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reach the desired configuration. The fourth property prevents
multiple components from flying apart from each other so
quickly that they never actually straighten or convexify.

We begin in Section 2 with background and definitions.
Then in Section 3 we define the precise constraints we need
of an energy function and give examples of such energy func-
tions. Section 4 establishes the main mathematical result,
that gradient flow produces the desired smooth motion. Sec-
tion 5 describes the algorithm to find an exact piecewise-
linear motion and proves that its running time is finite. Sec-
tion 6 gives explicit bounds on the running time in terms of
n and geometric features of the input. Section 7 describes
experiments with an implementation of our approach, and
shows the resulting animations and running times. We con-
clude in Section §

2 Background: Arc-and-Cycle Sets

We now define the objects of interest. An arc-and-cycle
set A is a finite collection of planar polygonal arcs and
polygonal closed curves. A configuration V. = [v1,va,. ..}
of A is an assignment of coordinates to vertices such that
the edge lengths match those in A. If A has n vertices,
the configuration space of A, denoted X (A), can be viewed
as the algebraic subvariety of R*” determined by fixing the
length of each edge. The embedded configurations of A—
configurations without self-crossing—are denoted FX (A).

A configuration of an arc-and-cycle set is outer-convex
if each outermost connected-component of A is either
straight {when it is an arc) or convex (when itis a cycle). A
motion of a configuration is strictly expansive if it does not
decrease any vertex-to-vertex distance, and strictly increases
all of the vertex-to-vertex distances between pairs of vertices
that are not forced to have constant distance because they are
connected by a straight chain of edges or because they are
on or inside a common convex cycle. A motion is merely
expansive when it does not decrease any vertex-vertex dis-
tance, and increases at feast one such distance.

The main result of [9] estabiishes the existence of such
motions, which we use extensively:

THEOREM 2.1. Any arc-and-cycle set admits a strictly ex-
pansive motion until it is outer-convex.

3 Energy Functions

Next we consider energy functions whose minimization
forces the linkage to “repel itself”. The gradient of any such
function will then define a motion of the linkage towards an
outer-convex configuration that avoids crossings as desired.

3.1 Definition and Required Properties. An energy
fitnction is a function from embedded configurations £X (A)
to the nonnegative real numbers R™. We call an energy func-
tion admissible if it has four properties defined below: it

must be G2, charse, repulsive, and separable. (We can define
a version of admissibility for C'+! functions instead of C?,
but it is much harder to work with.)

3.1.1 Charge. An energy function F is charge if it ap-
proaches oo on the boundary of EX (A), that is, if it be~
comes infinite as the linkage approaches any self-crossing
configuration.

This requirement is an adaptation of an idea from the lit-
erature of knot energies {cf. [10]) to capture the idea that our
cnergy functional must avoid self-crossing configurations.
The inspiration for the name “charge” comes from electro-
statics, where it takes an infinite amount of work to pull a
pair of point charges together untii they coincide.

3.1.2 Repulsive. An energy function E is repulsive if it
decreases to first order under any strictly expansive motion
of A.

This requirement captures the idea that the vertices and
edges of the linkage should roughly repel each other under
the gradient flow of the energy.

3.13 Separable. For an arc-and-cycle set A with con-
nected components Ay, . . ., 4, an energy function F is sep-
arable if it can be written in the form

EA) = Z Eii (A A,

ig=1

(3.1)

where each two-component energy E;; is an energy function
on the arc-and-cycle set A; U A; that itself is C2, repulsive,
and charge; and furthermore the contribution of Fy; to the
oradient of & approaches zero as the distance between A;
and A; grows.

This requirement enforces that, as connected compo-
nents of A become far away from each another, the repulsion
between them has little impact on the gradient of the energy.

3.2 Example. We now give an example of an energ
function that obeys our criteria. The basic idea is to sum
powers of reciprocals of distances between vertices and
edges of the arc-and-cycle set. This idea inmediately leads
to the charge property: as a distance approaches zero, the
reciprocal approaches +oco. We use a particular definition
of distance between a vertex and edge so that the energy
function is C°°.

Specifically, the elliptic-distance energy of an arc-and-
cycle set A with vertex set V' and edge set E is defined by

1
E(A) = '
edggg,m} (Tl a—w]—To—w])?

vertex ug {v,w}

(3.2)
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where the denominator is the squared elliptic distance be-
tween vertex u and edge {v,w}. For any edge {v, w}, the
level sets of the summand in the elliptic-distance energy, as
we vary the position of vertex u, are a family of cllipses with
foci at v and w which converge at zero to the edge {v;, v;}-

PROPOSITION 3.1. Elliptic-distance energy is admissible.

Proof. This energy is C™ on the interior of EX (A} and is
therefore also C2. Because the denominator of the summand
vanishes precisely when vertex w is on the edge (v, w), the
encrgy is charge. Any expansive motion cannot increase any
of the summands, and it must increase a positive term in
at least one of the denominators, while leaving all negated
terms alone. Thus the energy is repulsive. Finally, because
we can split the sum up according to which connected-
component of A the edge (v, w) and the vertex u belong to,
while the derivative of the summand approaches zero as the
distances ||u — v|j and |ju — w|| become large, the energy is
separable. O

4 Gradient Flow Almost Unfolds Linkages

This section proves our main mathematical result: for any
€ > 0, the negative gradient flow of any admissible en-
ergy functional moves any linkage configuration to within
distance ¢ of an outer-convex configuration in finite time.

4.1 Existence of Gradient Flow. We first observe that the
gradient flow is well-defined:

PROPOSITION 4.1. Given any embedded arc-and-cycle set
A, the downhill gradiemt flow A(t) of A under any admis-
sible energy function E exists for all time ¢ > 0 and is as
smooth (in t) as the energy function I (in space).

Proof. Because energy only decreases under gradient flow,
we can restrict to the closed subspace EX T (A4) of EX(A)
where E < E(A) + 1. Because E is C2, the integral curve
V(t) of —VE through A exists for all time, unless it ap-
proaches the boundary of this space. But energy approaches
+-cc along the boundary and energy strictly decreases along
the path, so this cannot happen. o

4.2 Main Theorem. We now prove our main theorem:

THEOREM 4.1, If A is an arc-and-cycle-set and E is an
admissible energy function on EX (A), then for any ¢ > 0
the motion A(t) defined by the downhill gradient flow of B
carries A(Q) to within ¢ of an outer-convex configuration in
finite time.

Proof. A standard result in dynamical systems says that any
trajectory of the negative gradient flow A(t) either weakly
converges to some configuration of A that is critical for &

or A(t) leaves any compact neighborhood of A(0) in finite
time.

Because E is repulsive, Theorem 2.1 implies that any
critical configuration of A is outer-convex. So in the first
case there is nothing more to prove.

We focus on the second case. We can split A into n
sublinkages A;(£), so that the components of each A; remain
within a bounded distance of one another for afl time. In this
case A;{t) remains within a compact subspace of EX(A;).
We define a compact subspace of this space by restricting
our attention to the space EX ™ (4;) of configurations with
E;; < E(A(0)) + 1. Here we have used separability of £
to write B(A) = 3, ; Bij{As, Az) where each Ey; is a C?,
repulsive, charge energy function on EX (A; U Ay).

Now removing an e-neighborhood of the outer-convex
configurations leaves a subspace S; on which |VEy] is
bounded below by some G; > 0, because this removes
a neighborhood of the critical configurations for Ey (by
Theorem 2.1 and because Fy; is repulsive).

Because the A; are drifting further apart, and F is
separable, for each I;; there is some finite time after which
each |VE;;|| < Gi/2n. After this point, the gradient flow
of E must reduce each Ej; at rate at least G;/2. But each
E;(A;{t)) is finite at this point and must always be non-
negative, so for all ¢ greater than some #;, A;(t) must be
outside S;.

By definition, the complement of 5; consists of config-
urations with By > E(A;(0}) and configurations within
¢ of an outer-convex configuration. But Eu{A;(t)) <
E(A;(0)), so we must be in the second case: A;(2) is close
to an outer-convex configuration for £ > ¢;. So for any
t > max; &, A(t) is close to an outer-convex configuration,
completing the proof, a

5 Algorithm

This section presents an algorithm for compuling a
piccewise-linear motion from an initial configuration to an
outer-convex configuration. This path is computed by first
selecting a particular admissible energy function, expressing
the encrgy function in terms of a suitable parameterization,
and then applying Euler integration along the downward gra-
dient path to get a series of “snapshots” of our linkage with
decreasing energy which can be joined by linear interpola-
tion in our parameter space. The algorithm terminates when
we are sufficiently close to an energy-critical configuration
to complete the motion by linear interpolation. As shown in
Section 4, any critical configuration is guaranteed to corre-
spond to an outer-convex configuration as desired.

5.1 Parameterizing the Configuration Space of an Are.
We start by considering the case when A consists of a
single arc of n — 1 edges. Refer to Figure 2(a). Let

V = [v1,va,...,vs] denote the positions of the n vertices



