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OF A FUNCTION

OF ONE VARIABLE

ction 1
NTRODUCTION

A common computational problem is finding an approximation to the
‘minimum or maximum of a real-valued function Jf in some interval [a, b].
This problem may arise directly or indirectly. For example, many methods
for minimizing functions g(x) of several variables need to minimize functions
- of one variable of the form

y(4) = g(x, + 1s), (1.1)

where x, and s are fixed (a “one-dimensional search” from x, in the direction
). In this chapter we give an algorithm which finds an approximate local
minimum of f by evaluating f at a small number of points. There is a clear

nalogy between this algorithm and the algorithm for zero-finding described
in Chapter 4 (see Section 4). Unless f is unimodal (Section 3), the local
Mminimum may not be the global minimum of f in [a, b], and the problem
of finding global minima is left until Chapter 6.

The algorithm described in this chapter could be used to solve the prob-
lem (1.1), but it would be more economical to use special algorithms which
”#take use of any extra information which is available (e.g., estimates of the
!?cdnd derivative of y), and which do not attempt to find the minimum very
acCurately. This is discussed in Chapter 7. Thus, a more likely practical use

Or our algorithm is to find accurate minima of naturally arising functions of
e variable.
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62  MINIMIZING A FUNCTION OF ONE VARIABLE Chap. 5

In Section 2 we consider the effect of rounding errors on any minimiza-
tion algorithm based entirely on function evaluations. Unimodality is de-
fined in Section 3, and we also define “d-unimodality” in an attempt to explain
why methods like golden section search work even for functions which are
not quite unimodal (because of rounding errors in their computation, for
example). In Sections 4 and 5 we describe a minimization algorithm analo-
gous to the zero-finding algorithm of Chapter 4, and some numerical results
are given in Section 6. Finally, some possible extensions are described in
Section 7, and an ALGOL 60 procedure is given in Section 8.

Reduction to a zero-finding problem

If 1 is differentiable in [a, b], a necessary condition for fto have a local
minimum at an interior point u € (a, b) is

Stw) =0. (1.2)

There is also the possibility that the minimum is at a or b: for example, this
is true if /* does not change sign on [a, b]. If we are prepared to check for this
possibility, one approach is to look for zeros of f’. If f” has different signs
at @ and b, then the algorithm of Chapter 4 may be used to approximate
a point g satisfying (1.2).

Since £’ vanishes at any stationary point of £, it is possible that the point
found is a maximum, or even an inflexion point, rather than a minimum.
Thus, it is necessary to check whether the point found is a true minimum,
and continue the search in some way if it is not.

If it is difficult or impossible to compute /' directly, we could approxi-
mate / numerically (e.g., by finite differences), and search for a zero of f”
as above. However, a method which does not need ' seems more natural,
and could be preferred for the following reasons:

1. It may be difficult to approximate f* accurately because of rounding
errors;

2. A method which does not need /' may be more efficient (see below);
and

3. Whether f’ can be computed directly or not, a method which avoids
difficulty with maxima and inflexion points is clearly desirable.

Jarratt’s method

Jarratt (1967) suggests a method, using successive parabolic interpola-
tion, which is a special case of the iteration analyzed in Chapter 3. With
arbitrary starting points Jarratt’s method may diverge, or converge to a
maximum or inflexion point, but this defect need not be fatal if the method
is used in combination with a safe method such as golden section search, in the
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same way that we used a combination of successive linear interpolation and
bisection for finding a zero. Theorem 3.5.1 shows that, if f has a Lipschitz
continuous second derivative which is positive at an interior minimum U,
then Jarratt’s method gives superlinear convergence to u with weak order
at least f, = 1.3247 ... (see Definitions 3.2.1 and 3.5.1), provided the ini-
tial approximation is good and rounding errors are negligible.

Let us compare Jarratt’s method with one of the alternatives: estimating
S’ by finite differences, and then using successive linear interpolation to
find a zero of f”. (This process may also diverge, or converge to a maximum.)
Suppose that f“(u) > 0 and f(u) # 0, to avoid exceptional cases (see
Sections 3.6, 3.7, and 4.2). Since at least two function evaluations are needed
to estimate f” at any point, and ./1.618... = 1.272... < 1.324. .., Jarratt’s
method has a slightly higher order of convergence. The comparison is similar
to that between Newton’s method and successive linear interpolation: see
Section 4.3 and Ostrowski (1966).

Section 2
FUNDAMENTAL LIMITATIONS BECAUSE
OF ROUNDING ERRORS

Suppose that f € LC?%a, b; M] has a minimum at g € (a, b). Since

S'(u) = 0, Lemma 2.3.1 gives, for x € [a, b],

SO = fo + o f50c— i + Txx — @.1)

where |m | < M, f, = f(u), and f, = f"(u). Because of rounding errors,
the best that can be expected if single-precision floating-point numbers are

used is that the computed value f/( f(x)) of f(x) satisfies the (nearly attainable)
bound

S =f0(1 + ¢€,), (2.2)

where
le. | <e, (2.3)

and € is the relative machine precision (see Section 4.2). The error bound is
unlikely to be as good as this unless f is a very simple function, or is eval-
uated using double-precision and then rounded or truncated to single-pre-
cision.

Let § be the largest number such that, according to equations (2.2)
and (2.3), it is possible that

JI(f(u +6) < £ (2.4)

It is unreasonable to expect any minimization procedure, based on single-
precision evaluations of f to return an approximation 4 to x with a guar-
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anteed upper bound for | 2 — | less than 8. This is so regardless of whether
the computed values of f are used directly, as in Jarratt’s method, or in-
directly, as in the other method suggested in Section 1. The reason is simply
that the minimum of the computed function f/(f(x)) may lieup toa distance 0
from the minimum g of f(x): see Diagram 2.1.

fl(f)
e

/

K f
B
DIAGRAM 2.1 The effect of rounding errors
If £, > 0, equations (2.1) to (2.4) give

21 /o 1_f< —e— Mé).
" 1 —€ 677 (2.5)

Thus, if 4 7= 0 and the term MJ/(6f7) is negligible, an upper bound for
the relative error | (4 — u)/u| could hardly be less than [2] f le/(u2fo)]"2,
and full single-precision accuracy in g is unlikely unless | fo ll(u*fo) is of
order € or less, although fI( f(4)) may agree with f(u) to full single-precision
accuracy. (See also Pike, Hill, and James (1967).)

If ' has a simple analytic representation, then it may be easy to compute
/" accurately. For example, perhaps

FIf(x) = f'(x(1 4+ €N + €5), (2.6)

where |€/,| << € and | €, | << €, so we can expect to find a zero of f* with a
relative error bounded by € (see Lancaster (1966) and Ostrowski (1967Db)).
If (2.6) holds it might be worthwhile to use the algorithm described in Chapter
4 to search for a zero of 7, or at least use it to refine the approximation /
given by a procedure using only evaluations of f. However, this is not so if
£ has to be approximated by differences, for then (2.6) cannot be expected
to hold.

Even if f(x) is a unimodal function, the computed approximation f/( f(x))
will not be unimodal: fI( f(x)) must be constant over small intervals of real
numbers x which have the same floating-point approximation f/(x). In the
next section we define “d-unimodality” to circumvent this difficulty.
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From now on, we consider the problem of approximating the minimum
of the computed function, or, equivalently, we ignore rounding errors in the
computation of f. The user should bear in mind that the minimum of the
computed function may differ from the minimum that he is really interested
in by as much as § (see equation (2.5) above). There is no point in wasting
function evaluations by finding the minimum of the computed function to
excessive accuracy, and our procedure localmin (Section 8) should not be
called with the parameter eps much less than [2]fo l€/(uf N 2.

Section 3
UNIMODALITY AND 6-UNIMODALITY

There are several different definitions of a unimodal function in the
literature. One source of confusion is that the definition depends on
whether the function is supposed to have a unique minimum or a unique
maximum (we consider minima). Kowalik and Osborne (1968) say that f
is unimodal on [, b] if f has only one stationary value on [a, b]. This defini-
tion has two disadvantages. First, it is meaningless unless f is differentiable
on [a, b], but we would like to say that | x| is unimodal on [—1, 1]. Second,
functions which have inflexion points with a horizontal tangent are prohib-
ited, but we would like to say that f(x) = x¢ — 3x* - 3x2 is unimodal on
[—2, 2] (here f'(4-1) = f"(£1) = 0).

Wilde (1964) gives another definition: f is unimodal on [a, b] if, for all
X, X, € [a, b],

X <Xp D (X, <x* 2 f(x)) > f(x,)) A (x; > x* D f(x,) < f(x,)),
(3.1)

where x* is a point at which f attains its least value in [a, ). (We have
reversed some of Wilde's inequalities as he considers maxima rather than
minima.) Wilde’s definition does not assume differentiability, or even conti-
nuity, but to verify that a function f satisfies (3.1) we need to know the
point x* (and such a point must exist). Hence, we prefer the following defi-
nition, which is nearly equivalent to Wilde’s (see Lemma 3. 1), but avoids any
reference to the point x*. The definition is not as complicated as it looks: it
merely says that f cannot have a “hump” between any two points x, and
x, in [a, b). Two possible configurations of the points X, X, X,, and x* in
(3.1) and (3.2) are illustrated in Diagram 3.1.

DEFINITION 3.1
f is unimodal on [a, b] if, for all Xy, X, and x, € [a, b],

Yo < Xy A Xy <y 2 (fxe) < Sx)) o f(x,) < [(x) A

(3.2)
(f(x)) > f(x;) D fxg) > f(x))).
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Xo
X1

Xz

X4

DIAGRAM 3.1 Unimodal functions

LEMMA 3.1
If a point x* at which fattains its minimum in [a, b] exists, then Wilde’s
definition of unimodality and Definition 3.1 are equivalent.

Proof
Suppose that fis unimodal according to Definition 3.1. If x; < x, and
x, < X*, take Xp = Xx,, X\ = X, and x, = x*. Since f attains its least value

at x*,
f(x) = f(x*) = f(x2), (3.3)

so equation (3.2) with primed variables gives

fxp) > fx), (€X)
and thus

f(x,) > f(x). (3.5)
Similarly, if x, < x, and x, > x*, equation (3.2) gives

f(x,) < f(x2). | (3.6)

Thus, from (3.5) and (3.6), equation (3.1) holds.
Conversely, suppose that (3.1) holds and x, << X, < X,. If f(x,) < f(x))

then there are three possibilities, depending on the position of x*:

1. x, > x*. Thus, by (3.1),
f(x,) < f(xy). (3.7)
2. x, = x*. Take x| = 3(x, + x5) and x), = x,.
Since x* < x|, < x,, equation (3.1) with primed variables gives
f(xh) < f(xh), (3.8)
SO

F0xy) = f(x*) < () < () = f(x2). (3.9)
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3. x; < x* Take x| = x, and x, = x,. Since x|, < X3 << x*, equation
(3.1) gives f(x)) > f(x}), contradicting the assumption that f(x,) -
f(x,). Hence case 3 is impossible and, by (3.7) and (3.9), we always
have f(x,) < f(x,).

Similarly, if f(x,) > f(x,) then f(x,) > f(x,), so equation (3.2) holds,
and the proof is complete.

A simple corollary of Lemma 3.1 is that, if J 1s continuous, then
Wilde’s definition of unimodality and ours are equivalent. For arbitrary f
the definitions are not equivalent. For example,

1 —x if ng,}

(3.10
X if x>0 )

S0 = {
is unimodal on [—1, 1] by our definition, but not by Wilde’s, for x* does not
exist.

The following theorem gives a simple characterization of unimodality.
There is no assumption that f is continuous. Since a strictly monotonic
function (e.g., x*) may have stationary points, the theorem shows that
both our definition and Wilde’s are essentially different from Kowalik and
Osborne’s, even if f is continuously differentiable. (Although this point is
obvious, it is sometimes overlooked! See also Corollary 3.3))

4

THEOREM 3.1

S is unimodal on [a, b} (according to Definition 3.1) iff, for some
(unique) u € [a, b), either f is strictly monotonic decreasing on [a, x) and
strictly monotonic increasing on [y, b), or f is strictly monotonic decreasing
on [a, u] and strictly monotonic increasing on (u, b].

The theorem is a special case of Theorem 3.2 below, so the proof is
omitted. The following corollaries are immediate.

COROLLARY 3.1

If fis unimodal on [a, b), then f attains its least value at most once on
[a, b]. (If f attains its least value, then it must attain it at the point u given
by Theorem 3.1.)

COROLLARY 3.2
If /is unimodal and continuous on [a, b], then f attains its least value
exactly once on [a, b].

COROLLARY 3.3

If fe C'a,b] then f is unimodal iff, for some uelab), /<0
almost everywhere on {a, 4} and ' > 0 almost everywhere on [u, b). (Note
that /” may vanish at a finite number of points.)
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Fibonacci and golden section search

If f is unimodal on [a, b], then the minimum of f (or, if the minimum
is not attained, the point g given by Theorem 3.1) can be located to any
desired accuracy by the well-known methods of Fibonacci search or golden
section search. The reader is referred to Wilde (1964) for an excellent descrip-
tion of these methods. (See also Boothroyd (1965a, b), Johnson (1955), Krolak
(1968), Newman (1965), Pike and Pixner (1967), and Witzgall (1969).) Care
should be taken to ensure that the coordinates of the points at which fis
evaluated are computed in a numerically stable way (see Overholt (1965)).
Fibonacci and golden section search, as well as similar but less efficient
methods, are based on the following result, which shows how an interval
known to contain u may be reduced in size.

COROLLARY 3.4

Suppose that fis unimodal on [a, b], u is the point given by Theorem
3.1,anda < x, < x, <b. If £(x,) << f(x,) then g << Xx,, and if f(x,) = f(x,)
then u > x,.

Proof

If x, < u then, by Theorem 3.1, f(x,) > f(x,). Thus, if f(x,)<f(xy)
then u << x,. The other half follows similarly.

If the reader is prepared to ignore the problem of computing unimodal
functions using limited-precision arithmetic, he may skip the rest of this

section.

d-unimodality

We pointed out at the end of Section 2 that functions computed using
limited-precision arithmetic are not unimodal. Thus, the theoretical basis
for Fibonacci search and similar methods is irrelevant, and it is not clear
that these methods will give even approximately correct results in the pres-
ence of rounding errors. To analyze this problem, we generalize the idea of
unimodality to d-unimodality. Intuitively, § is a nonnegative number such
that Fibonacci or golden section search will give correct results, even though
f is not necessarily unimodal (unless § = 0), provided that the distance
between points at which f'is evaluated is always greater than d. The results
of Section 2 indicate how large & is likely to be in practice. (Our aim differs
from that of Richman (1968) in defining the e-calculus, for he is interested
in properties that hold as € — 0.) For another approach to the problem of
rounding errors, see Overholt (1967).

In the remainder of this section, d is a fixed nonnegative number. As
well as d-unimodality, we need to define S-monotonicity. If § = 0 then
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d-unimodality and §-monotonicity reduce to unimodality (Definition 3.1)
and monotonicity.

DEFINITION 3.2

Let 7 be an interval and f a real-valued function on /. We say that f'is
strictly §-monotonic increasing on [ if, for all x,, x, € I,

X, 40 < x, 2 f(x,) <f(x,). (3.11)

As an abbreviation, we shall write simply “f is 6-1 on I”. Strictly J-

monotonic decreasing functions (abbreviated 6-|) are defined in the obvious
way.

DEFINITION 3.3

Let I be an interval and f a real-valued function on I. We say that f is
o-unimodal on I if, for all x,, x,, x, € I,

Xo + 0 <x, Ax, 46 <x, 0 (f(x) <Sf(x) D f(x) < flxy)
A (f(x) = f(x,) D f(x,) > f(x,)).
(3.12)

- The following theorem gives a characterization of §-unimodal functions.
It reduces to Theorem 3.1 if § = 0.

THEOREM 3.2

£ is d-unimodal on [a, b] iff there exists u € [a, b] such that either fis
8-} on [a, u) and 8-1 on [y, b, or fis -] on [a, u] and -1 on (u, b]. Fur-
thermore, if f is §-unimodal on [a, b], then there is a unique interval [z, 4,]
< [a, b] such that the points x with the above properties are precisely the
elements of [u,, u,), and u, < u, + 0.

Proof

Suppose u exists so that f is -] on [a, ) and J-1 on [u, b]. Take any
Xg, X, X, in [a, b] with x, + 6 < x, and x, + & < x,. If f(x,) < f(x))
then, since fis 8-} on [a, ), 4 < x,. As fis 8-1 on [y, b), it follows that
f(x,) < f(x,). The other cases are similar, so f'is §-unimodal.

Conversely, suppose that f is d-unimodal on [a, b]. Let

u, = inf{x € [a, b]| fis 6-1 on [x, b}, (3.13)
(so u, << max(a, b — 9)), and
U, = sup{x € [a, b]| fis 8-| on [a, x]}, (3.14)

(so u, > min(a + 9, b)).
It is immediate from the definitions (3.13) and (3.14) that f is -7 on
(u,, b} and fis §-] on [a, u,). We shall show that

Uy < py (3.15)
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Suppose, by way of contradiction, that

_ Uy > Uy (3.16)
This implies that g, > a and g, < b. From the definitions of g, and u,,
there are points x" and x”, with

L, < x" < (//—“—%———&><x'j\”ﬂ1, BNEA )

such that f is not -1 on [x’, b] and f is not 5-| on [a, x"]. Thus, there are
points v, y”, z', z" in [a, b] such that

2§y x < x <Ly <z —9, (3.18)
fz)< f("), (3.19)

and
f) = f(@). (3.20)

’

Let x, = z", x, = z, and

. {y' if 1) = f(y"),} a2

"

y" otherwise.

From relations (3.18) to (3.21), the points x,, x,, and x, contradict J-uni-
modality (equation (3.12)). Thus (3.16) is impossible, (3.15) must hold,
and [u,, u,] 1s nonempty.

Choose any g in [u,, u,]. From the definitions of x, and u,, fis 8-
on [a, u) and &-1 on (u, b]. Suppose, if it is possible, that f is neither 0-]
on [a, u] nor §-7 on [u, b]. Then there are points y, and y,, in [a, b], such
that

y, Fd<u<y —9, (3.22)
f(y) < S, (3.23)

and
1) < f(p). (3.24)

Thus, the points y,, u, and y, contradict the J-unimodality of f, so fis
either 5-) on [a, u] or §-1 on [, b]. This completes the proof of the first
part of the theorem.

Finally, by the definitions (3.13) and (3.14), the set of points u satisfying
the conditions of the theorem is precisely [x,, u,]. Since f is both -7 and
8- on (u,, u,), we have u, < u, + 9, and the proof is complete.

Remarks

The interval [g,, 4,] depends on 8. Suppose that f attains its minimum
in [a, b} at 4. By Theorem 3.2, fis §-1 on (u,, b] and d-] onfa, u,),s0 i €
[g, — 0, u, + 6], an interval of length at most 26.
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As an example, consider

J(x) = x* + g(x) (3.25)
on[—1, 1], where g is any function (not necessarily continuous) with| g(x) | <€,
and € > 0. Since f(x) is bounded above and below by the unimodal func-
tions x2 4 € and x2 — €, we see that f is §-unimodal for any é > ./2e.
In a practical case € might be a small multiple of the relative machine preci-
sion, and the fact that the least § for which fis e-unimodal is of order €'/2,
rather than €, is to be expected from the discussion in Section 2.

The following theorem is a generalization of Corollary 3.4 (which is
just the special case § = 0), and shows why methods like Fibonacci search
and golden section search work on d-unimodal functions while the distance
between points at which f is evaluated is greater than §.

THEOREM 3.3

Suppose that fis d-unimodal on [a, b], 4, and u, are the points given
by Theorem 3.2, x, and x, are in [a, b}, and x, + § < x,. If f(x,) < f(x,)
then u, << x,, and if f(x,) > f(x,) then u; > x,.

Proof

If x, < u, then f(x,) > f(x,) for, by Theorem 3.2 with u = u,, f
is 6-] on [a, u,). Hence, if f(x,) < f(x,) then u, < x,. The second half is
similar.

Remarks

Theorems 3.2 and 3.3 show that, provided § is known, methods like
Fibonacci search and golden section search can locate the interval [u,, u,]
in an interval of length as close to J as desired. Since the minimum g €
[u, — 6, u, + &) (see the remarks above), this means that 7 can be located
in an interval of length as close to 3J as desired.

In practice f may be -unimodal for all § > §,, but a sharp upper bound
for §, may be difficult to obtain. If the usual golden section search method
is used, giving a nested sequence of intervals I, with limit /, then Theorem
3.3 shows that [u,, u,] S I, as long as the two function evaluations giving
I, were at points separated by more than J,. The smallest such interval J,
has length no greater than (2 + /5 )d,, SO

| — | < B +./5)8, = 52368, (3.26)

Thus, golden section search gives an approximation £ which is nearly as good
as could be expected if we knew &,. This may be regarded as a justification
for using golden section or Fibonacci search to approximate minima of
functions which, because of rounding errors, are only “approximately”
unimodal.
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Section 4
AN ALGORITHM ANALOGOUS TO DEKKER'S

ALGORITHM

For finding a zero of a function f, the bisection process has the advan-
tage that linear convergence is guaranteed, because the interval known to
contain a zero is halved at each evaluation of f after the first. However, if
fis sufficiently smooth and we have a good initial approximation to a simple
zero, then a process with superlinear convergence will be much faster than
bisection. This is the motivation for the algorithm, described in Chapter 4,
which combines bisection and successive linear interpolation in a way which
retains the advantages of both.

There is a clear analogy between methods for finding a minimum and
for finding a zero. The Fibonacci and golden section search methods have
guaranteed linear convergence, and correspond to bisection. Processes like
successive parabolic interpolation, which do not always converge, but under
certain conditions converge superlinearly, correspond to successive linear
interpolation. In this section we describe an algorithm which combines
golden section search and successive parabolic interpolation. The analogy
with the algorithm of Chapter 4 is illustrated below.

Zeros Extrema
Linear convergence Bisection <> Golden section search
Superlinear convergence Successive linear <—> Successive parabolic
interpolation interpolation

Many more or less ad hoc algorithms have been proposed for one-
dimensional minimization, particularly as components of n-dimensional
minimization algorithms. See Box, Davies, and Swann (1969); Flanagan,
Vitale, and Mendelsohn (1969); Fletcher and Reeves (1964); Jacoby, Kowalik,
and Pizzo (1971); Kowalik and Osborne (1968); Pierre (1969); Powell (1964);
etc. The algorithm presented here might be regarded as an unwarranted
addition to this list, but it seems to be more natural than these algorithms,
which involve arbitrary prescriptions like “if . . . fails then halve the step-size
and try again”. Of course, our algorithm is not quite free of arbitrary pre-
scriptions either; a more objective criticism of the ad hoc algorithms is that
for many of them convergence to a local minimum in a reasonable number
of function evaluations cannot be guaranteed, and, for the exceptions, the
asymptotic rate of convergence (when f is sufficiently smooth) is less than
for our algorithm (Section 5). Note that we do not claim that our algorithm
is suitable for use in an n-dimensional minimization procedure: an ad hoc
algorithm may be more efficient (see Sections 7.6 and 7.7).
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A description of the algorithm

Here we give an outline which should make the main ideas of the algo-
rithm clear. For questions of detail the reader should refer to Section 8, where
the algorithm is described formally by the ALGOL 60 procedure localmin.

The algorithm finds an approximation to the minimum of a function f
defined on the interval [a, b]. Unless a is very close to b, fis never evaluated
at the endpoints a and b, so f need only be defined on (a, b), and if the mini-
mum is actually at @ or b then an interior point distant no more than 2ro/
from a or b will be returned, where fo/ is a tolerance (see equation (4.2)
below). The minimum found may be local, but non-giobal, unless f is J-
unimodal for some § < tol.

At a typical step there are six significant points a, b, u, v, w, and x, not
all distinct. The positions of these points change during the algorithm, but
there should be no confusion if we omit subscripts. Initially (a, b) is the
interval on which f'is defined, and

v:w:x:a+(3_—2~/__§_)(b—~a). 4.1)
The magic number (3 — ,/5)/2 = 0.381966 . . . is rather arbitrarily chosen
so that the first step is the same as for a golden section search.

At the start of a cycle (label “loop” of procedure localmin) the points
a, b, u, v, w, and x always serve as follows: a local minimum lies in [a, bl;
of all the points at which f has been evaluated, x is the one with the least
value of f, or the point of the most recent evaluation if there is a tie: w is the
point with the next lowest value of f; v is the previous value of w; and u is
the last point at which f has been evaluated (undefined the first time). One
possible configuration is shown in Diagram 4.1.

\ T
|
|
|
{
|
|
]
[
| 1
a u m b
w X 14

DIAGRAM 4.1 A possible configuration

As in procedure zero (Chapter 4), the tolerance is a combination of a
relative and an absolute tolerance. If

tol = eps|x| + t, (4.2)
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then the point x returned approximates a minimum to an accuracy of
2tol 4 & < 3tol, provided fis d-unimodal near x and & < tol. The user must
provide the positive parameters eps and . In view of the discussion in Section
2, it is generally unreasonable to take eps much less than €''%, where € is the
machine-precision (see Section 4.2). The parameter { should be positive in
case the minimum is at 0. It is possible that the error may exceed 2tol + 0
because of the effect of rounding errors in determining if the stopping cri-
terion is satisfied, but the additional error is negligible if eps is of order €l/?

or greater.
Let m — (a + b) be the midpoint of the interval known to contain

the minimum. If |x — m| << 2tol — }(b — a), ie, if max(x —a, b — x)
< 2tol, then the procedure terminates with x as the approximate position
of the minimum. Otherwise, numbers p and g(q > 0) are computed so that
x -+ p/q is the turning point of the parabola passing through (v, (), (W, f(W)),
and (x, f(x)). If two or more of these points coincide, or if the parabola degen-
erates to a straight line, theng = 0.

p and g are given by

p = +l(x — VHfx) — fW) — (x — w)(f(x) — )] (4.3)
— 4 (x — v)(x — w(w — V){(x — w)flv, w, x] + ST, x1}, (4.4)
and
g = F20x — v)(f(x) — fW) — (x — w(f(x) — @) (4.5)
= T2(x — v)(x — w(w — v)f[v, w, x]. (4.6)

From (4.4) and (4.6), the correction p/q should be small if x is close to a mini-
mum where the second derivative is positive, so the effect of rounding errors
in computing p and ¢ is minimized: (Golub and Smith (1967) compute a
correction to } (v + w) for the same reason.)

As in procedure zero, let e be the value of p/q at the second-last cycle.
if|e| << tol,q =0, x + p/q ¢ (a, b),or|p/q| > %|el, then a “golden section”
step is performed, i.e., the next value of uis

(_xﬁ%:_l)x + <§—;ﬂ)a if x>m,

2
(_«/_3;2;;!>); n (3 — 2N if x<m.

(If the next k steps are golden section steps, then this is the limit of the opti-
mal choice as k —» oo: see Witzgall (1969).) Otherwise u is taken as x + p/q
(a “parabolic interpolation” step), except that the distances lu — x|, u —a,
and b — u must be at least fol. Then f is evaluated at the new point u, the
points a, b, v, w, and x are updated as necessary, and the cycle is repeated
(the procedure returns to the label “loop”). We see that f'is never evaluated
at two points closer together than fol, so S-unimodality for some d < tol
is enough to ensure that the global minimum is found to an accuracy of
2tol 4 & (see Theorem 3.3 and the following remarks).

(4.7)
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Typically the algorithm terminates in the following way: x = b — tol
(or, symmetrically, a + tol) after a parabolic interpolation step has been
performed with the condition |u — x| > tol enforced. The next parabolic
interpolation point lies very close to x and b, so u is forced to be x — tol.
If f(u) > f(x) then a moves to u, b — a becomes 2o/, and the termination
criterion is satisfied (see Diagram 4.2). Note that two consecutive steps of
tol are done just before termination. If a golden section search were done
whenever the last, rather than second-last, value of | p/g | was to/ or less, then
termination with two consecutive steps of fo/ would be prevented, and un-
necessary golden section steps would be performed.

. 4
v a X b

tol tol/

DIAGRAM 4.2 A typical configuration after termination

Section 5
CONVERGENCE PROPERTIES

There cannot be more than about 2log, [(b — a)/tol] consecutive para-
bolic interpolation steps (with the current a and b, and the minimum of ro/
over the interval), for while parabolic interpolation steps are being performed
| p/q | decreases by a factor of at least two on every second cycle of the algo-
rithm, and when |e| <Z to/ a golden section step is performed. (In this section,
“about” means we are not distinguishing between a real number and its
integer part. Precise results may easily be obtained as in Section 4.3.) A
golden section step does not necessarily decrease b — a significantly, e.g.,
if x = b — tol and f(u) < f(x), then b — a is only decreased by fo/, but two
golden section steps must decrease b — a by a factor of at least (1 + ./ 5)/2
= 1.618 . ... As in Section 4.3, we see that convergence cannot require more

than about
_ 2 ;
2K togs(2 74| -

function evaluations, where

K- ! 144, ... (5.2)

- log,[(1+3/5)/21
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By comparison, a golden section or Fibonacci search would require about

b-—-a
K 1og2<_m_) (5.3)
function evaluations, and a brute-force search about (b — a)/(2tol).

The analogy with procedure zero of Chapter 4 should be clear, and
essentially the same remarks apply here as were made in Section 4.3. In
practical tests convergence has never been more than 5 percent slower than
for a Fibonacci search (see Section 6).

In deriving (5.1) we have ignored the effect of rounding errors inside
the procedure. As in Section 4.2, it is easy to see that they cannot prevent
convergence if floating-point operations satisfy (4.2.10) and (4.2.11), pro-
vided the parameter eps of procedure localmin is at least 2€.

Superlinear convergence

If fis C?* near an interior minimum x with f"(¢) > 0, then Theorem
3.4.1 shows that convergence is superlinear while rounding errors are negli-
gible. Usually the algorithm stops doing golden section steps, and eventually
does only parabolic interpolation steps, with f(x) decreasing at each step,
until the tolerance comes into play just before termination. This is certainly
true if the successive parabolic interpolation process cOnverges with strong
order §, = 1.3247 ... (sufficient conditions for this are given in Sections 3.6
and 3.7).

For most of the ad hoc methods given in the literature, convergence
with a guaranteed error bound of order fol in the number of steps given
by (5.1) is not certain, and, even if convergence does occur, the order is no
greater than for our algorithm. For example, the algorithm of Davies, Swann,
and Campey (Box, Davies, and Swann (1969)) evaluates f at two or
more points for each parabolic fit, so the order of convergence is at most

VB, = 1150 ..

Section 6
PRACTICAL TESTS

The ALGOL procedure localmin given in Section 8 has been tested using
ALGOL W (Wirth and Hoare (1966); Bauer, Becker, and Graham (1968))
on IBM 360/67 and 360/91 computers with machine precision 167 % Although
it is possible to contrive an example where the bound (5.1) on the number
of function evaluations is nearly attained, for our test cases convergence
requires, at worst, only 5 percent more function evaluations than are needed
to guarantee the same accuracy using Fibonacci search. In most practical
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cases superlinear convergence sets in after a few golden section steps, and the
procedure is much faster than Fibonacci search.

As an example, in Table 6.1 we give the number of function evaluations
required to find the minima of the function

f(x) = f; (2i__l.f)2- (6.1)

i=1\X

This function has poles at x = 12, 22, . . ., 20%. Restricted to the open interval
(%, (i 4+ D) fori=1,2,...,19, it is unimodal (ignoring rounding errors)
with an interior minimum. The fourth column of Table 6.1 gives the number
n,, of function evaluations required to find this minimum g;, using procedure
localmin with eps = 16"7 and t = 107'° (so the error bound is less than 3tol,
where tol = 1677 | u,| + 10719),

The last column of the table gives the number n, of function evaluations
required to find the zero of

oy A (20 — 5)?
f(x)= 2; Gy (6.2)
in the interval [i2 4 107°, (/ + 1)* — 10~°], using procedure zero (Section
4.6) with macheps = 1677 and t = 107!°, so the guaranteed accuracy is
nearly the same as for localmin. Of course, in practical cases we would seldom

be lucky enough to have such a simple analytic expression for ', so procedure

TABLE 6.1 Comparison of procedures localmin and zero

i i S(u) ng nz
1 3.0229153 3.6766990169 12 14
2 6.6837536 1.1118500100 11 8
3 11.2387017 1.2182217637 13 14
4 19.6760001 2.1621103109 10 12
5 29.8282273 3.0322905193 11 12
6 41.9061162 3.7583856477 11 11
7 55.9535958 4.3554103836 10 11
8 71.9856656 4.8482959563 10 11
9 90.0088685 5.2587585400 10 10
10 110.0265327 5.6036524295 10 10
11 132.0405517 5.8956037976 10 10
12 156.0521144 6.1438861542 9 10
13 182.0620604 6.3550764593 9 10
14 210.0711010 6.5333662003 9 10
15 240.0800483 6.6803639849 9 10
16 272.0902669 6.7938538365 9 10
17 306.1051233 6.8634981053 9 10
18 342.1369454 6.8539024631 9 9
19 380.2687097 6.6008470481 9 9
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sero could not easily be used to find minima of fin this manner. Also, pro-
cedure zero could find a maximum rather than a minimum.

Table 6.1 shows that the number of function evaluations required by
procedure localmin compares favorably with the number required by proce-
dure zero. Both are much faster than Fibonacci search, which would require
45 function evaluations to find the minimum for i = 10 to the same accuracy.

For some numerical results illustrating the superlinear convergence
of the successive parabolic interpolation process, see Section 3.9.

Section 7
CONCLUSION

The algorithm given in this chapter has the same advantages as the al-
gorithm described in Chapter 4 for finding zeros: convergence in a reasonable
number of steps is guaranteed for any function (see equation (5.1)), and on
well-behaved functions convergence is superlinear, with order at least 1.3247
..., and thus much faster than Fibonacci search. There is no contradiction
here: Fibonacci search is the fastest method for the worst possible function,
but our algorithm is faster on a large class of functions, including, for
example, C? functions with positive second derivatives at interior minima.

A similar algorithm using derivatives

We pointed out in Section 4.5 that bisection could be combined with
interpolation formulas which use both f and f'. We could combine golden
section search with an interpolation method using both f and /' in a similar
way. Davidon (1959) suggests fitting a cubic polynomial to agree with fand
/" at two points, and taking a turning point of the cubic as the next approxi-
mation. (See also Johnson and Myers (1967).) This method, which gives the
possibility of superlinear convergence, could well replace successive parab-
olic interpolation (using f at three points) in our algorithm if /' is easy to
compute. If the cubic has no real turning point, or if the turning point which

is a local minimum lies outside the interval known to contain a minimum
of f, then we can resort to golden section search.

Parallel algorithms

So far we have considered only serial (i.e., sequential) algorithms for
finding minima. If a parallel computer is available, more efficient algorithms
which take advantage of the parallelism are possible, just as in the analogous
zero-finding problem (see Section 4.5). Karp and Miranker (1968) give a
parallel search method which is a generalization of Fibonacci search, and
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optimal in the same sense, if a sufficiently parallel processor is available.
See also Wilde (1964) and Avriel and Wilde (1966). Miranker (1969) gives
parallel methods for approximating the root of a function, and these could
be used to find a root of /. (Parallel methods for finding a root of f”, using
only evaluations of f, could also be used.) These parallel methods could be
combined to give a parallel method with guaranteed convergence, and often
superlinear convergence with a higher order than for our serial method.

Section 8
AN ALGOL 60 PROCEDURE

The ALGOL procedure localmin for finding a local minimum of a func-
tion of one variable is given below. The algorithm and some numerical
results are described in Sections 4 to 6. A FORTRAN translation of proce-
dure Jocalmin is given in the Appendix.

real procedure /ocalmin (a, b, eps, t, f, x),
value a, b, eps, 1, real a, b, eps, t, x; real procedure f;
begin comment:

If the function f'is defined on the interval (a, b), then localmm finds
an approximation x to the point at which f attains its minimum (or the
appropriate limit point), and returns the value of f'at x. ¢ and eps define
a tolerance tol = eps|x| -+ t, and f is never evaluated at two points
closer together than rol. If f is d-unimodal (Definition 3.3) for some
& < tol, then x approximates the global minimum of f with an error
less than 3tol (see Section 4). If fis not d-unimodal on (a, b), then x may
approximate a local, but non-global, minimum. eps should be no smaller
than 2macheps, and preferably not much less than sqrt (macheps), where
macheps is the relative machine precision (Section 4.2). t should be
positive. For further details, see Section 2.

The method used is a combination of golden section search and
successive parabolic interpolation. Convergence is never much slower
than for a Fibonacci search (see Sections 5 and 6). If f has a continuous
second derivative which is positive at the minimum (not at a or b) then,
ignoring rounding errors, convergence is superlinear, and usually the
order is at least 1.3247 .
real c,d, e, m, p, q, r, tol, 12, u, v, w, fu, fu, jw, fx;

c: = 0.381966; comment: ¢ = (3 — sqrt(5))/2;
vi=w:=x:=a-+c X (b—a);e:=0;
for=jfw: = fx: = f(x);

comment : Main loop;

loop: m: = 0.5 X (a - b);

tol: = eps X abs(x) + t;12: = 2 X tol;
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comment: Check stopping criterion;
if abs(x — m) > 12 — 0.5 X (b — a) then
beginp: =q: =r: = 0;
if abs(e) > tol then
begin comment: Fit parabola;
Fre= (x — w) X (fx — fo);q: = (x — v) X (fx — fw);
p:=(x—0) x q—(x —w) X rigi=2X(q—1r);

if g > Othenp: = —pelseq: = —4q;
rr=ue;e.=4d
end;

if abs(p) < abs(0.5 X g X r) A p <g X (a— x) N\
p < q X (b — x) then
begin comment: A “parabolic interpolation” step;
d: = plg; u: = x + d;
comment: f must not be evaluated too close to a or b;

if w—a<1t2V b—u<t2 then . —if x < m then tol
else —tol
end

else
begin comment: A “golden section” step;
e::(ifx<mthenbelsea)—x;d::c X e
end; '
comment: f must not be evaluated too close to x;
u: = x + (if abs(d) > tol then d else if d > O then tol else —tol);
fu: = f(u);
comment: Update a, b, v, w, and x;
if fu < fx then

begin if v < x then b: = xelse a: = x;
v: = w; for = fw: w::x;fwzzfx;x::u;fx::fu
end

else
begin if v << x then a: = u else b: = u;
if fu << fw V w = x then
begin v: = w; fo: = fw; w: = u; fw: = fu end
elseif fu <<fo vV v=xV v = w then
begin v: = u. fo: = fu
end
end;
go to loop
end;
localmin: = fx
end /ocalmin;
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