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THE IMPLICIT AND THE INVERSE
FUNCTION THEOREMS: EASY PROOFS

Abstract

This article presents simple and easy proofs of the Implicit Func-
tion Theorem and the Inverse Function Theorem, in this order, both
of them on a finite-dimensional Euclidean space, that employ only the
Intermediate-Value Theorem and the Mean-Value Theorem. These proofs
avoid compactness arguments, the contraction principle, and fixed-point
theorems.

1 Introduction.

The objective of this paper is to present very simple and easy proofs of the Im-
plicit and Inverse Function theorems, in this order, on a finite-dimensional Eu-
clidean space. The lack of sophisticated tools used in its proof could make The
Implicit Function Theorem more acessible to an undergraduate audience. Be-
sides following Dini’s inductive approach, these demonstrations do not employ
compactness arguments, the contraction principle or any fixed-point theorem.
Instead of such tools, these proofs rely on the Intermediate-Value Theorem
and the Mean-Value Theorem on the real line.

The history of the Implicit and Inverse Function theorems is quite long
and dates back to R. Descartes (on algebraic geometry), I. Newton, G. Leib-
niz, J. Bernoulli, and L. Euler (and their works on infinitesimal analysis), J.
L. Lagrange, A. L. Cauchy, and U. Dini (on functions of real variables and
differential geometry). Let us discuss briefly some of the techniques that have
been used to prove these theorems.
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Newton’s iteration method for inverting f : R→ R near x0, with f ′(x0) 6=
0, shows a sequence converging to a solution x of the equation y = f(x).
Through the linearization y ≈ f(x0)+f ′(x0)(x−x0) we obtain the approximate
solution x ≈ x0 + f ′(x0)−1[y − f(x0)]. Then, we use the Newton-Raphson
iteration xn+1 = xn + f ′(xn)−1[y− f(xn)], with n = 0, 1, 2, . . .. See Dontchev
and Rockafellar [4, pp. 11–14] for a proof of this method in Rn that employs
compactness.

Lagrange’s inversion formula shows the formal Taylor series of the local
inverse of an analytic function f(z) such that f ′(z0) 6= 0. On the other
hand, Cauchy’s proof of the Implicit Function Theorem (for complex func-
tions) is considered the first rigorous proof of this theorem. By employing the
method of residues, Cauchy gave an integral representation for the solution.
He also proved such theorem by the method of the majorants (a technique
used to proof the Cauchy-Kowalewski theorem for analytic partial differential
equations), which also applies to real analytic functions. See Burckel [2, pp.
173–174, 180–183] and Krantz and Parks [6, pp. 30–38] and [7, pp. 27–32,
117–121].

The two most usual approaches to the Implicit and Inverse Function theo-
rems on a finite-dimensional Euclidean space begin with a proof of the latter
(then, the former follows). Hence, let us consider a function F : Rn → Rn of
class C1 and a point x0 such that the differential DF (x0) is invertible.

The most basic of these techniques uses elementary calculus and holds
only in finite dimensions, since it employs the local compactness of Rn. Let
us outline a proof. There is m > 0 such that ‖DF (x0)(v)‖ ≥ m|v|, for all v in
Rn. Hence, ‖DF (x) −DF (x0)‖ ≤ m(2

√
n)−1, with DF (x) invertible, for all

x in an open ball B = B(x0; r), r > 0. By applying the mean-value theorem
to each component of F we find |F (x1)−F (x2)| ≥ m|x1−x2|/2, for all x1, x2

in the closure B of B. Thus, F : B → F (B) is bicontinuous. If ∂B is the
boundary of B, then the distance d of F (x0) to the compact F (∂B) is positive.
Given y′ in the open ball V = B(F (x0); d/2), we put ϕ(x) = |y′ − F (x)|2, for
all x in B. We have |y′ − F (x)| > |y′ − F (x0)|, for all x in ∂B, and through
Weierstrass’s Theorem on Minima we see that ϕ has a minimum at a x′ in B.
By differentiating ϕ, we prove F (x′) = y′. Thus, U = B∩F−1(V ) is open and
F : U → V has a continuous inverse G. Given y and y+k, both in V , we write
G(y) = x and G(y + k) = x+ h. Hence, k → 0 if and only if h→ 0. Putting
S = DF (x), there is a c > 0 satisfying |S(h/|h|)| ≥ c for all h 6= 0. We also
have k = F (x+h)−F (x) = S(h) + |h|E(h), where E(h)→ 0 as h→ 0. Thus,

lim
k→0

G(y + k)−G(y)− S−1(k)

|k|
= lim
h→0

−S−1(E(h))

|S(h/|h|) + E(h)|
= 0.
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That is, G is differentiable at y and DG(y) = DF (x)−1, where x = G(y). For
details, see Knapp [5, pp. 152–161] and Spivak [10, pp. 40–45].

The second approach is more advanced and abstract, relies on the com-
pleteness of Rn, can be extended to complete normed spaces (Banach spaces)
of arbitrary dimension, and holds in more general spaces than Ck functions.
The technique depends on basic functional analysis and resembles Newton’s
method since it employs a somewhat similar iterative procedure, which we
now state.

The Contraction Mapping Principle. Let X be a complete metric space,
with metric d. Let us suppose that Φ : X → X satisfies d(Φ(x),Φ(y)) ≤
λd(x, y), for all x, y in X, where λ is a constant and 0 < λ < 1. Then, Φ has
a unique fixed point. That is, there exists a unique x in X such that Φ(x) = x.

Let us summarize a proof of the Inverse Function Theorem that employs
this principle. Searching for a solution x of F (x) = y, near x0, we define
Φ(x) = x+T−1[y−F (x)], with T = DF (x0) and y a parameter. Hence, F (x) =
y is equivalent to Φ(x) = x. Since DΦ(x0) = 0, we have ‖DΦ(x)‖ < 2−1 for all
x in an open ball U containing x0. We may assume that DF (x) is invertible at
every x in U . The mean-value inequality yields |Φ(x1)−Φ(x2)| ≤ 2−1|x1−x2|,
for all x1, x2 in U . Therefore, Φ has at most one fixed point in U and thus
F is injective on U . Hence, F : U → F (U) has an inverse G. Let us see
that V = F (U) is open. Given y3 = F (x3), with x3 in U , we pick an open
ball B = B(x3; r), with r > 0, whose closure B lies in U . Fixing y such that
|y−y3| < 2−1‖T−1‖−1r and taking any x in B, we have |Φ(x)−Φ(x3)| ≤ r/2,
|Φ(x3)− x3| ≤ ‖T−1‖2−1‖T−1‖−1r = r/2, and |Φ(x)− x3| ≤ r. Thus, Φ is a
contraction of the complete set B into B. Hence, Φ has a fixed point x in B
and F (x) = y. Therefore, V is open. Analogously, given any open subset of U ,
its image by F is an open subset of V . Thus, F : U → V is bicontinuous. We
proved above that G is differentiable. For details, see Rudin [8, pp. 221–228].
A proof of the Implicit Function Theorem in Banach spaces, based on the
contraction mapping principle, is given by Krantz and Parks [7, pp. 48–52].

The implicit and inverse function theorems are also true on manifolds and
other settings. Moreover, they hold in many classes of functions (e.g., Ck,
Ck,α, Lipschitz, analytic). For extensive accounts on the history of the Im-
plicit Function Theorem and further developments (as in differentiable man-
ifolds, Riemannian geometry, partial differential equations, etc.), see Krantz
and Parks [7] (this book includes a proof of a version of the powerful Nash-
Moser theorem), Dontchev and Rockafellar [4, pp. 7–8, 57–59], and Scarpello
[9].

In this article, we prove by induction the Implicit Function Theorem and
from it we obtain the Inverse Function Theorem. This approach is accredited
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to U. Dini (1876), who was the first to present a proof of the Implicit Function
Theorem for a system with several equations and several real variables, and
then stated and proved the Inverse Function Theorem. See Dini [3, pp. 197–
241].

Another proof by induction of the Implicit Function Theorem, that also
simplifies Dini’s argument, is given by Krantz and Parks [7, pp. 36–41]. How-
ever, this particular proof by Krantz and Parks does not establish the local
uniqueness of the implicit solution of the given equation. On the other hand,
the proof presented in this paper further simplifies Dini’s argument and makes
the whole proof of the Implicit Function Theorem very simple, easy, and with
very few computations. The Inverse Function Theorem then follows immedi-
ately.

2 Notations and Preliminaries.

We assume without proof the following basic theorems.

The Intermediate-Value Theorem. Let f : [a, b]→ R be continuous. If λ
is a value between f(a) and f(b), then there is a c in [a, b] satisfying f(c) = λ.

The Mean-Value Theorem. Let f : [a, b] → R be continuous on [a, b] and
differentiable on the open interval (a, b). Then, there exists c in (a, b) satisfying
f(b)− f(a) = f ′(c)(b− a).

Let us consider n and m, both in N. In what follows we fix the ordered
canonical bases {e1, . . . , en} and {f1, . . . , fm}, of Rn and Rm, respectively.
Given x = (x1, . . . , xn) and y = (y1, . . . , yn), both in Rn, their inner product
is 〈x, y〉 = x1y1 + · · · + xnyn. The norm of x is |x| =

√
〈x, x〉 and the open

ball centered at x and radius r > 0 is B(x; r) = {y in Rn : |y − x| < r}.
We identify a linear map T : Rn → Rm with the m× n matrix M = (aij),

where T (ej) = a1jf1 + · · · + amjfm, for each j = 1, . . . , n. The norm of T
is ‖T‖ = sup{|T (v)| : |v| ≤ 1} and we have |T (v)| ≤ ‖T‖|v|, for all v in Rn.
Hence, T is continuous everywhere. We also write Tv for T (v).

Let Ω be an open set in Rn. Given a function F : Ω → Rm, we denote
by Fi : Ω → R the ith component of F , for each i = 1, . . . ,m. We say that
F is differentiable at p in Ω if there is a linear map DF (p) : Rn → Rm and
a function E : B(0; r) → Rm defined on some B(0; r), with r > 0, such that
F (p + h) = F (p) + DF (p)(h) + E(h)|h|, for all |h| < r, where E(h) → 0 as
h → 0 and E(0) = 0. The function F is differentiable if it is differentiable at
all points in Ω. The matrix identified with DF (p) is the Jacobian matrix of
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F at p,

JF (p) =

(
∂Fi
∂xj

(p)

)
1≤i≤m
1≤j≤n

=


∂F1

∂x1
(p) · · · ∂F1

∂xn
(p)

...
...

∂Fm

∂x1
(p) · · · ∂Fm

∂xn
(p)


[if m = 1, then we write JF (p) = ∇F (p)]. We say that F is of class C1 if F
and its first-order partial derivatives are continuous on Ω. In such case, we
also say that F is in C1(Ω;Rm).

The following lemma (a particular case of the chain rule but sufficient for
our purposes) is a local result. For practicality, we enunciate it for a function
F defined on Rn.

Lemma 1. Let F : Rn → Rm be differentiable, T : Rk → Rn be the linear
function associated to a n × k real matrix M , and y be a fixed point in Rn.
Then, the function G(x) = F (y + Tx), where x is in Rk, is differentiable and
satisfies JG(x) = JF (y + Tx)M , for all x in Rk.

Proof. Let us fix x in Rk. Given v in Rn, by the differentiability of F we
have F (y+Tx+v) = F (y+Tx)+DF (y+Tx)v+E(v)|v|, where E(v)→ 0 as
v → 0. Substituting v = Th, where h is in Rk, into the last identity we obtain
G(x+ h) = G(x) +DF (y + Tx)Th+ E(Th)|Th|. Thus, supposing h 6= 0, we

have |E(Th)|Th|
|h| | ≤ |E(Th)|‖T‖|h|

|h| = ‖T‖|E(Th)|. If h → 0, then Th → 0 and

E(Th)→ 0. Hence, G is differentiable at x and JG(x) = JF (y + Tx)M .

With the hypothesis on Lemma 1, we see that if F is C1 then G is also C1.
Given a and b, both in Rn, we put ab = {a + t(b − a) : 0 ≤ t ≤ 1}.

The following lemma, the mean-value theorem in several variables, is a trivial
consequence of the mean-value theorem on the real line and thus we omit the
proof.

Lemma 2. Let us consider F : Ω→ R differentiable, with Ω open in Rn. Let
a and b be points in Ω such that the segment ab is within Ω. Then, there exists
c in ab satisfying

F (b)− F (a) = 〈∇F (c), b− a〉 .

We denote the determinant of a real square matrix M by detM .

Lemma 3. Let F be in C1(Ω;Rn), with Ω open within Rn, and p in Ω sat-
isfying det JF (p) 6= 0. Then, F restricted to some ball B(p; r), with r > 0, is
injective.
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Proof. (See Bliss [1]) Since F is of class C1 and the determinant function

det : Rn2 → R is continuous and det JF (p) = det
(
∂Fi

∂xj
(p)
)
6= 0, there is

r > 0 such that det
(
∂Fi

∂xj
(ξij)

)
does not vanish, for all ξij in B(p; r), where

1 ≤ i, j ≤ n.
Let a and b be distinct in B(p; r). By employing the mean-value theorem

in several variables to each component Fi of F , we find ci in the segment ab,
within B(p; r), such that Fi(b)− Fi(a) = 〈∇Fi(ci), b− a〉. Hence, F1(b)− F1(a)

...
Fn(b)− Fn(a)

 =


∂F1

∂x1
(c1) · · · ∂F1

∂xn
(c1)

...
...

∂Fn

∂x1
(cn) · · · ∂Fn

∂xn
(cn)


 b1 − a1

...
bn − an

 .

Since det
(
∂Fi

∂xj
(ci)
)
6= 0 and b− a 6= 0, we conclude that F (b) 6= F (a).

3 The Implicit and the Inverse Function Theorems.

The first implicit function result we prove concerns one equation and several
variables. We denote the variable in Rn+1 = Rn × R by (x, y), where x =
(x1, . . . , xn) is in Rn and y is in R.

Theorem 4. Let F : Ω → R be of class C1 in an open set Ω inside Rn × R
and (a, b) be a point in Ω such that F (a, b) = 0 and ∂F

∂y (a, b) > 0. Then, there

exist open sets X ⊂ Rn and Y ⊂ R, with (a, b) ∈ X × Y ⊂ Ω, satisfying the
following.

• There is a unique f : X → Y such that F
(
x, f(x)

)
= 0, for all x ∈ X.

• We have f(a) = b. Moreover, the function f is of class C1 and satisfies

∂f

∂xj
(x) = −

∂F
∂xj

(x, f(x))

∂F
∂y (x, f(x))

, for all x in X, where j = 1, . . . , n.

Proof. Let us split the proof into three parts: existence and uniqueness,
continuity, and differentiability.

� Existence and Uniqueness. Since ∂F
∂y (a, b) > 0, by continuity there exists a

non-degenerate (n+ 1)-dimensional parallelepiped X ′× [b1, b2], centered
at (a, b) and contained in Ω, whose edges are parallel to the coordinate
axes such that ∂F

∂y > 0 on X ′ × [b1, b2]. Then, the function F (a, y),

where y runs over [b1, b2], is strictly increasing and F (a, b) = 0. Thus,
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we have F (a, b1) < 0 and F (a, b2) > 0. By the continuity of F , there
exists an open non-degenerate n-dimensional parallelepiped X, centered
at a and contained in X ′, whose edges are parallel to the coordinate
axes such that for every x in X we have F (x, b1) < 0 and F (x, b2) > 0.
Hence, fixing an arbitrary x in X and employing the intermediate-value
theorem on the strictly increasing function F (x, y), where y runs over
[b1, b2], yields the existence of a unique y = f(x) inside the open interval
Y = (b1, b2) such that F (x, f(x)) = 0.

� Continuity. Let b1 and b2 be such that b1 < b1 < b < b2 < b2. From
above, there exists an open set X ′′, contained in X and containing a,
such that f(x) is in the open interval (b1, b2), for all x in X ′′. Thus, f is
continuous at x = a. Now, given any a′ in X, we put b′ = f(a′). Then,
f : X → Y is a solution of the problem F (x, h(x)) = 0, for all x in X,
with the condition h(a′) = b′. Thus, from what we have just done it
follows that f is continuous at a′.

� Differentiability. [At this point in the proof, Dini went on to use a com-
pactness argument, whereas we will use the mean-value theorem instead.]
Given x in X and j in {1, . . . , n}, let ej be the jth canonical vector in Rn
and t 6= 0 be small enough so that x+ tej is in X. Putting P =

(
x, f(x)

)
and Q =

(
x + tej , f(x + tej)

)
, we have F (P ) = 0 = F (Q). Moreover,

Q−P =
(
0, . . . , 0, t, 0, . . . , 0, f(x+ tej)−f(x)

)
is in Rn+1, where t is the

jth coordinate of Q−P . Thus, by employing the mean-value theorem in
several variables on F restricted to the segment PQ within the open set
X × Y , we find a point (x, y), depending on t and inside PQ, satisfying

0 = F (Q)− F (P ) = 〈∇F (x, y), Q− P 〉
= ∂F

∂xj
(x, y)t+ ∂F

∂y (x, y)[f(x+ tej)− f(x)].

Since f is continuous, we have (x, y) → P = (x, f(x)) as t → 0. More-
over, ∂F

∂xj
and ∂F

∂y are continuous, with ∂F
∂y not vanishing on X×Y . Thus,

by employing the identities displayed right above we conclude that

lim
t→0

f(x+ tej)− f(x)

t
= lim
t→0
−

∂F
∂xj

(x, y)

∂F
∂y (x, y)

= −
∂F
∂xj

(x, f(x))

∂F
∂y (x, f(x))

.

This gives the desired formula for ∂f
∂xj

and implies that f is of class C1.
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Next, we prove the general implicit function theorem. In general, we apply
this theorem when we have a nonlinear system with m equations and n + m
variables. Analogously to a linear system, we interpret n variables as inde-
pendent variables and determine the remaining m variables, called dependent
variables, as a function of the n independent variables.

Let us introduce some helpful notation. As before, we denote by x =
(x1, ..., xn) a point in Rn and by y = (y1, . . . , ym) a point in Rm. Given Ω an
open subset of Rn × Rm and a differentiable function F : Ω → Rm, we write
F = (F1, . . . , Fm), with Fi the ith component of F and i = 1, . . . ,m. We put

∂F

∂y
=

(
∂Fi
∂yj

)
1≤i≤m
1≤j≤m

=


∂F1

∂y1
· · · ∂F1

∂ym
...

...
∂Fm

∂y1
· · · ∂Fm

∂ym

 .

Analogously, we define the matrix ∂F
∂x =

(
∂Fi

∂xk

)
, with 1 ≤ i ≤ m and 1 ≤ k ≤ n.

Theorem 5. (The Implicit Function Theorem). Let F be in C1(Ω;Rm),
with Ω an open set in Rn × Rm, and (a, b) a point in Ω such that F (a, b) = 0
and ∂F

∂y (a, b) is invertible. Then, there exist an open set X, inside Rn and
containing a, and an open set Y , inside Rm and containing b, satisfying the
following.

• Given x in X, there is a unique y = f(x) in Y such that F (x, f(x)) = 0.

• We have f(a) = b. Moreover, f : X → Y is of class C1 and

Jf(x) = −
[
∂F

∂y
(x, f(x))

]−1

m×m

[
∂F

∂x
(x, f(x))

]
m×n

, for all x in X.

Proof. We split the proof into four parts: finding Y , existence and differen-
tiability, differentiation formula, and uniqueness.

� Finding Y . Defining Φ(x, y) =
(
x, F (x, y)), where (x, y) is in Ω, we have

det JΦ = det

(
I 0
∂F
∂x

∂F
∂y

)
= det

∂F

∂y
,

with I the identity matrix of order n and 0 the n×m zero matrix. Thus,
det JΦ(a, b) 6= 0. As a consequence, shrinking Ω if needed, by Lemma 3
we may assume that Φ is injective and Ω = X ′ × Y , with X ′ an open
set in Rn that contains a and Y an open set in Rm that contains b.
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� Existence and differentiability. We claim that the equation F (x, h(x)) = 0,
with the condition h(a) = b, has a solution f = f(x) of class C1 on some
open set containing a. Let us prove it by induction on m.

The case m = 1 follows from Theorem 4. Let us assume that the claim
is true for m − 1. Then, for the case m, following the notation F =
(F1, . . . , Fm) we write F = (F2, . . . , Fm). Furthermore, we put (x; y) =
(x1, . . . , xn; y1, . . . , ym), y′ = (y2, . . . , ym), y = (y1; y′), and (x; y) =
(x; y1; y′).

Let us consider the invertible matrix J = ∂F
∂y (a, b) and the associated

bijective linear function J : Rm → Rm. By Lemma 1 we deduce that
the function G(x; z) = F [x; b+J−1(z− b)], defined in some open subset
of Rn × Rm that contains (a, b), satisfies (interpreting the variable x as
a fixed parameter) the identity ∂G

∂z (x; z) = ∂F
∂y [x; b + J−1(z − b)]J−1.

Hence, the function G satisfies ∂G
∂z (a; b) = JJ−1 and the condition

G(a; b) = 0. Therefore, we may assume that J is the identity matrix
of order m.

Now, let us consider the equation F1(x; y1; y′) = 0, where x and y′ are
independent variables and y1 is a dependent variable, with the condition
y1(a; b′) = b1. Since ∂F1

∂y1
(a; b1; b′) = 1, there exists by Theorem 4 a

function ϕ(x; y′) of class C1 on some open set [let us say, a cartesian
product U × V of open sets] containing (a; b′) that satisfies

F1[x;ϕ(x; y′); y′] = 0 and the condition ϕ(a; b′) = b1,

on this open set. Next, substituting y1 = ϕ(x; y′) into F(x; y1; y′) = 0,
we look at solving the equation

F [x;ϕ(x, y′); y′] = 0, with the condition y′(a) = b′.

Differentiating F [x;ϕ(x; y′); y′], with respect to y2, . . . , ym, we find

∂Fi
∂y1

(a; b)
∂ϕ

∂yj
(a; b′) +

∂Fi
∂yj

(a; b) = 0 +
∂Fi
∂yj

(a; b), where 2 ≤ i, j ≤ m.

The matrix
(
∂Fi

∂yj
(a; b)

)
, where 2 ≤ i, j ≤ m, is the identity matrix of

order m − 1. Hence, by induction hypothesis there is a function ψ of
class C1 on an open set X containing a [with the image of ψ inside V ]
that satisfies

F
[
x;ϕ

(
x;ψ(x)

)
, ψ(x)

]
= 0, for all x in X, and the condition ψ(a) = b′.
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We also have F1

[
x;ϕ

(
x;ψ(x)

)
;ψ(x)

]
= 0, for all x in X. Defining f(x) =(

ϕ(x;ψ(x));ψ(x)
)
, with x in X, we obtain F [x; f(x)] = 0, for all x in

X, and f(a) =
(
ϕ(a; b′); b′

)
= (b1; b′) = b, where f is of class C1 on X.

� Differentiation formula. Differentiating F [x, f(x)] = 0 we find

∂Fi
∂xk

+

m∑
j=1

∂Fi
∂yj

∂fj
∂xk

= 0, with 1 ≤ i ≤ m and 1 ≤ k ≤ n.

In matrix form, we write ∂F
∂x

(
x, f(x)

)
+ ∂F

∂y

(
x, f(x)

)
Jf(x) = 0.

� Uniqueness. Let g : X → Y be a function satisfying F
(
x, g(x)

)
= 0,

for all x in X, and g(a) = b. Given an arbitrary x in X, following
the definition of Φ we have Φ(x, g(x)

)
=
(
x, F (x, g(x)

)
= (x, 0) and

Φ
(
x, f(x)

)
=
(
x, F (x, f(x)

)
= (x, 0). Since in the first part of this proof

(the ”finding Y ” part) we established that Φ is injective, we deduce the
identity

(
x, g(x)

)
=
(
x, f(x)

)
, for all x in X. Thus, g = f .

Theorem 6. (The Inverse Function Theorem). Let F : Ω→ Rn, where
Ω is an open set in Rn, be of class C1 and p a point in Ω such that JF (p) is in-
vertible. Then, there exist an open set X containing p, an open set Y contain-
ing F (p), and a function G : Y → X of class C1 that satisfies F

(
G(y)

)
= y,

for all y in Y , and G
(
F (x)

)
= x, for all x in X. Moreover,

JG(y) = JF
(
G(y)

)−1
, for all y in Y.

Proof. We split the proof into two parts: existence and differentiation for-
mula.

� Existence. Shrinking Ω, if necessary, by Lemma 3 we may assume that F
is injective. The function Φ(x, y) = F (x)− y, where (x, y) is in Ω×Rn,
is of class C1 and satisfies Φ

(
p, F (p)

)
= 0 and ∂Φ

∂x

(
p, F (p)

)
= JF (p).

From the implicit function theorem it follows that there exist an open
set Y containing F (p) and a function G : Y → Ω of class C1 such
that Φ

(
G(y), y

)
= F

(
G(y)

)
− y = 0, for all y in Y . That is, we have

F
(
G(y)

)
= y, for all y in Y .

Hence, the set Y is contained in the image of F . Since F is continuous
and injective, the pre-image set X = F−1(Y ) is open, contains p, and F
maps X bijectively onto Y .

The identity F
(
G(y)

)
= y, for all y in Y , implies that G maps Y to X.

Since F is bijective from X to Y , the map G is bijective from Y to X.
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� Differentiation formula. Let us write F (x) =
(
F1(x), . . . , Fn(x)

)
and

G(y) =
(
G1(y), . . . , Gn(y)

)
. Differentiating

(
G1(F (x)), . . . , Gn(F (x))

)
we obtain

n∑
k=1

∂Gi
∂yk

∂Fk
∂xj

=
∂xi
∂xj

=

{
1, if i = j,
0, if i 6= j.

4 Some Final Remarks.

It is the author’s belief that, in general, an elementary and easy proof of a
theorem can help very much a beginner in getting a good understanding of
such theorem. Thus, the author hopes that this proof of the Implicit Function
Theorem provides a good alternative introduction to this fundamental theorem
of Real Analysis.
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[6] S. G. Krantz and H. R. Parks, A Primer of Real Analytic Functions,
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