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Review from first lecture:

Definition (Federer 1959)

The reach of a space curve is the largest e so that any point in
an e-neighborhood of the curve has a unique nearest neighbor
on the curve.

<))

reach(K) (also called thickness) is controlled by curvature
maxima (kinks) and self-distance minima (struts).
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Ropelength

Definition
The ropelength of K is given by Rop(K) = Len(K)/ reach(K).

We can bound Rop in terms of Cr.
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Ropelength

Definition
The ropelength of K is given by Rop(K) = Len(K)/ reach(K).

Theorem (with Kusner, Sullivan 2002, Gonzalez, De la Llave

2003, Gonzalez, Maddocks, Schuricht, Von der Mosel 2002)

Ropelength minimizers (called tight knots) exist in each knot
and link type and are C'-1.

We can bound Rop in terms of Cr.

Cantarella Geometric Knot Theory



Ropelength

Definition
The ropelength of K is given by Rop(K) = Len(K)/ reach(K).

Theorem (with Kusner, Sullivan 2002, Gonzalez, De la Llave

2003, Gonzalez, Maddocks, Schuricht, Von der Mosel 2002)

Ropelength minimizers (called tight knots) exist in each knot
and link type and are C'-1.

We can bound Rop in terms of Cr.

Cantarella Geometric Knot Theory



Ropelength

Definition
The ropelength of K is given by Rop(K) = Len(K)/ reach(K).

Theorem (with Kusner, Sullivan 2002, Gonzalez, De la Llave

2003, Gonzalez, Maddocks, Schuricht, Von der Mosel 2002)

Ropelength minimizers (called tight knots) exist in each knot
and link type and are C'-'.

We can bound Rop in terms of Cr. For small knots, the most
effective bound is

Theorem (Diao 2006)

Rop(K) > % <17.334 +/17.3342 4 64r Cr(K)) .
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Ropelength

Definition
The ropelength of K is given by Rop(K) = Len(K)/ reach(K).

Theorem (with Kusner, Sullivan 2002, Gonzalez, De la Llave

2003, Gonzalez, Maddocks, Schuricht, Von der Mosel 2002)

Ropelength minimizers (called tight knots) exist in each knot
and link type and are C'-1.

We can bound Rop in terms of Cr. For large knots, the most
effective bound is

Theorem (Buck and Simon 1999)
Rop(K) > 2.210Cr¥/4.
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Bounding ropelength in terms of topological invariants

Definition
Peri(n) is the minimum length of any curve surrounding n
disjoint unit disks in the plane.
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Bounding ropelength in terms of topological invariants

Definition
Peri(n) is the minimum length of any curve surrounding n
disjoint unit disks in the plane.
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Peri(n) is the minimum length of any curve surrounding n
disjoint unit disks in the plane.
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Bounding ropelength in terms of topological invariants

Definition
Peri(n) is the minimum length of any curve surrounding n
disjoint unit disks in the plane.

Theorem (with Kusner, Sullivan 2002)

Suppose K is topologically linked to n components and K and
all the other components have unit reach. Then

Rop(K) > 27 + Peri(n).
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Proof (sketch) of Peri(n) bound for ropelength

Proposition

For any closed curve K of unit reach, there is a point p outside
the tube around K so that the cone of K to p has (intrinsic)
cone angle 2.

Cantarella Geometric Knot Theory



Proof (sketch) of Peri(n) bound for ropelength

Proposition

For any closed curve K of unit reach, there is a point p outside
the tube around K so that the cone of K to p has (intrinsic)
cone angle 2.

The intrinsic geometry of the cone is Euclidean and the other
components puncture it in n disjoint disks.
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This bound is sometimes sharp

For some examples, the Peri(n) bound is actually sharp.
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Linking number bounds for ropelength

Theorem (with Kusner, Sullivan 2002)
If K and J have the same reach, then

Rop(K) > 27 + 2m/LK(K, J).
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Linking number bounds for ropelength

Theorem (with Kusner, Sullivan 2002)
If K and J have the same reach, then

Rop(K) > 27 + 2m/LK(K, J).

Proof.

A unit norm vector field flowing along the tube around J has flux
across the Euclidean cone spanning K of 7 Lk(K, J), so the
cone has at least this area. O
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Linking number bounds for ropelength

Theorem (with Kusner, Sullivan 2002)
If K and J have the same reach, then

Rop(K) > 27 + 2m/LK(K, J).

Proof.

A unit norm vector field flowing along the tube around J has flux
across the Euclidean cone spanning K of 7 Lk(K, J), so the
cone has at least this area. O

The extra 2m comes from the portion of the spanning disk in the
tube around K and depends on cone angle. If K was knotted,
we could find a 4w cone point and improve it to 4.
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Another linking number bound on ropelength

It is interesting to compare this bound to
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It is interesting to compare this bound to
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Another linking number bound on ropelength

It is interesting to compare this bound to

Theorem (Diao, Janse Van Rensburg 2002)

If K and J have unit reach, is a constant ¢, so that

min{Len(K) Len(J)"/3,Len(K)'/3 Len(J)} > ¢z Lk(K, J)
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Another linking number bound on ropelength

It is interesting to compare this bound to

Theorem (Diao, Janse Van Rensburg 2002)

If K and J have unit reach, is a constant ¢, so that

min{Len(K) Len(J)"/3,Len(K)'/3 Len(J)} > ¢z Lk(K, J)

Proof.
Proved by directly bounding the Gauss linking integral

_ 1 [ K(s) x J(t)- (K(s) — J(1))
Lk(K.J) = 4 // FERQL dsdt.
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Open Question

Can you find bounds on ropelength in terms of finite-type
invariants by looking at their integral formulations?

Definition

Let w be the pullback of area form on S? to R under x — x/ |x|.

For example, we note that the Gauss integral can be written

Lk(K,J):/ W(K(8) — J(1)).

S1x St
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Open question (continued)

Definition
Let Aq = {(S1, Sp, S3, S4)|S1, S2, S3, S4 in order on S'} and

Az = {(s1, S2, S3; X)|S1, Sp, S5 in order on S
and x € R3 not on K(S")}.
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Open question (continued)

Theorem (Guadagnini, Martinelli, Minchev 1989, Bar-Natan

1991, cf. Bott, Taubes 1995, Lin, Wang 1996)

The second coefficient of the Conway polynomial v
(normalized so v»(unknot) = —1/24) obeys

Vs = /A Ww(K(ss) — K(s1)) A w(K(ss) — K(2))

_ /A (X — K(s1)) Aw(x — K(s2)) Aw(x — K(s3))

Open Question

In particular, can you bound this integral for vo above in terms
of ropelength?
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Other finite-type invariants

Theorem (Thurston 1995, Altschuler and Friedel 1995)

All of the finite type invariants have integral formulations
defined in terms of linear combinations of Gauss-type integrals
of configuration spaces of points on the knots and in space.

(Actually defining the integrals would take too long to do here.)

Open Question

Is ropelength bounded below by a certain power of any
finite-type invariant of type n? If so, what power?
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Approximating Ropelength Minimizers

The ropelength of a polygon is defined by
dcsd P }

Rop(P) = min {MinRad(P),

where MinRad(P) is the minimum radius of all the circle arcs
inscribed at vertices of P so that they are tangent to P at both
ends and touch the midpoint of the shorter edge at each vertex.
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A hunting license

Theorem (Rawdon 2000)

Suppose that P is a polygonal knot. Then there exists a C''
knot K inscribed in P so that

Rop(P) > Rop(K)

Given this theorem, we can use computational methods to find
upper bounds for smooth ropelength by finding tight polygonal
knots.
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A hunting license

Theorem (Rawdon 2000)

Suppose that P is a polygonal knot. Then there exists a C''!
knot K inscribed in P so that

Rop(P) > Rop(K)

Given this theorem, we can use computational methods to find
upper bounds for smooth ropelength by finding tight polygonal
knots.
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A hunting license

Theorem (Rawdon 2000)

Suppose that P is a polygonal knot. Then there exists a C''!
knot K inscribed in P so that

Rop(P) > Rop(K)

Given this theorem, we can use computational methods to find
upper bounds for smooth ropelength by finding tight polygonal
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A hunting license

Theorem (Rawdon 2000)

Suppose that P is a polygonal knot. Then there exists a C''!
knot K inscribed in P so that

Rop(P) > Rop(K)

Given this theorem, we can use computational methods to find
upper bounds for smooth ropelength by finding tight polygonal
knots.

&QE
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Some more tight polygonal knots ...
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Some more tight polygonal knots . ..
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Some more tight polygonal knots . ..
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Tightening knots by computer

@ Simulated annealing

Results (with Ashton, Piatek, Rawdon 2006) ridgerunner:

&

D %

Link name
Vertices
Rop bound
Rop

Error

Hopf link (22)

216
25.1389
87
0.02%

22422

384
41.7086588
127 + 4
0.02%

Borromean rings (63)
630

58.0146

58.0060

0.01%
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Tightening knots by computer

@ Simulated annealing
o Laurie, Stasiak, et. al. 1997

Results (with Ashton, Piatek, Rawdon 2006) ridgerunner:

&

D %

Link name
Vertices
Rop bound
Rop

Error

Hopf link (22)

216
25.1389
87
0.02%

22422

384
41.7086588
127 + 4
0.02%

Borromean rings (63)
630

58.0146

58.0060

0.01%
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Tightening knots by computer

@ Simulated annealing
o Laurie, Stasiak, et. al. 1997
e Rawdon 2000-2006 TOROS

Results (with Ashton, Piatek, Rawdon 2006) ridgerunner:

&

D %

Link name
Vertices
Rop bound
Rop

Error

Hopf link (22)

216
25.1389
87
0.02%

22422

384
41.7086588
127 + 4
0.02%

Borromean rings (63)
630

58.0146

58.0060

0.01%
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Tightening knots by computer

@ Simulated annealing
o Laurie, Stasiak, et. al. 1997
e Rawdon 2000-2006 TOROS
e Smutny, Maddocks 2003-2004 (for a kind of spline)

Results (with Ashton, Piatek, Rawdon 2006) ridgerunner:

&

2

Link name
Vertices
Rop bound
Rop

Error

Hopf link (22)

216
25.1389
87
0.02%

22422

384
41.7086588
127 + 4
0.02%

Borromean rings (63)
630

58.0146

58.0060

0.01%
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Tightening knots by computer

@ Simulated annealing
o Laurie, Stasiak, et. al. 1997
e Rawdon 2000-2006 TOROS
e Smutny, Maddocks 2003-2004 (for a kind of spline)

@ Gradient Descent

Results (with Ashton, Piatek, Rawdon 2006) ridgerunner:

&

2

Link name
Vertices
Rop bound
Rop

Error
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22422

384
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630
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58.0060

0.01%

Cantarella

Geometric Knot Theory



Tightening knots by computer

@ Simulated annealing
o Laurie, Stasiak, et. al. 1997
e Rawdon 2000-2006 TOROS
e Smutny, Maddocks 2003-2004 (for a kind of spline)
@ Gradient Descent
e Baranska, Pieranski, Przybl, Rawdon 2000-2008 SONO

Results (with Ashton, Piatek, Rawdon 2006) ridgerunner:
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Tightening knots by computer

@ Simulated annealing
o Laurie, Stasiak, et. al. 1997
e Rawdon 2000-2006 TOROS
e Smutny, Maddocks 2003-2004 (for a kind of spline)
@ Gradient Descent
e Baranska, Pieranski, Przybl, Rawdon 2000-2008 SONO

Results (with Ashton, Piatek, Rawdon 2006) ridgerunner:
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How does it work?

Simulates the gradient flow of length

...eventually all motion is stopped by constraints.
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Movies

Nobody could resist showing a few minutes of movie footage
from this process. (It's Friday afternoon, after all!)
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Ok, now back to work . ..

Open Question

Can a tightening knot get “stuck” in a local ropelength minimum
before reaching the global minimum?

X 2

4,6, Rop(K) = 44.868 4, Rop(K) = 42.099
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Gordian Unknots

Open Question

Is there an unknotted local minimum for ropelength other than
the circle?

Cantarella Geometric Knot Theory



Gordian Unknots

Open Question

Is there an unknotted local minimum for ropelength other than
the circle?

Theorem (Smale Conjecture, Hatcher 1983)

The space of smoothly embedded unknotted circles in S°
deformation retracts onto the space of great circles in S°.
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Gordian Unknots

Open Question

Is there an unknotted local minimum for ropelength other than
the circle?

Theorem (Smale Conjecture, Hatcher 1983)

The space of smoothly embedded unknotted circles in S°
deformation retracts onto the space of great circles in S°.

So answer might be “no”. BUT ... (Pieranski et.al. 2004)
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Gordian Unknots

Is there an unknotted local minimum for ropelength other than
the circle?

Theorem (Smale Conjecture, Hatcher 1983)

The space of smoothly embedded unknotted circles in S°
deformation retracts onto the space of great circles in S°.

So answer might be “no”. BUT ... (Pieranski et.al. 2004)
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Important open questions

Open Question

Find an energy functional for which there is only one unknotted
local minimum for energy.
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Important open questions

Open Question

Find an energy functional for which there is only one unknotted
local minimum for energy.

Of course, this is probably very hard, since it would provide an
alternate proof of the Smale conjecture. Freedman tried it in the
1990s without success.
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Important open questions

Open Question

Find an energy functional for which there is only one unknotted
local minimum for energy.

Of course, this is probably very hard, since it would provide an
alternate proof of the Smale conjecture. Freedman tried it in the
1990s without success.

Open Question

Classify the energy functionals which must have unknotted
local minima. (Ropelength? Freedman/O’Hara “repulsive
charge” energies?)
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Ropelength-critical configurations

Definition

The set Kink is the set of two-jets (x, v, a) with radius of
curvature 1 in the closure of the set of 2-jets of L. If L is
(piecewise) C?, then Kink is the set of points with radius of
curvature .
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Ropelength-critical configurations

Definition

The set Kink is the set of two-jets (x, v, a) with radius of
curvature 1 in the closure of the set of 2-jets of L. If L is
(piecewise) C?, then Kink is the set of points with radius of
curvature .

Definition

The set Strut is the set of pairs of points (x, y) on L with xy L L
at x and y and |x — y| = 2reach(L).
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Ropelength-critical configurations

Definition

The set Kink is the set of two-jets (x, v, a) with radius of
curvature 1 in the closure of the set of 2-jets of L. If L is
(piecewise) C?, then Kink is the set of points with radius of
curvature .

Definition
The set Strut is the set of pairs of points (x, y) on L with xy L L
at x and y and |x — y| = 2reach(L).

The struts and kinks prevent L from reducing length without
also reducing reach.
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Strut measures

Definition
A strut measure is a non-negative Radon measure on the struts
representing a compression force pointing outwards.

A strut force measure 8 on L is the vector-valued Radon
measure defined at each point p of L by integrating a strut

measure over all the struts with an endpoint at p.

V.
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Theorem (with Fu, Kusner, Sullivan, Wrinkle (in preparation))

Suppose L is ropelength-critical, and that Kink is included in a
finite union of closed C? subarcs of L. Then 3 a strut force
measure 8 and a lower semicontinuous function ¢ € BV(L)
such that (¢N)" € BV(L), with

S’interior L=~ ((1 —20)T - (SDN)/)/

interior L '

If p is a fixed endpoint of L, o(p) = 0.

We are supposed to think of p as a “kink force measure”.
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ldeas from the proof

Theorem (an application of co-dim’l Kuhn-Tucker theorem)

Suppose L is regular and reach(L) > 1. Then L is
ropelength-critical iff there exist nonnegative Radon measures

w on Strut(L) and v on Kink(L)such that for any compatible
vector field &,

d¢ length(L) = /5 ) (X =y, & — &) du(x,y)

+ / der dv(x, v, a).
Kink(L)

Integrate by parts to derive the Euler-Lagrange equation:

_ _ . 1/
S =—( _1 2¢)T — (¢N)')".
from du from ¢ length from &r,dv
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Applications of the criticality theorem

Theorem (with Fu, Kusner, Sullivan, Wrinkle 2006)

An explicit construction of a critical configuration of the

Borromean rings with ropelength a definite integral which
evaluates to ~ 58.0060.
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Classification of critical curves without struts

In a kink-only critical curve, we have 8 = 0, so
(1 —2p)T — (pN)' = Vg = constant. (1)

Notice that V{ is some conserved vector along the curve.
Differentiating, we show a vector is equal to 0. This yields

¢+ (K2 — %) = K? (2)
ref =c (3)

for some constant c. Since « = 1, this is a system of ODE for 7
and ¢ with initial conditions specified by ¢ and ¢(0), and a
constant solution ¢ = ¢p(c).
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Pictures of solutions
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The general case.

We may assume ¢ # 0, so ¢ is not always zero. Where ¢ > 0,
we have 7 = ¢/¢?, so (2) and (3) become the semilinear ODE

o = k21— ) + :3 = fo()- (@)

All solutions of (4) are positive periodic functions.

(4) is an autonomous system with integrating function

2

1 c?
F(x,y)= <2X +2y2> 2x+ﬁ:const, (5)

where x = pand y = ¢'. O
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The general case (continued).

Theorem (CFKSW (2008))

Any closed piecewise C? \-critical curve with no strut force
measure is a circle of radius \/2.

Proof.
We have reduced to the case ¢ > 0 with period P. Note

T- Vo=(1-2p)—pT-N=1-¢. (6)

Solving (4) for 1 — o, we see 1 — ¢ = Ly — =5 So we have

P P Z c ¢ P -3

This # 0, since ¢ # 0 and ¢ > 0. So over each period the curve
moves a constant distance in the V; direction. O
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Maybe how to find alternate critical configurations
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Maybe how to find alternate critical configurations

Theorem (with Fu, Kusner, Sullivan, Wrinkle, in preparation)

There is another critical configuration of 31 with 2-fold
symmetry.
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Maybe how to find alternate critical configurations

Theorem (with Fu, Kusner, Sullivan, Wrinkle, in preparation)

There is another critical configuration of 31 with 2-fold
symmetry.

| A

Proof.

The proof is based on a symmetric version of the criticality
theorem. There should be a critical configuration with 3-fold
and with 2-fold symmetry (there is no configuration with both
symmetries.) O
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But not Gordian unknots ...

ee

This strategy can’t be extended to find Gordian unknots,
because the round circle already has a symmetry of every
period.
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Open Question

Open Question
Can you find an exact description of the shape of a tight knot?

You have the balance theorem to work with and a tremendous
amount of numerical data to help solve the structure. For
instance, here’s a plot of the curvature of the knot:

! . 1
o &) h ]
£ < it

5 I
Mi /\‘L, ‘ f ) mﬁ” \nwnm

0 1 2 3 4 5 6 7
arclength

15 3
arclength

(Baranska, Pieranski, and Przybyl 2008)

Cantarella Geometric Knot Theory



Numerical Data on the Trefoil Knot

The struts are described by points on the (s, t) plane:

(with Ashton, Piatek, Rawdon 2005)
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But 813 might actually be easier to solve...
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Conclusion: One last open problem...

Definition
The writhe of a space curve K is given by

1 // K'(s) x K'(t (K(s)—K(t))dsdt'

K(P
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Conclusion: One last open problem...

The writhe of a space curve K is given by

K'(s) x K'(t) - (K(s) — K(t))
47r // (t)\ dsdt.

For an unknot, is there a constant ¢ so Wr(K) < cRop(K)?

This is not true for nontrivial knots, since (n,n — 1) torus have
Wr ~ Rop*/2.
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Conclusion: One last open problem...

The writhe of a space curve K is given by

K'(s) x K'(t) - (K(s) — K(t))
47r // (t)\ dsdt.

For an unknot, is there a constant ¢ so Wr(K) < cRop(K)?
This is not true for nontrivial knots, since (n,n — 1) torus have
Wr ~ Rop*/S.

This would be implied if alternating knots had ropelength linear
in their crossing numbers.
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Thank you for inviting me!

Thank you for inviting me! (And more movies if there’s time ...)
Slides on the web at:

http://www. jasoncantarella.com/

under “Courses” and “Geometric Knot Theory”.
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http://www.jasoncantarella.com/

Another solution: Clasps

What happens when a rope is pulled over another?

éarcsin T
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Another solution: Clasps

What happens when a rope is pulled over another?

éarcsin T

It depends on the angle () and the stiffness (\) of the rope.
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Four types of clasps

2.5 fully kinked

2.0 transitional

1.5¢ generic
1.0f Gehring
0.5}

0.2 0.4 06 0.8 P
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Gehring clasp (CFSKW 2006)

@ ¢ length balanced against strut force only.
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Gehring clasp (CFSKW 2006)

@ ¢ length balanced against strut force only.
@ Curvature given explicitly, position as an elliptic integral.
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Gehring clasp (CFSKW 2006)

@ ¢ length balanced against strut force only.
@ Curvature given explicitly, position as an elliptic integral.
@ Small gap between the two tubes.
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Gehring clasp (CFSKW 2006)

@ ¢ length balanced against strut force only.

@ Curvature given explicitly, position as an elliptic integral.
@ Small gap between the two tubes.

@ Curvature unbounded at tip.
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Kinked, Transitional, Generic Clasps

VAY,

shoulder
Gehring

N,

Kinked Clasp  Transitional Clasp  Generic Clasp

shoulder
kink kink
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