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Closed random walks (ring polymers)

Definition
A random (open) polygon in R3 is a set of edge vectors
~e1, . . . , ~en sampled independently from the unit sphere. We call
this sample space

Arm(n) := S2 × · · · × S2
︸ ︷︷ ︸

n times

Definition
A random closed polygon conditions these samples on the
hypothesis that

∑
~ei = ~0, or samples from the submanifold of

Arm(n) where
∑
~ei = 0, which we denote Pol(n).
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Open Equilateral Random Polygon with 3,500 edges



Closed Equilateral Random Polygon with 3,500 edges



Classical Problems

• What is the joint pdf of edge vectors in a closed walk?

• What can we prove about closed random walks?
• What is the marginal distribution of a single chord length?
• What is the joint distribution of several chord lengths?
• What is the expectation of radius of gyration?
• What is the expectation of total curvature?

• How do we sample closed equilateral random walks?
• What if the walk is confined to a sphere? (Confined DNA)
• What if the edge lengths vary? (Loop closures)
• Can we get error bars?

Point of Talk
New sampling algorithms backed by deep and robust
mathematical framework. Guaranteed to converge. Hard math,
relatively easy code.



Classical Problems

• What is the joint pdf of edge vectors in a closed walk?
• What can we prove about closed random walks?

• What is the marginal distribution of a single chord length?
• What is the joint distribution of several chord lengths?
• What is the expectation of radius of gyration?
• What is the expectation of total curvature?

• How do we sample closed equilateral random walks?
• What if the walk is confined to a sphere? (Confined DNA)
• What if the edge lengths vary? (Loop closures)
• Can we get error bars?

Point of Talk
New sampling algorithms backed by deep and robust
mathematical framework. Guaranteed to converge. Hard math,
relatively easy code.



Classical Problems

• What is the joint pdf of edge vectors in a closed walk?
• What can we prove about closed random walks?

• What is the marginal distribution of a single chord length?
• What is the joint distribution of several chord lengths?
• What is the expectation of radius of gyration?
• What is the expectation of total curvature?

• How do we sample closed equilateral random walks?
• What if the walk is confined to a sphere? (Confined DNA)
• What if the edge lengths vary? (Loop closures)
• Can we get error bars?

Point of Talk
New sampling algorithms backed by deep and robust
mathematical framework. Guaranteed to converge. Hard math,
relatively easy code.



Classical Problems

• What is the joint pdf of edge vectors in a closed walk?
• What can we prove about closed random walks?

• What is the marginal distribution of a single chord length?
• What is the joint distribution of several chord lengths?
• What is the expectation of radius of gyration?
• What is the expectation of total curvature?

• How do we sample closed equilateral random walks?
• What if the walk is confined to a sphere? (Confined DNA)
• What if the edge lengths vary? (Loop closures)
• Can we get error bars?

Point of Talk
New sampling algorithms backed by deep and robust
mathematical framework. Guaranteed to converge. Hard math,
relatively easy code.



(Incomplete?) History of Sampling Algorithms

• Markov Chain Algorithms
• crankshaft (Vologoskii 1979, Klenin 1988)
• polygonal fold (Millett 1994)

• Direct Sampling Algorithms
• triangle method (Moore 2004)
• generalized hedgehog method (Varela 2009)
• sinc integral method (Moore 2005, Diao 2011)



(Incomplete?) History of Sampling Algorithms

• Markov Chain Algorithms
• crankshaft (Vologoskii et al. 1979, Klenin et al. 1988)

• convergence to correct pdf unproved

• polygonal fold (Millett 1994)
• convergence to correct pdf unproved

• Direct Sampling Algorithms
• triangle method (Moore et al. 2004)

• samples a subset of closed polygons

• generalized hedgehog method (Varela et al. 2009)
• unproved whether this is correct pdf

• sinc integral method (Moore et al. 2005, Diao et al. 2011)
• requires sampling from complicated 1-d polynomial PDFs



Fold moves

Definition
A fold move or bending flow rotates an arc of the polygon
around the axis its endpoints.
The polygonal fold Markov chain selects arcs and angles at
random and folds repeatedly.



New Idea: Dihedral angle moves

Definition
Given an (abstract) triangulation of the n-gon, the folds on any
two chords commute. A dihedral angle move rotates around all
of these chords by independently selected angles.



New Idea: Triangulation polytope

Definition
A abstract triangulation T of the n-gon picks out n − 3
nonintersecting chords. The lengths of these chords obey
triangle inequalities, so they lie in a convex polytope in Rn−3

called the triangulation polytope P.
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Action-Angle Coordinates

Definition
If P is the triangulation polytope and T n−3 is the torus of n − 3
dihedral angles, then there are action-angle coordinates:

α : P × T n−3 → Pol(n)/SO(3)
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✓2

FIG. 2: This figure shows how to construct an equilateral pentagon in cPol(5;~1) using the action-angle map.
First, we pick a point in the moment polytope shown in Figure 3 at center. We have now specified diagonals
d1 and d2 of the pentagon, so we may build the three triangles in the triangulation from their side lengths,
as in the picture at left. We then choose dihedral angles ✓1 and ✓2 independently and uniformly, and join
the triangles along the diagonals d1 and d2, as in the middle picture. The right hand picture shows the final
space polygon, which is the boundary of this triangulated surface.

Arm3(n;~r) admits a Hamiltonian action by the Lie group SO(3) given by rotating the polygonal
arm in space (this is the diagonal SO(3) action on the product of spheres) whose moment map
µ gives the vector joining the ends of the polygon. The closed polygons Pol3(n;~r) are the fiber
µ�1(~0) of this map. While the group action does not generally preserve fibers of this moment map,
it does preserve µ�1(~0) = Pol3(n;~r) and in this situation, we can perform what is known as a
symplectic reduction (or Marsden–Weinstein–Meyer reduction [49, 50]) to produce a symplectic
structure on the quotient of the fiber µ�1(~0) by the group action. This yields a symplectic structure
on the (2n � 6)-dimensional moduli space cPol3(n;~r). The symplectic measure induced by this
symplectic structure is equal to the standard measure given by pushing forward the subspace mea-
sure on Pol3(n;~r) to cPol3(n;~r) because the “parent” symplectic manifold Arm3(n;~r) is a Kähler
manifold [33].

The polygon space cPol3(n;~r) is singular if

"I(~r) :=
X

i2I

ri �
X

j /2I

rj

is zero for some I ⇢ {1, . . . , n}. Geometrically, this means it is possible to construct a linear
polygon with edgelengths given by ~r. Since linear polygons are fixed by rotations around the
axis on which they lie, the action of SO(3) is not free in this case and the symplectic reduction
develops singularities. Nonetheless, the reduction cPol3(n;~r) is a complex analytic space with
isolated singularities; in particular, the complement of the singularities is a symplectic (in fact
Kähler) manifold to which Theorem 13 applies.

Both the volume and the cohomology ring of cPol3(n;~r) are well-understood from this sym-
plectic perspective [11, 32, 36, 38, 39, 46, 66]. For example:



Main Theorem

Theorem (with Shonkwiler)
α pushes the standard probability measure on P × T n−3

forward to the correct probability measure on Pol(n)/SO(3).

Proof.
Millson-Kapovich toric symplectic structure on polygon space +
Duistermaat-Heckmann theorem + Hitchin’s theorem on
compatibility of Riemannian and symplectic volume on
symplectic reductions of Kähler manifolds +
Howard-Manon-Millson analysis of polygon space.

Corollary
Any sampling algorithm for convex polytopes is a sampling
algorithm for closed equilateral polygons.
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Functions of Chord Lengths

Proposition (with Shonkwiler)
The joint pdf of the n − 3 chord lengths in an abstract
triangulation of the n-gon in a closed random equilateral
polygon is Lesbegue measure on the triangulation polytope.

The marginal pdf of a single chordlength is a
piecewise-polynomial function given by the volume of a slice of
the triangulation polytope in a coordinate direction.

These marginals derived by Moore/Grosberg 2004 and
Diao/Ernst/Montemayor/Ziegler 2011.

Corollary (with Shonkwiler)
The expectation of any function of a collection of
non-intersecting chordlengths can be computed by integrating
over the triangulation polytope.
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Expectations of Chord Lengths

Proposition (with Shonkwiler)
The expected length of a chord skipping k edges in an n-gon is
the k − 1st coordinate of the center of mass of the fan
triangulation polytope.
We can check these centers of mass against the first moments
of the MG-DEMZ chordlength marginals:

n k = 2 3 4 5 6 7 8

4 1

5 17
15

17
15

6 14
12

15
12

14
12

7 461
385

506
385

506
385

461
385

8 1,168
960

1,307
960

1,344
960

1,307
960

1,168
960

9 112,121
91,035

127,059
91,035

133,337
91,035

133,337
91,035

127,059
91,035

112,121
91,035
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A Bound on Knot Probability

Theorem (with Shonkwiler)
At least 1/2 of equilateral hexagons are unknotted.



A Bound on Knot Probability

Theorem (with Shonkwiler)
At least 1/2 of equilateral hexagons are unknotted.

Proof.
Consider the triangulation of the hexagon given by joining
vertices 1, 3, and 5 by diagonals and the corresponding
action-angle coordinates.

Using a result of Calvo, in either this triangulation or the
2− 4− 6 triangulation, dihedral angles θ1, θ2, θ3 of a hexagonal
trefoil must all be either between 0 and π or between π and 2π.
Therefore, the fraction of knots is no bigger than

2
Vol([0, π]3) + Vol([π,2π]3)

Vol(T 3)
=

2π3

8π3 =
1
2



A Bound on Knot Probability

Theorem (with Shonkwiler)
At least 1/2 of equilateral hexagons are unknotted.



A Markov Chain for Convex Polytopes

To repeat myself:
Action-angle coordinates reduce sampling equilateral polygon
space to the (solved) problem of sampling a convex polytope.

Definition (Hit-and-run Sampling Markov Chain)
Given ~pk ∈ P ⊂ Rn,

1 Choose a random direction ~v uniformly on Sn−1.
2 Let ` be the line through ~pk in direction ~v .
3 Choose ~pk+1 uniformly on ` ∩ P.

Theorem (Smith, 1984)
The m-step transition probability of hit-and-run starting at any
point ~p in the interior of P converges geometrically to Lesbegue
measure on P as m→∞.
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A (new) Markov Chain for Polygon Spaces

Definition (TSMCMC(β))
Given a triangulation T of the n-gon and associated polytope
P. If xk = (~pk , ~θk ) ∈ P × T n−3, define xk+1 by
• Update ~pk by a hit-and-run step on P with probability β.
• Replace ~θk with a new uniformly sampled point in T n−3

with probability 1− β.
At each step, construct the corresponding polygon α(xk ) using
action-angle coordinates.

Proposition (with Shonkwiler)
Starting at any polygon, the m-step transition probability of
TSMCMC(β) converges geometrically to the standard
probability measure on Pol(n)/SO(3).
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Error Analysis for Integration with TSMCMC(β)

Suppose f is a function on polygons. If a run R of TSMCMC(β)
produces x1, . . . , xm, let

SampleMean(f ; R,m) :=
1
m

m∑

k=1

f (α(xk ))

be the sample average of the values of f over the run.
Because TSMCMC(β) converges geometrically, we have

Theorem (Markov Chain Central Limit Theorem)
If f is square-integrable, there exists a real number σ(f ) so that1

√
m(SampleMean(f ; R,m)− E(f ))

w−→ N (0, σ(f )2),

the Gaussian with mean 0 and standard deviation σ(f )2.

1w denotes weak convergence, E(f ) is the expectation of f
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TSMCMC(β) Error Bars

Given a length-m run R of TSMCMC and a square integrable
function f : M → R, we can compute SampleMean(f ; R,m),
there is a statistically consistent estimator called the Geyer IPS
Estimator σ̄m(f ) for σ(f ).

According to the estimator, a 95% confidence interval for the
expectation of f is given by

E(f ) ∈ SampleMean(f ; R,m)± 1.96σ̄m(f )/
√

m.

Experimental Observation
With 95% confidence, we can say that the fraction of knotted
equilateral hexagons is between 1.1 and 1.5 in 10,000.
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Confined Polygons

Definition
A polygon p ∈ Pol(n;~r) is in rooted spherical confinement of
radius r if each diagonal length di ≤ r . Such a polygon is
contained in a sphere of radius r centered at the first vertex.



Sampling Confined Polygons

Proposition (with Shonkwiler)
Polygons in rooted spherical confinement of radius r have
action-angle coordinates given by the polytope

0 ≤ d1 ≤ 2
1 ≤ di + di+1
|di − di+1| ≤ 1

0 ≤ dn−3 ≤ 2

with the additional linear inequalities

di ≤ r .

These polytopes are simply subpolytopes of the fan
triangulation polytopes. Many other confinement models are
possible!



Expected Chordlength Theorem for Confined 10-gons

2 4 6 8 10
k

0.5

1.0

1.5

Expected Chord Length

Confinement radii are 1.25, 1.5, 1.75, 2, 3, 4, and 5.



Thank you!

Thank you for listening!
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