5.64 | 155 | 13.7 | 41.6
1719 15 9 | 40 17 | 37.8 | 53.9 | 48.7 | 140
18| 4 10 4 133 18 1 0.10 | 0.25 | 0.08 | 0.72
191 5 11 4 133 19 1 0.36 | 0.98 | 0.36 | 2.71
20| b5 11 5 | 33 20 1 1.07 | 212 | 1.18 | 6.3b
21| 5 11 5 | 33 21 | 212 | 476 | 2.4 | 13.93
22 | 5 11 5 | 33 22 | 418 | 8.11 | 4.2 | 28.48
231 b5 11 5 | 33 231647 | 15.0 | 7.02 | 59.2
24 | 5 11 5 | 33 24 1 938 | 24.0 | 9.75 | 82.7
25| b 11 5 | 33 251 16.0 | 35.0 | 15.3 | 112
26 | b 11 5 | 33 26 | 20.0 | 44.5 | 20.8 | 147
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system of linear equation with the same structure is solved in all iterations. In
our MATLAB implementation this could not be exploited in the same manner as
for example in a Fortran code. We suspect that the time difference would not
be as great if the methods are implemented with a real programming language,
since then the analysis phase of the factorizations need only be carried out once.
(The analysis phase can be as time consuming as the factorizations phase [49].)

The third test is made to determine if the methods are sensitive in any way
to the number of active constraints at the solution. The interior-point method
should not be influenced in the same manner as the active set method, since we
always approach the solution from the interior of the feasible domain. The in
Table 7.2 we have used the same parameters that define the nondegenerate type
A problem above, except for the distribution of the variables in the different
sets. The free set, F consists of n - (1.0, 0.8, 0.6, 0.4, 0.2, 0) free variables
and the remaining are evenly divided between the lower and upper bound. We
conclude from Table 7.2 that the interior-point method is not affected much by
the different size of the free set. However, the active set method is affected and
converges most slowly when the number of free and bounded variables are nearly
equally balanced. We can also conclude from test problems 18 26 in Table 7.1,
that the size of the problem does not affect the number of iterations for either
method, when the structure is the same. In Table 7.3 the computational time is
shown for the problemsin Table 7.2. Note that for problem 15 the computational
time of the active set method for the problem with all variables free is greater
than when the problem has 60% free variables or less. This is due to the last
QR factorization is dominant in the computation. The factorization is very
time consuming compared to the Cholesky factorization and when the index set
of free variables is small, the QR factorization will not be as dominant. This
behavior was not observed if the last QR step was omitted. Then the active set
method was always fastest for the “unconstrained” problem.

Table 7.2: Number of factorizations for BLOCK3 and Mehrotra’s interior-point
method with different sizes of the free set, F. Problem type A.

Density 1.0 0.8 0.6 0.4 0.2 0
Prob. B3 | IP | B3 | IP | B3 | IP | B3 | IP | B3 | IP | B3 | IP
2 1 7 31104 (10 5 (10| 4 [10] 4|10
6 1 (10] 7 9 6 9 6 |10 7 |10 4 |12
15 1 9 8 |11 8|12 9 (13| 7 [14] 6 |13
20 1 8 5 1115 |11 | 5 (11| 5 [11] 4 |12

If we compare the memory usage for both methods, it is essentially the
same. For both methods the largest memory requirements is for the R factor
and (when used) for the matrix ATA. In the interior-point method we store
ATA throughout the iterations. In the active set method, AL Az is generated
in each iteration from a subset of the columns of A. Except for R and ATA
only a few n x 1 vectors are used, where n is the number of variables. For the
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Table 7.3: Computational time for BLOCK3 and Mehrotra’s interior-point method
with different sizes of the free set, . Problem type A.

Density 1.0 0.8 0.6
Prob. B3 IP B3 IP B3 IP
2 0.03 ] 0.12 | 0.05 | 0.17 | 0.05 | 0.17
6 0.15 ] 0.53 | 0.34 | 0.47 | 0.29 | 0.48

15 217 | 2.29 | 2.40 | 2.43 | 1.81 | 2.64
20 1.02 | 1.48 | 1.49 | 2.01 | 1.17 | 2.08

Density 0.4 0.2 0
Prob. B3 IP B3 IP B3 IP
2 0.06 | 0.17 | 0.05 | 0.17 | 0.04 | 0.17
6 0.28 | 0.52 | 0.24 | 0.53 | 0.14 | 0.62

15 1.69 | 2.88 | 0.73 | 3.13 | 0.63 | 2.96
20 0.88 | 2.09 | 0.57 | 2.27 | 0.40 | 2.75

interior-point method we use about 16 vectors and in the active set method 13.
These vectors use storage of the same order of magnitude as the A factor. We
could easily reduce the storage needed for the interior point method from 16 to 9
vectors by sacrificing some efficiency. However, since storage is cheap compared
to computational speed we did not feel obliged to reduce the memory usage.
If the algorithm would be implemented with a real programming language, we
would regard this question with a higher importance.

If we have a series of related problems where the solution changes a little
for each problem, we recommend the active set method before the interior-point
method. The active set method is very easy to restart and if the index set of
the free variables is the same we would get the solution in one iteration. When
using the interior-point method we would gain some iterations, but we would
still need a lot of iterations to obtain high accuracy. The behavior in a restart
can in some sense be compared with solving the “unconstrained” problem with
the methods. For that problem we still need some iterations to obtain high
accuracy for the interior-point method.
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8 Conclusion

We have studied two different type of methods for solving the least squares
problem with box constraints. Both approaches uses direct methods, the QR
method or the method of normal equations, when solving each unconstrained
least squares problem.

In the first approach we used active set methods. The single pivot algorithm,
that moves one variable between the sets, was generalized in different ways to
more effective block algorithms that move several variables in each iteration.
We tried four different block methods and concluded that all algorithms were
very efficient and accurate. For most problems the most efficient scheme was
a heuristic approach proposed by Portugal et. al. [62]. However, for this
algorithm to be effective in general, an updating technique of B when adding
(or deleting) a column of A should be implemented to handle the algorithm in
the single pivoting mode. We gave a convergence proof for an algorithm called
BLOCK3 that uses a backward search to ensure reduction of the objective function
in each step. This algorithm was the candidate in the final comparison.

In the second approach we applied an interior-point method proposed by
Mehrotra [51] to our problem. We tried several different heuristics for determin-
ing the important centering parameter y and concluded that the initial sugges-
tion by Mehrotra was the best choice. Further, we tried to use each factorization
several times by using a multiple correction scheme. We saw a clear reduction
of the number of factorizations needed when using such a scheme. However,
in our MATLAB iimplementation we did not gain any computational time by
this except for the largest degenerate problem where a small gain was noticed.
However, if an implementation is made in another programming language, for
example Fortran or C, we would expect improvement in computational time
when using three to five corrections in each step.

We concluded for problems which was not too ill-conditioned the method of
normal equations gave solutions of high accuracy This was explained by notic-
ing that the interior-point method behaves as an iterative refinement scheme in
the last iterations. We showed how to solve rank deficient problems with the
interior-point method by adding a regularization term and letting the regular-
ization parameter tend to zero as the barrier parameter yu — 07F.

In the final comparison of the two approaches we clearly saw that the active
set method was more efficient than the interior-point method, except for two
problems. The active set method was 2-10 times faster than the interior-point
method, the higher figure is valid for degenerate problems. The accuracy of the
solution is comparable for both types of methods in the nondegenerate case. For
the degenerate case we obtained better accuracy with the active set method.

8.1 Further research

We list below some interesting points that deserve further studies.

e Methods for problems with more general constraints on the variables,
Cz < d, need to be developed. In particular problems where C' has a
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sparse structure, for example banded structure.

In the active set methods it would be interesting to see if efficient updating
is possible using the information from the multi-frontal algorithm. There
has been some recent development for modifying the Cholesky factoriza-
tion of ATA by adding/removing rows to A [11]. A similar scheme may be
applicable to the multi-frontal QR algorithm.

If the matrix A has a full row then ATA is a full matrix and all sparsity
is destroyed. However, there are some techniques for handling a few full
rows and there could easily be implemented into the solvers.

A lot of effort remains in developing methods to solve the rank deficient
case efficiently. The behavior of methods adding a regularization term in
the interior-point method should be studied more thoroughly.

Tterative methods to solve the least squares problems has been used in the
active set method by Lotstedt [42]. This approach could turn out to be
successful in the interior-point method also.
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A  Matlab m-files
sbls

Purpose

Solve sparse least squares with box constraints.
Synopsis

x=sbls(4,b,1,u)

Description

x=sbls(4,b,1,u) solves the constrained sparse linear least squares prob-

lem,

min ||[Az — b||2, subject to | < & < u
xr
where A is a sparse m -by- n matrix.

Example

Generate a sparse test problem and calculate the relative error of the
solution.

>> [A,b,1,u,xexact] = sblsgen (300,50,0.008,1000,0,0,100,100);
>> x = sbls (A,b,1,u);
>> norm(xexact—x)/norm(xexact)

ans =

3.7275e-17

Algorithm

The solution x is computed by an predictor-corrector path followinginterior-
point method introduced by Mehrotra [1].

References

[1] S. Mehrotra. On Finding a Vertex Solution Using Interior Point Meth-
ods.
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sbls2

Purpose

Solve sparse least squares with box constraints.
Synopsis

x=sbls2(A,b,1,u)

Description

x=sbls2(A,b,1,u) solves the constrained sparse linear least squares prob-

lem,

min ||Az — b||2, subject to
xr
—oo <l <y <y < oo
and A is a sparse m -by- n matrix.

Example

Generate a sparse test problem and calculate the relative error of the
solution.

>> [A,b,1,u,xexact] = sblsgen (300,50,0.008,1000,0,0,100,100);
>> x = sbls2 (4,b,1,u);
>> norm(xexact—-x)/norm(xexact)

ans =

7.5802e-17

Algorithm
The solution x is computed by a block active set method, described by [1].

References

[1] L. F. Portugal et. al. "A comparison of block pivoting and interior-
pomnt algorithms for linear least squares problem with nonnegative vari-
ables.
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quadres

Purpose

Compute a residual, b — Az, using quadruple precision.
Synopsis

res=quadres(4,x,b)

Description

res=quadres(4,x,b) computes the residual, res = b — Ax, using quadru-
ple precision instead of MATLARB’s usual IEEE double precision. This is
done by a C mex file quadres.c. To compile this file type: cmex spres.c,
if the architecture do not support quadruple precision, double precision is
used instead.

Computing a residual with higher precision is useful when doing iterative
refinement.

Example

Generate a sparse test problem and calculate the residual using MATLAB
commands and with quadres

>> A=sprandn(400,100,0.01);
>> x=ones(100,1);

>> b=A*x;

>> norm(b—A%*x)

ans =

>> norm(quadres(A,x,b));
ans =

8.326672684688674e-17
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B Residual computation in quadruple precision

/* Residual in quadruple precision for Matlab.

r=quadres(A,x,b), calculates r = b - Ax in quadratic precision,

A is a sparse or dense matrix, b and x are dense vectors.

Compile with a compiler that supports long doubles or extended

reals.

Compile with: mex quadres.c

or: cc —c¢ -I$MATLAB/extern/include quadres.c

cmex quadres.o

where $MATLAB refers to the dir where Matlab is installed.

MATLAB V5 assumed.

@(#)quadres.c Version 1.5 8/15/97
Mikael Adlers, Department of Mathematics
Linkoping University.
e-mail: milun@mai.liu.se

*/

#include '"mex.h"

#idefine A O
#define x 1
#idefine b 2
#define res O

#ifdef __STDC__

void spres(mxArray *Am, mxArray *xm, mxArray *bm, mxArray *pout)

#else
spres (Am,xm,bm,pout)
mxArray *Am,*xm,*bm,*pout
#endif
{
long double *1dA,*1dx,*1db, *ldres;
int M,N,nnz,i,j;
int *jc,*ir;
double *db, *dx, *dA,*dout;
long double xx;

/* --- Extract pointer to the data —--- */

M=mxGetM(Am) ;
N=mxGetN (Am) ;

db=mxGetPr (bm) ;
dx=mxGetPr(xm) ;
dout=mxGetPr(pout) ;

jc=mxGetJc(Am);
ir=mxGetIr (Am);
dA=mxGetPr (Am) ;
nnz=mxGetNzmax (Am) ;

/* ——— Create storage for the long doubles and move data --- */
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ldA=mxCalloc(nnz,sizeof(long double));
ldx=mxCalloc(N,sizeof (long double));
ldb=mxCalloc(M,sizeof (long double));
ldres=mxCalloc(M,sizeof(long double));

for (i=0;i<nnz;i++) {1dA[il=da[il;}
for (i=0;i<N;i++) {1dx[il=dx[il;}
for (i=0;i<M;i++) {1db[il=db[il;}

/* —--- Perform the computation column wise —-- */
/* res=Ax */
for (j=0;j<W;j++){
xx=1dx[j];
for (i=jcl[jl;i<jc[j+1];i++){
ldres[ir[il]l=1dres[ir[i]]+1dA[i]*xx;}

/*res = b-res */
for (i=0;i<M;i++){
ldres[i]=1db[i]-1dres[i];}

/* --- Move data back to output vector --- */
for (i=0;i<M;i++){
dout[i]=(double)ldres[i];}

/* —--- clear memory space ——-— */

mxFree(1dA) ;mxFree(1ldx) ;mxFree(1db) ;mxFree(ldres) ;

¥

/¥ ————————— Dense matrix residual ---————————-——-- */

#ifdef __STDC__
void FullRes(mxArray *Am, mxArray *xm, mxArray *bm, mxArray *pout)
#else
FullRes (Am,xm,bm,pout)
mxArray *Am,*xm,*bm,*pout
#endif
{
long double *1dA,*1dx,*1db, *ldres;
int M,N,ind,i,j;
double *db, *dx, *dA,*dout;
long double xx;

/* --- Extract pointer to the data —--- */
M=mxGetM(Am) ; I=mxGetl (Am) ;
dA=mxGetPr (Am) ;

db=mxGetPr (bm) ;

dx=mxGetPr(xm) ;

dout=mxGetPr(pout) ;

/* ——— Create storage for the long doubles and move data --- */

1dA=mxCalloc (M*N,sizeof(long double));
ldx=mxCalloc(N,sizeof (long double));



ldb=mxCalloc(M,sizeof (long double));
ldres=mxCalloc(M,sizeof (long double));

for (i=0;i<MxN;i++) {1dA[i]=dA[i]l;}
for (i=0;i<N;i++) {1dx[il=dx[il;}
for (i=0;i<M;i++) {1db[il=db[il;}

/* —--- Perform the computation column wise —-- */
/* res=Ax */
ind=0;
for (j=0;j<W;j++){

xx=1dx[j];

for (i=0;i<M;i++){
ldres[i]=1ldres[i]+1dA[ind]*xx;
ind++; }

}

/*¥——— res = b-res ——— %/
for (i=0;i<M;i++){
ldres[i]=1db[i]-1dres[i];}

/* —--- Move data back to output vector --- */
for (i=0;i<M;i++){
dout[i]=(double)ldres[i];}

/* —--- Clear memory space ——-— */
mxFree(1dA) ;mxFree(1dx) ;mxFree(1db) ;mxFree(ldres) ;
¥

/¥ ————————— Entry point —--------------—- */

#ifdef __STDC__

void mexFunction(

int nlhs,

mxArray *plhs[],

int nrhs,

const mxArray *prhs[]
)

#else
mexFunction(nlhs,plhs,nrhs,prhs)
int nlhs, nrhs;
const mxArray *plhs[], *prhs[];

#endif

{
unsigned int ml,nl1,m2,n2,m3,n3;
double *t, *y;
double *pr;
int nzmax,*ir,*jc;
double k;

/* —--- Check that the input parameters are correct —--- */
if (nrhs '= 3)

{mexErrMsgTxt("'Three input arguments required.");}
else if (nlhs > 1)
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{mexErrMsgTxt("Only one output arguments.");}

ml=mxGetM(prhs[A]); nil=mxGetN(prhs[A]);
m2=mxGetM(prhs[x]); n2=mxGetN(prhs[x]);
m3=mxGetM(prhs[b]); n3=mxGetN(prhs[b]l);

if ((n2 '= D@3 '= 1) (m2!=n1) || (m3'=m1))
{mexErrMsgTxt("Input dimensions are wrong");}

if (mxIsComplex(prhs[A]) || !'mxIsDouble(prhs[A]))
{mexErrMsgTxt("A must be a real numeric matrix.");}

/* —-—- If the compiler supports long double but defines them as doubles —--- */
/* —--- use MATLAB to compute the residual --- */
if (sizeof(long double) != 16) {

mxArray *inpt[2];
mxArray *outp;

mexPrintf ("WARNING!'!! This architecture or compiler do not handle
quadruple precision,");
mexPrintf("this calculation will not occur in extended precision.\n");

inpt[0]=prhs[A];
inpt[1]=prhs[x];
mexCallMATLAB(1,&outp,2,inpt,"*");
inpt[1]=outp;
inpt[0]=prhs[b];
mexCallMATLAB(1,&outp,2,inpt,"-");
mxDestroyArray(inpt[1]);
plhs[0]=outp;
}
else {
plhs[res]= mxCreateDoubleMatrix(ml,1,mxREAL) ;
if (!mxIsSparse(prhs[A]))
FullRes(prhs[A],prhs[x],prhs[b],plhs[res]);
else
spres (prhs[A] ,prhs[x],prhs[b],plhs[res]);
}
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