


Cornell ftntuetgUg Babrarg

Strata, SJem 5«>*h

BOUGHT WITH THE INCOME OF THE

SAGE ENDOWMENT FUND
THE GIFT OF

HENRY W. SAGE
1891

(



Cornell University Library
QA 565.H65

Plane algebraic curves,

3 1924 001 544 216



Cornell University

Library

The original of this book is in

the Cornell University Library.

There are no known copyright restrictions in

the United States on the use of the text.

http://www.archive.org/details/cu31924001544216



PLANE ALGEBRAIC CURVES



OXFOKD UNIVEESITY PEESS
LONDON EDINBURGH GLASGOW NEW YORK

TOEONTO MELBOURNE CAPE TOWN BOMBAY

HUMPHREY MILFORD
PUBLISHER TO THE UNIVERSITY



PLANE ALGEBRAIC
CURVES

BY

HAROLD HILTON, M.A., D.Sc.

PROFESSOR Or MATHEMATICS IN THE UNIVERSITY OF LONDON

AND HEAD OF THE MATHEMATICAL DEPARTMENT OF BEDFORD COLLEGE

FORMERLY FELLOW OF MAGDALEN COLLEGE, OXFORD, AND ASSISTANT

MATHEMATICAL LECTURER AT THE UNIVERSITY COLLEGE, BANGOR

OXFORD
AT THE CLARENDON PRESS

1920





PEEFACE

THOUGH the theory of plane algebraic curves

still attracts mathematical students, the English

reader has not many suitable books at his disposal.

Salmon's classic treatise supplied all that could be

desired at the time of its appearance, but the last

edition was published some forty years ago, and has

been long out of print. It seemed therefore as if

a new book on the subject might be useful, if only

to bring some more recent developments within reach

of the student.

In the preparation of this volume I have made

frequent use of the books written by Salmon, Basset,

Wieleitner, Teixeira, Loria, &c. But most of the con-

tents and examples are extracted from a very large

number of mathematical periodicals. With the ex-

ception of the list at the end of Ch. XX, I have not

attempted to give systematic references. In fact, in

a field which has attracted so many workers, it would

be almost impossible to trace the steps by which

particular results have reached their present form.

In some cases I cannot eveli remember whether a

result is my own or not ; but Chapters IX, XI, XVII,

and XVIII contain most of my own contributions to

the subject. The solutions are mine for the most

part, even in the case of examples derived from other

authors.



vi PREFACE

In a book dealing with so wide a subject I can

hardly hope to escape the criticism that I have in-

cluded just that material which happens to interest

myself, and have excluded other matter of equal or

greater importance. I have not seriously dealt with

problems of enumeration, such as ' How many conies

touch five given conies?' I have treated all curves

with the same degree and singularities as forming a

single type, and have not attempted to subdivide the

type by considering all their possible positions relative

to the line at infinity. I have not given the properties

of ' special plane curves % unless they are representa-

tive of some general type, such as, for example,

Cassinian curves, into which any quartic with two

unreal biflecnOdes can be projected. I have not in-

cluded any discussion of curves of degree n for special

values of n other than 2, 8, or 4. A thorough dis-

cussion of quintic curves would be very welcome, but

at present the difficulties seem insuperable. At any

rate very little work has been published on their

properties. The reader will doubtless detect other

important omissions. But on the whole I have tried

to cover the limited ground I have selected with

reasonable completeness.

No one can really master a branch of mathematics

except by working at it "himself. I make no apology,

therefore, for the long lists of examples. The reader

can select from them few or many, as he pleases.

I give hints for solution in most cases. I hope that

these will be of real assistance to the student, setting

him on the right track if he is in difficulties, enabling
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him to check the accuracy of his results, and giving

him a guarantee that the examples are not of un-

reasonable difficulty.

The beginner should not attempt to read the book

straight through, but should select for himself those

parts which he thinks easiest and likely to interest

him most. As a rough guide I recommend the omis-

sion of the following portions on a first reading

:

Ch. VI ; Ch. VII, §§ 8 to 10 ; Ch. VIII, $ 4 and 5

;

Ch. IX, §§ 3 to 12 ; Ch. X, §§ 7 and 8 ; Ch. XI

;

Ch. XII, $ 7 to 10 ; Ch. XVI ; Ch. XVII, $$ 6 to*8

;

Ch. XVIII, §§ 9 to 15 ; Ch. XIX, §§
3 to 7 ; Ch. XX,

#10 and 11; Ch. XXI.

My best thanks are due to friends and pupils who

have made suggestions and pointed out inaccuracies

while the book was being written. I owe a special

debt of gratitude to Miss G. D. Sadd, who has given

me very valuable lists of corrections required in the

MS.-

I must also express my gratitude to the Delegates

of the University Press for so kindly undertaking the

publication of the book.

H. H.

June 1919.
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ERRATA, ETC.

Preface. While this book was in the press a treatise by S. Ganguli

called Lectures on the Theory of Plane Curves has appeared.

Page 9, Ex. 2. Omit(-l)".

Page 10, Ex, 8. Read '2m — 2' for '» — 3', and 'a;2n+1 , yln+l , 22jl+i' f°r

^sn+u Vsn+l) s»+l •

Page 24, Ex. 12. Read ' three real tangents ' for ' three tangents '. For

the solution read ' Use Ex. 11 or Ch. I, § 6, Ex. 2 ',

Page 116. In the theorem at the foot of the page a linear branch is

counted as being superlinear of order 1.

Page 146. In Ch. X, § 4, N must be less than n. Otherwise the state-

ment on page 146, line 33, ' By choosing t properly, P may be made
any point of the n-ic ' might be incorrect. Similarly in Ch. X, § 7.

Page 359, line 24. The quartic consecutive to Q is supposed non-cuspidal.

Page 369. In Fig. 13 it is essential that the nest should lie inside the

circle and outside 12.

Page 371. Add ' Gettingen Nachrichten, xi (1909), p. 308 ', to the list of

references.



CHAPTER-

1

. INTRODUCTORY

§ 1.' Coordinates.

We shall assume a knowledge of the more elementary
portions of the calculus and of pure and analytical geometry
including the theory of cross-ratio, involution, projection,

reciprocation, and inversion ; but in this introductory chapter

we shall remind the reader of some elementary results of

which we shall make frequent use.

If through a point P (Fig. 1) we draw parallels PJ¥, PM to

two fixed reference lines meeting at an origin 0, and OM,

ON contain x and y units of length, x and y are the Cartesian

coordinates of the point P (x, y).
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If the reference-axes are perpendicular,

x = r cos 6, y = r sin 6
;

where r is the distance OP and 6 is the angle between OP
and y = 0. We call r and 6 the polar coordinates of the

point P(r, 6) with respect to the pole and prime vector

y = 0.

A

Fig. 2.

If ^4£C is a fixed triangle of reference (Fig. 2), the ratios

x, y, z of the triangles PBG, PGA, PAB to the triangle ABC
are called the areal coordinates of P. They are evidently

connected by the relation

x + y +z= 1.

Instead of defining the position ofP by its areal coordinates,

we may use instead any constant multiples of them and write

x = k
1

. PBG/ABC, y = k
2

. PCA/ABC, z = k., . PAB/ABC.
In this klt k

2 , k
3
are any constants chosen arbitrarily, but

considered fixed when once chosen. We call x, y, z in this

ca'se general homogeneous coordinates. We have the relation

®/h+y/h+ z/]h= !>

by means of which the equation of any locus may be made
homogeneous.

Instead of x, y, z -we may take any quantities proportional
to them when dealing with such homogeneous equationsi.

For instance, the vertices of the triangle of reference will

usually be taken as (1, 0, 0), (0, 1, 0), (0, 0, 1) ; though these
are the actual coordinates only if areal coordinates are
used.

We shall mean by the symbols x, y, z the general homo-
geneous (not necessarily the areal) coordinates, or quantities
proportional to them, unless the contrary is stated.

The new equation of a given curve when fresh homogeneous



1

2

PROJECTION 3

coordinates (and triangle of reference) are taken is obtained
by replacing x, y, z in the original equation by expressions of
the form

1-yX + m-^ + n^, l2x +m2 y + n2 z, l
3
iv +m3 y + nz

z

respectively. .

§ 2. Projection.

Suppose we have fixed planes n, IT' and a fixed point V.
Suppose also that P is any point in IT and that VP meets IT'

in P'. Then P' is called the projection of P on n', V being
the ' vertex of projection'. IfP traces out a locus c, P' traces
out some locus c', which is called the ' projection ' of c. Simi-
larly c is the projection of c' on IT.

Fig. 3.

The projection of a straight line is evidently a straight line.

The projection of a range (ABGD) of four collinear points

whose cross-ratio is AB . CD/AD . GB is a range of the same
cross-ratio. For the range and its projection are the inter-

sections of two transversals with the rays of a pencil whose
vertex is V.

In particular, if the range (AG, BD) is harmonic, so that

AB . CD/AD . GB = — 1, its projection is harmonic.

Similarly the projection of a pencil of four concurrent lines

is a pencil of the same cross-ratio. In fact, the pencil and
its projection have the intersection a of the planes IT and IT'

as a common transversal.

It follows that the projection of the ' involution range

'

traced out by points P, P' such that (IJ, PP') is harmonic,

where I, J are the fixed ' double points ' of the involution, is

an involution range. Similarly for involution pencils.

b2
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Suppose that the planes through V parallel to II' and II

meet IT and IT' in the lines v and v' respectively (see Fig. 3,

in which the plane of the diagram is perpendicular to the

lines v, v', a). If the point P, moving in the plane IT,

approaches v, its projection P' recedes indefinitely ; while if

P lies on v, VP does not meet IT'; so that P has no
projection.

It is convenient to observe the convention that two planes

meet in a straight line, or (what is the same thing) that the

projection of a straight line is a straight line, even in the

case in which the planes are parallel. We say, therefore, that
' all points at infinity in the plane IT' lie on the straight line

which is the projection of the vanishing line v '.

Similarly such a statement as ' a parabola touches the line

at infinity ' means that its projection touches the vanishing

line ; and so on. In general, when we describe any property

of a curve at ' an infinitely distant point P' ', we mean a

property possessed by its projection at the corresponding

point P of v ; it being understood that the property is one
which would be unaltered by projection, if P and P' were
finite points. Similar remarks apply to the line v'.

Ex. 1. The relation between pole and polar with, respect to a conic

and between conjugate points or lines is unaltered by projection.

Ex. 2. If two lines through P in the plane n meet v in II and A", the
angle HPK projects into an angle equal to HVK.

Ex. 3. It is possible with a given vanishing line to project two angles
into angles of given magnitude ; or to project a given conic into a circle.

[See Ex. 1, 2. Project any two conjugate pairs of lines through the

pole of the vanishing line into perpendicular pairs.]

§ 3. Plane Perspective.
*

Suppose that P and P', Q and Q\ R and R' are projections

of each other, and that Q, R are taken as fixed points of IT,

and P as any other point of IT. Since Q'R' is the projection

of QR, QR and Q'R' meet on a.

If the plane IT is turned about a carrying P, Q, R with it,

while IT' is kept fixed, QR and Q'R' continue to meet on a,

and Q, R, Q', R' continue to be coplanar. Hence QQ' and
RR' continue to intersect. Similarly PP' and QQ', PP' and
RR' continue to intersect. This is only possible if PP', QQ',
RR' are concurrent, since they are not coplanar. But P is

any point whatever of IT. Hence when IT is rotated about a,

two figures! in IT and II' which were originally projections of
each other remain projections of each other. The vertex V
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turns about the line v', as is evident from Fig. 3, since the
distance between a and v is constant and is equal to the
distance between V and v'.

Suppose that n turns about a till it coincides with IT.
Two figures which originally were projections of one another
are now two figures in the same plane with the property that
the line joining corresponding points of the two figures passes

ysy'
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(bx/y, b(y+ c)/y) of the line VP and the line joining

H' to the intersection of PR with the axis of perspective.

But by definition P' is (x'.y' + b); from which (i) at once

follows.

If/ (x, y) = is the equation of the locus of P,

f$x/y, bc/y) =
is the equation of its projection.

We can always choose the projection so that b — c. We
thus get the useful rule

If in the equation of a curve we replace x, y by ax/y, a2
/y,

we get the equation of its projection ; the axis of x being the

vanishing line both for the curve and its projection, and the

axis of y being unaltered.

Let Ix +my + n — be any line in the first figure. The

distance d from it of the point P (x, y) is given by

d (I
2 +m2

)

5 = Ix + my + n.

The distance d' from the corresponding line in the second

figure clx + ny + bcm = of the point P' (bx/y, bc/y) is given

by d'y (cH2 + n2f = be (I'x + my + n).

Hence d' (c
2
l
2 + n 2)% = bed (P + mrf/y (ii)

Suppose that we take a fixed triangle ABG of which the

vertex G coincides with V, while A and B lie on v. Then
putting n = cm in (ii) we see that the perpendicular from
P' on GB bears a constant ratio to the quotient of the per-

pendiculars fro.m P on GB and AB ; and similarly for the

perpendicular from P' on GA.
Now (changing the notation) we may take homogeneous

coordinates (x, y, z) of P with ABG as triangle of reference,

such that x/z is equal to the quotient of the perpendiculars

from P on GB and AB multiplied by any constant we please

;

and so for y/z.

Also the perpendiculars from P' on GB and GA are constant

multiples of the Cartesian coordinates of P' referred to GA
and GB as axes of reference.

If, then, f(x, y) — is the Cartesian equation of a. curve,

f(x/z, y/z) = is a homogeneous equation of a projection in

which z = is the vanishing line, and y = 0, x = are the
projections of the Cartesian axes of reference.

Conversely, iff (x, y,z) = is the homogeneous equation of

a curve, f(x, y, 1) = is the Cartesian equation of the curve
obtained by a projection in which z = is vanishing line,

followed by an orthogonal projection.
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Ex. 1. If P and J" are any two corresponding points of two figures in

plane perspective and VPP meets a in i?, the cross-ratio of (VPRP'J is

constant.

[Project a to infinity, and the figures have Fas a centre of similitude.

If the cross-ratio is —1, the perspective is called harmonic]

Ex. 2. Given V, a, and a pair of corresponding points Q and Q', con-
struct P corresponding to a given point P.

[P' lies on VP and on the line joining Q' to the intersection of PQ
and a.]

Ex. 3. Given V, v, a, construct P corresponding to a given point P.

[If Q is on v, Q' is at infinity on VQ. Now use Ex. 2.]

Ex. 4. The relations connecting the coordinates of any two correspond-
ing points of two planes which have a one-to-one correspondence can be
put in the form (i) of § 3 by a suitable choice of axes of reference.

[Let I, J be the points in one plane corresponding to the circular

points of the other plane (§ 5). The axes of reference are IJ and its

perpendicular bisector. So for the other plane.]

§ 4. Asymptotes.

Suppose that in § 3 a curve in the first figure crosses v

at Q and t is the tangent at Q, but t and v do not coincide

(Fig. 5). Taking t as the line Ix + my + n = referred to in

(ii) of § 3 and P as any point of the curve, d/y approaches the

limit zero as P approaches Q along the curve.

Fig. 5.

Hence the point P' of the corresponding curve in the second

figure (the projection of the first), which is at a distance d'

from the projection t' of t, approaches t' indefinitely as P'

recedes indefinitely.

Such a line as t which is the projection of a tangent, whose

point of contact is on the vanishing line (but the tangent and
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vanishing line do not coincide), is called an asymptote of the

projected curve.

§ 5. Circular Points and Lines.

It is well known that the lines through the origin parallel

to the asymptotes of a conic are given by equating to zero the

terms of the second degree in the Cartesian equation of the

conic. Applying this to the general equation of a circle

x* + y2 + 2gx+ 2fy + c — 0,

we see that the asymptotes of all circles are parallel to

x2 + y* = 0;

or, as we may put it, all circles go through the unreal and

infinitely distant points on y = ± \/(—l)x.
These points are called the circular points at infinity. We

shall denote them usually by a> and u> '

.

Any line through a circular point, i. e. any line parallel to

y — + •/(— \)x, is called a circular line.

Ex. 1. A circular line is perpendicular to itself.

Ex. 2. Two points on a circular line are at zero distance from one
another.

Ex. 3. Any point not on a circular line is at an infinite distance from
that line.

Ex. 4. Project a given pair of points into the circular points.

[With the line joining them as vanishing line project any conic
through them into a circle. See § 2, Ex. 3.]

§ 6. Higher Plane Curves.-

A curve whose homogeneous equation is obtained by
equating to zero a polynomial in x, y, z of degree n (and
whose Cartesian equation is therefore obtained by equating to
zero a polynomial in x, y of degree n), is called an algebraic
plane curve or higher plane curve of degree n. The word
' higher ' implies that the degree is greater than the second,
the properties of conies being supposed too well known to
require further investigation. Nevertheless we shall not con-
sider conies necessarily excluded from the definition, though
most of our work will be concerned with the case n > 2.

If f(x, y, z) = is the equation of such a curve, the lines

joining its intersections with Xx + fiy + vz = to the point
(0, 0, 1) will be f(vx, vy, —\x— y.y) = 0, and are therefore n
in number in general. Hence

:

A curve of degree n meets any straight line in n real or
unreal points in general.*

* We note that the number of real points is n— 2r, where r is zero or
a positive integer ; see also § 7.
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If the curve meets the line at a point on the vanishing line

(§ 2), the projections of the curve and line meet in less than
n (finite) points. Such exceptions will be considered later.
A ' curve of degree n ' will often be called for short ' an n-ic '.

Thus a curve of degree 3, 4, 5, ..., i.e. a cubic, quartic, quintic,
. . . curve, will be called a 3-ic, 4-ic, 5-ic, .... Another notation
for an n-ic in common use is ' Gn '.

Two or more curves whose degrees have the sum h may be
considered, when taken together, as forming an n-ic. Such an
n-ic will be called degenerate. For instance a cubic may
degenerate into a conic and a straight line or into three
straight lines.

Ex. 1. Through any point two lines are drawn in fixed directions
meeting a given n-ic in P,, P2 P„ and ft, ft, ..., ft. Show that
the ratio P, . p2 0Pj . OQ.,.00, Oft
is independent of the position of 0.

[Take Cartesian axes of reference in the fixed directions ; let be
{oc

1

, y
1

), and the curve be f(x, y) = 0. Then
OP

1 .OP2 OPn = ±f{x',y')+ {coefficient of a;" in/(»,y)}.']

Ex. 2. The sides of a triangle ABC meet an n-ic in P1; P2 , ..., Pn ;

ft> ft) ••; Qn'' -Bi> Ri Sn .

Show that

{-IrAR, . AR2
ARn .BP, . BP

2
BPn . CQ1 . CQ2 Cft,

= AQ
y

AQn . CP1 CPn .BR, BRn .

[Use Ex. 1 or take ABC as triangle of reference. The cases n = 1

and 2 are known as Menelaus's and Carnot's theorems.]

' Ex. 3. Extend Ex. 2 to the intersections of an m-ic with the sides of
any polygon.

Ex. 4. Given all but one of the 3w intersections of three lines'with an
w-ic, construct the remaining intersection.

Ex. 5. The lines joining any point to two fixed points A and B
meet a given «-ic in P1( P2 , ..., P„ and Qu Q2 , ..., Qn . Show that the

ratio

OP, . OP2 . ... . OPn . BQ, .BQ2 BQn :

Oft • Oft Oft . AP, . AP2
APn

is independent of the position of 0.

[Apply Ex. 2 to the triangle ABO.]

Ex. 6. Two curves touch at P, and is any point not near P. A line

through close to P meets the curves in ft R and the tangent at Pin T.

Show that the ratio of the curvatures of the two curves at P is the cross-

ratio of (OQTR).
Deduce the fact that the ratio of the curvatures of two curves at

a point of contact is unaltered by projection.

Ex. 7. Given a set of n tangents to a conic meeting at \n\n — 1)

points and a second set of tangents also meeting at \n(n — 1) points,

show that the n(n — 1) points thus obtained lie on an (n — l)-ic, and that

the intersections of an infinite number of n tangents lie on the (n— l)-ic.
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[Take the conic as the locus of (f, It, 1). Then, whatever h may be,

the intersections of the tangents whose points of contact are given by
f(t)+k<p(t) = 0, where/and

<f>
are polynomials of degree n in t, lie on

the (n — l)-ic obtained by eliminating t and T from

{f(t).<p(T)-f(T).<p(t)} + (t-l'), x = tTz, y = (t+T)z.

The case n = 3 is well known.]

Ex. 8. If any line meets the curve x in+1 + y
1 "+l + zin+1 = xyzu in

(
xi> 2fr.

2i)> (*2> jfe.**) (*sn+ii ys.i+1. *s«+i)» « being homogeneous in

x, y, z of degree n — 3, then

x
x x2 .. xSu+1 + y [ y2 ...ysn+1 + z

l
^2 ... z3n+1 = 0.

[If the line is ^# + py + »» = 0, then

x
x
x

t ••XSn+1 / y1 yi ...ySn+1

Ex. 9. A variable line is drawn in a given direction meeting a given
n-ic at P, where the radius of curvature is p and the tangent makes an
angle <t> with the given direction. Show that 2cot<£ is constant and
2 (p sin8

(p)
_1 = 0, the summation extending over the n intersections P of

the line and «-ic.

[For a given value of x we have 'S.y = ax + 6, the equation of the n-ic

being y
n — (ax + b)y"-1 + ... = 0. Differentiate this relation twice with

respect to x.]

(„2'»+l_
/1
5"+l)/(X2'1+l_

v
2 ,1 +I).

§ 7. Intersections of Two Curves.

Two curves of degree n and iV intersect in nN points.

Suppose the equations of the curves are given in homo-
geneous coordinates. Let their equations be

a zn + a^z"- 1 + a
2
zn

~ 2 +...+an .

0)
(i);

where ar and bT denote homogeneous polynomials of the rth
degree "in x and y.

N-lMultiplying these equations respectively by 1, z, z2
, ..., z

and by 1, z, z2, ... , z^1
, we obtain n + fi linear equations in

1 2 22 „n+lf-lX, 4i, & , ... , g
,

from which these quantities may be eliminated. For instance,
if to = 4 and If = 3, we have

a a, a,

a

bn

a.

b
i \ h

\ h h

= 0. (ii).

This eliminant gives the lines joining the point (0, 0, 1) to
the intersections of the two curves, for it is readily seen to be
homogeneous in x and y. The lines are nN~ in number for
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a typical term of the determinant just written is ±b nan
N

.

The theorem is therefore proved.
We note that the number of real intersections of the curves

is tiN— 2r, r being zero or a positive integer. For complex
roots of (ii) occur in conjugate pairs.

If a and b are zero, both curves pass through (0, 0, 1).

Suppose that a , av ... , ah_x
and b

, \, ... , bK^ are iden-
tically zero. Multiplying equations (i) by 1, z, z 2

, ...,sA
'"r^ 1

and by 1, z, z 2
, ...,zn

~ k- x and eliminating as before, we get
an equation giving the lines joining (0, 0, 1) to those intersec-
tions of the curves which do not coincide with (0, 0, 1).

For example, if n = 4, N = 3, a and a
x = 0,b = 0, we have

"2 '3 "'i

a„ a
3

aA = 0.
6j b

2
b
3

&i b2 b3

A typical term of the determinant just written is

± v- fc<v
v-*>

which is of degree (n—k)K+ (N— K) n = nJST—kK in x and y.

Hence the curves meet in nN—kK points other than (0, 0, 1).

In order to observe the convenient convention that in eveiy
case two curves of degrees n and N meet in nN points, we say
that hK of the intersections of the curves coincide with (0, 0, 1).

If in this a
fc
and bK have a factor in common, the factor is

a factor of the first column of the determinant just obtained.

It is readily seen that the number of intersections of the curves

other than (0, 0, 1) is rbN—kK— Y in general, i.e. kK+l
intersections of the curves coincide at (0, 0, 1).

Similarly, if a& and b% have r factors in common, kK + r

intersections coincide at (0, 0, 1).*

Ex. 1. It is impossible for every line to meet a given n-ic in n real

points. .
"

[A line adjacent to and parallel to any tangent will meet it in n — 2

real points at most.]

Ex. 2. An «-ic with unreal equation cannot pass through more than
w2 real points.

[The only real points on m + (-1)* v = 0, where u = and v = are

real w-ics, are the real intersections of u = and v = 0.]

Ex. 3. If a non-degenerate »-ic has the symmetry of a regular

polygon of h sides, n = 2 or else n ^ k.

* For a detailed discussion by this method of the intersections of two
curves see Segre, Giomale di Matematiche di Battaglini, xxxvi (1898), pp. 1-50.

For other methods see Ch. VI, § 2, and Ch. IX, § 3. For the general theory

of the eliminant (ii) see BDcher, Higher Algebra, § 69.
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If n is not a multiple of h, the re-ie passes through the circular points.

[Consider the intersections of the w-ic with circles concentric with

the polygon.]

Ex. 4. A circle with centre and radius a meets a given M-ic at

P„ P
2 ,..., P,„. Show that

(i) The sum of the angles which OPlt 0Pa , ..., OP2n makes with any

fixed line is independent of both a and the position of 0.

(ii) The sum of the tangents of the angles which 0Plt 0PU ... make
with the tangents at Plt P2 , ... is zero.

(iii) The sum of the polar subtange^its of the curve at Pu P2 ,
•••

is zero.

[(i) Use polar coordinates, (ii) and (iii) follow at once from (i). It

is assumed that the n-ic does not pass through the circular points.]

Ex. 5. If we eliminate y between two equations f(x, y) = and

F (x, y) = of degrees n and N respectively, we obtain in general an

equation for x of degree nN. The coefficient of xnlf in this equation

only involves the coefficients of the terms of degree n in / and degree

N in F. The coefficient of se**
_I only involves the coefficients of the

terms of degrees «, n — 1 in/ and degrees N, N — 1 in F.

Deduce that

:

(i) The centroid of PJf P,, ..., P,, in Ex. 4 is independent of a.

(ii) The centroid of all points on an algebraic curve at which the

Cartesian tangent is of length a is independent of a.

(iii) The same is true, if we replace ' Cartesian tangent ' by ' Car-

tesian normal ' or ' radius of curvature '

(iv) The centroid of all points on a curve at which the circle of

curvature cuts a circle with centre and radius o at an angle a is

independent of a and a.

§ 8. Pencil of Curves.

If u = 0, v = are the equations of curves of the nth
degree, and k is any constant, u + lev = is a curve of degree

n passing through the «2 intersections of u = and v = 0.

The family of curves obtained by taking different values of k

is called a pencil' of n-ics, by analogy with the well-known
case in which n = 1 . The n2 fixed points through which all

curves of the pencil pass are called the base-points of the

pencil. They are not necessarily all distinct.

Ex. 1. The number of curves of a pencil of «ics which touch a given
line is in general 2 (« — 1).

[Take z = as the line.]

Ex. 2. If in Ex. 1 the line passes through a base-point, the number
of curves is 2 n — 3 in general.

[One touching at the base-point and 2 (n — 2) others.]
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§ 9. Tangents.

Suppose P (x\ y', z') is any point on a curve f(x, y,z) =
of degree n, and Q (x, y, z) is any other point. The point
dividing PQ in the ratio fi : X, where A + fi = 1, is

(Xx' + fix, Xy' + /iy, Xz' + jjlz).

This lies on the curve if

f(Xx' + fix, Xy' + py, Xz' + fiz) =
or

where j—7 means the result of putting a:' for a;, y' for
2/,

3'for,in^^-
; &c.

This equation in fi/X gives the ratio in which the curve
divides PQ. One root is zero, for P lies on the curve.
A second root is zero, if PQ touches the curve at P. The
condition for this is

Ix ° <>y oz

which is therefore the equation of the tangent to the curve
at P.

If the equation of the curve in Cartesian coordinates is

f(x, y) = 0, the tangent at (x\ y') is

(»-*& + <*-rt$ = °-

If the coordinates of any point of a curve are given in the
form x=f(t),y = 4>(t),z = +{t),

where t is called the parameter of the point, the tangent at

the point is

(W- <f>y)x + (+f- Vf)y+(f#-ff) * = 0.

In fact, this line goes through the given point and the con-

secutive point, whose coordinates are

(/ (* + dt),<f>(t + dt), y\r(t + dt)) or (f+fdt, + </>'dt, + + fdt),

neglecting the squares, cubes, &c, of dt.

If we put z — 1, we get the tangent at any point of the

curve whose Cartesian coordinates are

Suppose now P (x', y', z') is not on the curve. The line PQ
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will touch the curve, if the equation (i) in /jl/K has equal roots.

If we write down the condition for this, the resulting equation
is that of the tangents from (x', y', z') to the curve.

Ex. 1. If the «-ic f(x,y,z) = passes through (0, 0, 1), the coefficient

of zn in/is zero, and the tangent at (0, 0, 1) is obtained by equating to

zero the terms involving s"_I

Iif(x, y) = passes through the origin, the constant term in / is

zero and the tangent at the origin is obtained by equating to zero the
terms of the first degree in /.

Ex. 2. The axes of reference intercept a constant length on any

tangent to x%+y§ = ai.

Ex. 3. The tangent at any point P of yx* = a? meets the axes in A, B
and the curve again at Q. Prove that the ratios AP-.PB-.BQ are
constant.

Ex. 4. The sum of the intercepts made by any tangent to xi + yi — ai
on the axes of reference is constant.

Ex. 5. Show that two perpendicular tangents to

x = a (2cos£ + cos2i), y = a (2 sin? — sin2<)

meet on the circle a;
2 + y

2 = a2
.

Ex. 6. The tangents from any point to a cubic are six in number
in general. Their points of contact lie on a conic, and they meet the
cubic again in six points on a conic. The tangents meet the two conies
again in twelve points on another cubic also touching the tangents.

[Putting (i) in the form (n = 3), u \* + 3u1
\ 2

l
i + 3u

3\n
2 + u3fi

3 = 0,

where ur is of degree r in x, y, z, and writing down the condition for
equal roots, we have

u3 (h
2w3

- 6 j^MjKj + 4m!3
) + m2

'2
(4i( i/

z
- 3 «,

2

J
= 0.

The two conies are u2
= and 4m m2

= 3%2
; and the other cubic is

w 2m
3
— 6j( m1m2 + 4u 1

3 = 0.]

Ex. 7. The two cubics of Ex. 6 are in plane harmonic perspective
with O as vertex, each conic corresponding to itself in the perspective.
(See § 3, Ex. 1.)

[Choose the triangle of reference so that O is (0, 0, 1) and u2
= z* + 2xy.]

Ex. 8. Find the lengths of the tangents and normals from any rJbint
to a curve.

[Take the point as origin, and put the equation of the curve into
the form f(r,t)= 0, where x = (l-t2)r/ (l + f), y = 2tr/ (1 + t'').

Eliminate t from/= 0, and / = 0, or /= 0.1
dr dt J

§ 10. Inversion.

If 0, P, P' are collinear points, being fixed, such that
OP .OP'

'
— W, the locus of P and the locus of P' are said to

be inverses of each other with respect to a circle* with
centre and radius k ; or more simply ' inverses with respect
to '.

* Or a sphere, if the loci are not coplanar.
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If P and P', Q and Q' are points on two inverse curves,
0P.0P'=0Q.0Q'. Hence the angles OPQ, OQ'P' are
equal. Making Q consecutive to P and therefore Q' con-
secutive to P', we see that the tangents at P and P' to the
inverse curves are coplanar and make supplementary angles
with OPP'.

Again, from the similar triangles OPQ, OQ'P' (Q not neces-
sarily consecutive to P) we have

PQ :P'Q'=0P: 0Q' = OP. OP': OP'.OQ'.

Hence PQ = k2
. P'Q'/OF . 0Q\

which enables us to express lengths in one figure in terms of

lengths in the inverse figure.

Suppose now that two curves meet in P and the two inverse

curves in P'.

Let the tangents at P and P' to one pair of inverse curves
meet in H and the tangents to the other pair in K. Then,
since the tangents HP, HP' make supplementary angles with
OPP', PH = P'H and similarly PK = P'K. Therefore the

triangles HPK, HP'K are congruent, and the angles HPK,
HP'K are equal.

Hence two curves cut at the same angle as their inverses.

If now the two inverse figures are coplanar while is taken
as the origin of rectangular Cartesian axes and P is the point

(x,y), P' is (k2x/(x2 +y2
), k'y/(x2 + y

2
)). This follows at once

from the fact that 0, P, P' are collinear and OP . OP' = k2
.

Hence, if f (x, y) = is the equation of a plane curve,

f{¥x/(x2 + y
2
), k

2y/(x2 + y
2
)) =

is the equation of the inverse curve.

For instance, the inverse of the circle

x2 + y
2 + 2gx + 2fy + c =

is Ic* + 2k2 (gx +fy) + c(x2 + y
2
) = 0.

Hence the inverse of a circle with respect to a point in its

plane is a circle, or a straight line if lies on the given circle.

The inverse of a straight line is in general a circle through 0.

But, if the line passes through 0, it is evidently its own
inverse. Also, if the line passes through a circular point, its

inverse is a line through the other circular point. In fact,

the inverse of x + iy = c

is k2 = c(x—iy).

We have a similar result for three dimensions, and may show
that the inverse of a sphere with respect to is a sphere, or

a plane if lies on the given sphere.



16 INVERSION . I 10

The inverse of a circle with respect to a point not in its

plane is a circle, for the intersection of two spheres inverts

into the intersection of two spheres.

Ex. 1. Prove that a circle and two inverse points invert into a circle

and two inverse points.

[Use the fact that all circles through two points inverse with respect

to a circle cut this circle orthogonally.]

Ex. 2. A sphere is projected from any point V on its surface on to

the diametral plane perpendicular to the radius through V. Show
that circles project into circles and angles are unaltered by the

projection.

[The projection is the inverse of the original figure with respect to V.

This projection is called stereographic]

Ex. 3. If a, a>' are the circular points, the inverse with respect to of

a point P on Oa> is at oi.

If a curve cuts Ota at P, the corresponding tangent at <o of the inverse

curve is the inverse of a P.

[Let Q be a point of the curve near P and Q' its inverse. Then «Q'

and a'Q are inverse lines. Now let Q approach P.]

§ 11. Theory of Equations.

For convenience of reference we insert here some well-known
results in the theory of equations.

The typical equation of degree n is

a xn + »(?!a^- 1 + nC
2
a2x

n~2 + ... + an = 0.

The product of two roots is — 1 if

% + a
2 — °> a

o (ao + 3a2) + a
s fi ai + az) = 0>

{a + 6a
2 + at)

(a - a4)
2 + 16 (a

x+ a3)
(a a2 + ax

a^ = 0,

{a (a -5ai) + a5 (a5-5a1)} {a +10a2+5a4) (a —5a4)

+ (a6 + 10a3+ 5%) (<x
6
— 5 a

x)

}

+ 25 (a a,+ 2a a3-

a

5a4
—2a

5
a2 )

2 = 0,\..

in the cases n = 2, 3, 4, 5, ....
•

The cubic equation (n = 3) has two invariants

= a 2a3
— 3a a

1
a2 + 2a1

s
, *H = a a2

— a^.

According as

G2 + 4iH3 = a 2
(a 2a3

2 — Qa^a^ + 4a a
2
3 + 4a

1
3a

3
— Sa^a

2
2
)

is negative, positive, or zero, the cubic has three real roots,
one real root, or two equal roots.

The quartic equation (n = 4) has two invariants

I = a ai—4a1
a

3
+ Sa2

2
1 J =

"0 ""1 ""2

«1 «2 a
3

a, a, a.
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If is the cross-ratio (a— fi) (y— 8)-r- (a— 8) (y— /3) of the
roots a, j8, y, 8 of the quartic,

{(0 + 1) (0-2) (0-4)} 2/3 = 27 (f-4> +
l)>J*.

We note the cases = 0, —1, J(l + -/— 3).

If = 0, the quartic has two equal roots and I3 = 27J2
.

If = -l, J"=0; and if = § (1 + V^8), 1=0*

* The range of points (a, 0), (3, 0), (7, 0), (8, 0) and the pencil of lines

y = ax, y = fix, y = yx, y = dx are said to be respectively 'harmonic' or
• equianharmonic ' in these two cases.



CHAPTEE II

SINGULAR POINTS

§ 1. Inflexions, &c.

Suppose that the Cartesian equation of a curve of degree n
arranged in ascending powers of x and y is

= a + b^ + b^y + c x2 + 2c
1
xy + c

2y
2 + d x3 + ...

.

If the origin lies on the curve, the equation must be satisfied

by x = and y = ; and therefore a = 0.

The equation now becomes

= b x + b
1y + c x2 + 2c

1
xy + c2y

z + d x3 + Sd1
xi

y
+ 3d2

xy2 + d
3y

3 + e xi +
The line y = infix meets the curve where

= x(b + b
1
m)+x2

(c + 2c
1
7n + c

2
m2

)

+ x3 (d + Sd1
m + 3

d

2
m2 + d3m3

) + xi
(e + ...) + ... .

One root of this equation in x is always zero ; as was to be
expected, since any line through the origin meets the curve
in one point coinciding with the origin (Fig. 1).

Fig. l.

Suppose that, as m is made to vary, 6 + 6
1m approaches

zero. Then a second root of the equation approaches zero,

i. e. a second intersection of y = tnx with the curve approaches
the origin, or the line becomes the tangent at the origin (Fig. 2).
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Eliminating ni between y = mx and b„ + bxm, = 0, we obtain
the equation of the tangent at the origin, namely,

Suppose that, when 6 + b
x
fn, = 0. we have also

co+ ~ ci
m + ctm* = 0.

Then the tangent at the origin meets the curve at three points

coinciding with the origin (Figs. 3 and 4). The origin is

>.

Fig. 3.

called a point of inflexion (or simply an inflexion) in this

case. The tangent at the origin is called an inflexional

tangent or tangent of three-point contact.

It is evident that 6 + 61to is a factor of c + 2c
1
m + c

i
ri\- :

or, what is the same thing,
*

b x+ b
x y is a factor of c^j?+ 2c

t
xy+ c.

2y
2

.

If we have also

d + 3dl
m+3d2m2+ cl3m?- = 0,

the tangent meets the curve in four points coinciding with the

C 2
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origin. The origin is sometimes called a, point of undulation
in this case. The tangent is called a tangent offour-point

contact.

In this case b x + b
x y is a factor of both

e^ + Z^xy + c2 y
2 and of o] xs + 3d1

x2y + Sdixy
2 + d3y

3
.

These results can be immediately generalized and we have :

Ifa curve passes through the origin, the terms of the first

degree equated to zero give the tangent at the origin.

If the terms of the first degree are a factor of the terms of the

2rd , 3rd
, ... ,

(r— l)*11 degrees, the tangent meets the curve in

r points coinciding with the origin, and is called a ' tangent

of r-point contact '.

The curve crosses the tangent at the point of contact if r is

odd, but does not cross it if r is even.

Fig. 4.

The last statement in the theorem may be proved as
follows

:

*

The curve may be written

b x + blV = {n,. + U;. +1 + ...+v n ) + (l + v
1 + v2 +... + i',._

2 ),

where u
1;
and v% are homogeneous of degree k in x and y.

The perpendicular from any point (x, y) of the curve on the
tangent at the origin is

(b x + biy) + {b* + b*f
= (ur + ur+1 +

.

.. + un ) -f (1 + Vl + .. . + vr_2)
(b 2 + &,«)*,

and has therefore the same sign as ur
+ (6

2 + b^)i, when
x and y are small and approximately in the ratio b

x
: —b . But

ur evidently does or does not change sign with x and y, where
b x + 6j y = 0, according as r is odd or even.
The truth of the statement may also be seen geometrically
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by considering a tangent of r-point contact as the limiting

position of a line meeting the curve in r points close together

(see Fig. 3 for the case r = 3).

The definition of ' r-point contact ' of a line and a curve
may be generalized. Any two curves will have ' r-point

contact' at P, if they may be considered as the limiting case

of two curves meeting one another at r points * very close to

P. Curves having three-point contact at P are said to oscu-

late at P, For instance, at each point of a curve there is an
osculating circle called the ' circle of curvature ', whose centre

and radius are the ' centre of curvature ' and ' radius of curva-

ture ' of the given curve at P- The circle of curvature has

four-point contact with the curve, if the radius of curvature

of the curve is a maximum or minimum at P.f

§ 2. Double Points.

Suppose that in § 1 b and b
L
are zero. The curve is now

= c aj
z + 2c^xy + c

2y
2 + d x3 + 3d

1
x2
y + 3d2xy

2 + d
3y

a

+ 6qx + . . . ;

and y = infix meets the curve where

= xl
(c + %c

x
-m + c2m2

) + x3 (d + 3d1
m + 3 d

2
m2 + <£,m3

)

+ a;
4
(e +...) + ....

Two roots of this equation are zero for every value of m.
Hence every line through the origin meets the curve in two

points coinciding with the origin. The origin is called a

double point.

The tangents at the origin are defined as the lines meeting

the curve at three points coinciding with the origin. The line

y = mx is such a tangent if

c + 2c1m + e2mz = 0.

Eliminating m between this equation and y = mx, we have

the equation of the tangents at the origin

c^-b'Z^xy + ^y2 = 0.

Such a tangent may be considered as the limiting position

of a chord joining the double point to another point of the

curve, when this point approaches the double point.

There are three cases to be discussed.

The tangents may be real, when the origin is called a cru-

node (Fig. 5). In this case the curve has two real ' branches
'

through the origin.

* On the same branch of each curve ; see next section,

t See treatises on ' Differential Calculus '.
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The tangents may be unreal, when the origin is called an

acnode (Fig. 6). The origin is a real point of the curve, but

there is no real point of the curve adjacent to the origin.

The tangents may be coincident, when the origin is called

a cusp (Fig. 7).

The word node is equivalent to ' crunode or acnode ', i. e. to

' a double point which is not a cusp ".*

Fig. 6.

Fig. 7.

As in § 1, we show that, if one factor of c x2 + 2c
x
xy + c2y

2
is

a factor of d xs + Sd
l
x2y + 3dzxy

2 + d3y
3
, the corresponding

tangent is an inflexional tangent. The origin is called a
fiecnode in this case (Fig. 8);

If both tangents are inflexional tangents, so that the terms
of the second degree in the equation of the curve are a factor

* Other nomenclatures are ' node ' for crunode,. ' isolated point ' or ' con-
jugate point' for acnode. The term ' spinode ' for cusp is obsolete.
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of the terms of the third degree, the origin is called a biflec-

node (Fig. 9).

Similarly if one of the factors (or both) of the terms of the
second degree is a factor of the terms of the third, fourth, . . .

degrees.

Fig. 9.

§ 3. Multiple Points.

If c , c1; c
2
are all zero, so that the terms of the lowest

degree are the terms of the third degree, the origin is called a
triple point Any line through the origin meets the curve in

three points coinciding with the origin, except the three

tangents at the origin obtained by equating to zero the terms

of lowest degree. These tangents meet the curve at four

points (at least) coinciding with the origin.

In general we have the result

:

If the terms of lowest degree in the Cartesian equation of
a curve are of degree k, the origin is called a multiple point

of order k (a k-ple point). Any line through the origin meets

the curve in k points coinciding with the origin, except the

k tangents at the origin obtained by equating to zero the terms

of lowest degree, which meet the curve in k+\ points (at least)

.

coinciding with the origin.

If the equation of the curve is given in homogeneous
coordinates, a very slight modification is necessary. Let us

suppose the curve is of degree n, and passes through the point

(0, 0, 1). Exactly as in §§ 1 and 2 the consideration of the

intersections of the curve with the line y = mx shows that

:

If the highest power of z which occurs in the homogeneous

equation of a curve of degree n is zn
~ k

, the point (0, 0, 1) is

a multiple point of order lc, and the tangents at (0, 0, 1) are
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obtained by equating to zero the terms multiplying zn
~h in

the equation. If the terms multiplying zn
'k

, z
n-k~ x

,
...,zn

~ c r

have a factor in common, the corresponding tangent has

(r + 2) -point contact with the branch it touches.

Ex. 1. Investigate the nature of the origin and trace roughly the curves

a2y = x\ ay1 = x\ a'y = x\ ay* = x\ y> (a-x) = x\

(a* + y*)* = a*(xl -9>), (x'
i + y

iy = ay{3x1-y% xi + y
i = axyi

,

a"y, + x !s = 2a,
3xsy\

[Inflexion, cusp, undulation, triple point, cusp, biflecnode (turn into

polars to trace), triple point (turn into polars to trace), triple point

(solve for y to trace), quadruple point (solve for y to trace).]

Ex. 2. Trace roughly the curve y* + x3
(a:* - 1 )

2 {x - 2) = 0.

[Acnode at (-1, 0), cusp at (0, 0), crunode at (1, 0). Transfer the

origin to each point in turn.]

Ex. 3. Trace y* = xt {x + k) when k = -1, 0, 1.

Ex. 4. Trace y* + xi
(x'

l -2x + k) = when A; = -3, 0, i, 1.

Ex. 5. Trace y
i + x{x-k){x-2f (a— 4)

s=0 when fc = -1, 0, 1,2, 3, 4, 5.

Ex. 6. An «-ic has the sides CA, CB of the triangle of reference as

tangents of r-point contact, A and B being the points of contact. Show
that its equation is of the form xyu^^, = sfun_r , where ut

is homo-
geneous of degree t in x, y, z.

[The equation has a*" as a factor when we put x — or y = 0. Ex. 7

to 10 are special cases.]

Ex. 7. The line joining two real inflexions of a cubic passes through a

third real inflexion.

[In Ex. 6 n = 3, r = 3.]

Ex. 8. The line joining two inflexions A, B of a quartic meets the
curve again in D, E. The tangents at A, B meet the cuive again in

P, Q, and PQ meets the curve again at R, S. Show that a conic can be
drawn osculating the quartic at D, E and passing through R, S.

[n = 4, r = 3.]

Ex. 9. The line joining two undulations of a 4-ic meets the eurve

again in P, Q. Show that a conic can be drawn having four-point

contact with the curve at P and Q.

[n = 4, r = 4.]

Ex. 10. The line through three real collinear undulations of a quartic

passes through a fourth real undulation.

Ex. 11. Three tangents of n-point contact of an n-ic are taken as the
sides of the triangle of reference. Show' that the equation of the n-ic is

of the form

*»«««-» + (ax +W + (% + cz)" + (cz + ax)" = oV + b
n
y
n +*V

;

the + sign in the ambiguity being taken if n is odd, and either sign if

n is even.

Ex. 12. An »-ic has three tangents having w-polnt contact. If n is

odd, the three points of contact are collinear. If n is even, either the
points are collinear or the three lines joining each to the intersection
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of the tangents at the other two are concurrent. If the tangents are
concurrent, only the former alternative is possible.

Discuss the cases n = 2, 3, 4.

[Use Ex. 11.]

Ex. 13. An n-ic has r-point contact with the side BC of the triangle
of reference ABC at B and C. Show that its equation is of the form

Ex. 14. A line is drawn through each of the points of contact of
a bitangent of a quartic (a line touching the quartic at two points;
see Ch. IV, § 7). Show that a cubic touches the quartic at the six
points in which these two lines meet the curve again.

[In Ex. 13 w = 4, r=2.]

Ex. 15. Enunciate a similar theorem for a sextic having three-point
contact with a line at two points.

Ex. 16. An n-ic has r-point contact with each of x = and y = at
two distinct points. Show that its equation is of the form

[See Ch. XIX, § 2.]

Ex. 17. If the six points of contact of three bitangents of a 5-ic, 6-ic,

or 7-ic lie on a conic, the other intersections of the bitangents with the
curve are respectively collinear, lying on a conic, the base points of
a pencil of 3-ics.

[Use Ch. I, § 6, Ex. 2 in Ex. 17, 18, 19.]

Ex. 18. The tangents at three collinear inflexions of a quartic meet
the curve again in collinear points.

What are the corresponding theorems for a 54c and 6-ic ?

Ex. 19. Three bitangents of a quartic form a triangle ABC whose sides

touch the. quartic at Pt and P2 , Qt
and Q2 , Bt

and P2 . Show that the
conic PiQ-JjJliItz passes either through P2 or through the harmonic
conjugate of P

2
with respect to B and C.

What are the corresponding theorems for a 2n-ic having n-point
contact with each of three lines at two points ; for a 6-ic with three
triple tangents, &c. ?

Ex. 20. The tangents to an n-ic from the &-ple point (0, 0, 1) are

found by writing down the condition that the equation of the curve,

considered as an equation in z, should have equal roots. There are

n(n— 1) — k(k+l) such tangents in general.

§ 4. Conditions for a Double Point.

Let (X, Y) be any point on the curve whose Cartesian equa-

tion is f(x, y) = 0. Transfer the origin to this point, and the

equation becomes f(x + X, y + Y) = U, or

0=f(X,Y) + x¥ +y V

\
x DX2+ y l>XlY +y 37V
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where ^ means the result of putting X for x and Y for y

in ^- . &c. If the new origin is a double point on the curve,
ox'

and the tangents at the new origin are

x )x2+ ^oXo7 +y oY*

Hence, with a slight change of notation,

If (x, y) is a double poind on the curve f(x, y) = 0,

J ox oy

The double point is a crunode, acnode, or cusp, according as

\oxoy/
>

'
<

' ° ox* oy*

Similarly, if (x, y) is a &-pie point, all the partial derivatives

of/ with respect to x and y up to the order k— 1 inclusive

must vanish.

Again, let (X, Y, Z) be any point on the curve of degree n
whose homogeneous equation is f(x, y, z) = 0. Let P (x, y,.z)

be any other point, and let Q be the point

/\x + /j.X Xy + fiY Xz + pZ\

V X + /i X + /J. X + p )

dividing P0 in the ratio /x : X. This point lies on the curve if

f(Xx + ixX, Xy + fiY, Xz + /iZ) = 0,

i.e.

^f(X,Y,Z) +^x(x^ +y^ + z^)

+ 2zx
^zix

+2xy
iTJY) + - +Xnf{x

' y'
z) = °"

If is a double point, two roots of this equation in X/fi are
zero for all values of x : y : z ; or

oX~~ oY~ oZ~ '
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It will be noticed that

implies /(Z, F, £) = 0, since by Euler's theorem on homo-
geneous functions

Three roots of the equation in \/fi are zero if P lies on a
tangent at 0. Therefore the equation of the tangents at is

*X* +y 3P + " *Z*
+ ys

*7*Z + *Z*X

+2xywjT=°-
Hence

:

If (x, y, z) is a double point on the curve f(x, y, z) = 0,

ix <>y ~hz

The double point is a crunode, acnode, or cusp, according as

the lines

* lx*
+ r

> y +^^+^i^^^J^/^teJr
are real, unreal, or coincident ; £, rj, £ being current coordi-

nates.

The reality, unreality, or coincidence of the lines is at

once determined by considering their intersections with | = 0,

r, = 0, or ( = 0.

We may deduce the result for Cartesian coordinates by
putting 2=1; or the result for homogeneous coordinates may
be deduced from that for Cartesian coordinates by replacing x
and y by x/z and y/z.

Ex. 1. Find the multiple points of /= yH/Jta-yY-lx* {x + Zaf = 0.

[Equating to zero J- ,
J-, ~- we obtain (x + 2a)(x + 3a)a? = 0,

(y-2«)(4»-y)V = 0, y, (4a-y)2 = 2a;4 (a; + 3a). These are all satis-

fied at the points (0,0), (0,4a), (-3a, 0), (-3a, 4ta), (-2a, 2a).

Transferring the origin to each of these points in turn, we see that the

first two are triple points, the next two are cusps, and the last is

a crunode.]

Ex. 2. Find the double points of

(i) x*-2af-3«y -2aV + a* = 0.

(ii) ^-4a*s-2ays +4aV + 3«y-a4 =0.
(Hi) xy + 12a3 (3x + 2y) + 108ai = 0.
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(iv) 4{x-l)3 + (y-Bx + 2)
i = 0.

(y) (X*+ y
1- a2

)
3 + 27x*yW = 0.

1

_^(vi) (Baxt/ + 2x3 + c3
)

i = 4(ay + x2
)
i
.

(vii) (a;" - aa
)V = (^- Wfx.

(viii) (a;
2 - o2

)
a + (y» - ft

2
)
2 = a4

,

(ix) (8y-x— a)3 = 2l6axy.

(x) x2f -4:a (xs + y
s
) + 18a1xy-21^ = 0.

(xi) y(a; + 3)
,' = 4(4a; -32/)(2a;-3^-6).

[(i) Crunodesat (a, 0), (-a, 0), (0,.-a).

(ii) Crunodes at (0, a), (a, 0), (2a, a).

(iii) Crunodesat (-2a, -3a), cusps at (oo,0), (0, oo ). For these

latter replace a by z. Then the tangents at (1, 0, 0) are the coefficient

of x1 equated to zero, i. e. y
2 = 0. Or we may project the curve as

in Ch. I, § 3. See Ch. X, Fig. 1.

(iv) Cusp at (1, 1).

(v) Cusps at ( + a, 0), (0, ±a) and the circular points. Unreal nodes

along x = + y. The curve is the ' four-cusped hypocycloid '.

(vi) Cusp at (c, -c2/a).

(vii) Nodes at ( + a, + 6).

(viii) Nodes at (0, +6).

(ix) Node at (a, —a/8),

(x) Cusps at (3a, 3a), (8<jco
s

, Saw), (Baa, Baa1
).

(xi) Cusp at (-3, -4).]

Ex. 3. Find the double points of
,

(i) a/x* + b/y* + c/s1 + 2f/yz + 2g/sx + 2 h/xy = 0.

(ii) 2yz(y'1z + yzi-2x3 + 24:xyz)= 0.

(iii) . 'S.yz (y
2z + yz* — 4x* + 2xyz) = 0.

[(i) Nodes at (1, 0, 0), (0, 1, 0), (0, 0, 1).

(ii) Cusps at (1, 0, 0), &c. ; nodes at (-1, 5, 5), &c.

(iii) Triple point at (1, 1, 1) ; nodes at (1, 0, 0), (0, 1, 0), (0, 0, 1).]

Ex. 4. When has /= y
2z - 4a;3 + g^xz* + jr

s
a> = a double poinW?

cl£
=

§5
=

iC
= ° gives yg = 1^-9^ = y

1+^s^+Sg3 z
i = o.

These are only satisfied if y = 0, 2g2
x + Bgs

z = 0,' gt
s = 27 g^. Hence

the required condition is g^^21g3
\ If this holds, there is a double

point at ( — \g$, 0, 1), which is a crunode or acnode as gs
is <0 or >0.]

Ex. 5. For what value of k have the following curves a double point ?

(i) s*x = y(y-x)(y-kx).

(ii) xP + if + z3 = k(x + y + zf.

(iii) (x + y + z)
3 + 6kxyz = 0.

(iv) x3 + y
3 + z3 + 6kxyz — 0.

(v) xi +xy3 + y
i — kzy3 — 2x'*yz— xy*z + y

2s* = 0.

[(i) k = ; an acnode at (1, 0, 0). k = 1 ; a crunode at (1, 1, 0).

(ii) k = | ; an acnode at (1, 1, 1).
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(jii) k = -f ; an acnode at (1, 1, 1).

(iv) 8ft8 = - 1. The cubic splits up into three lines.

(v) Always a cusp at (0, 0, 1). A node in addition if k = 1 or 2.]

Ex 6. For what values of a, b, c has zs = (ax + by + cz)xy a double
point? *

a

[a = 0, (1, 0, 0) ; 6 = 0, (0, 1, 0) ; <? = 27 ab, (be, ca, -Sab).]

Ex. 7. Of a pencil of «-ics 3 (n - If have a node in general.
If every curve of a pencil has a double point at O, the tangents at O

form an involution.

Ex.8. If Si = 0, St = 0, ..., S,.= have a fc-ple point at P and
0, = 0, C2 = 0, ..., C,. = are any other curves,

/= CjS, + C2 S2 + ... + C,.Sr =
has a fc-ple point at P.

[/== ^ = e' = is satisfied at P.]

Ex. 9. If u = 0, » = are lines and js = 0, 2 = 0, r = are
(m-2)-ics, jp«

2 + 2g'M« + n;2 = is an »-ic with a node at the intersection
of u = and v = 0.

[See Ex. 8.]

Ex. 10. In symmetrical form the conditions that (x, y, z) should be
a node of /= are fa =/2 =/3

= 0, and that it should be a cusp are

f = JuJs> —/12/13 = /2z/3i
~~fafn = J33J12

~
/31/32 — ;

where the suffixes 1, 2, 3 denote partial differentiation with respect
to x, y, z.

[For the cusp, we get /22/S3 =/25
2
, &c. Then

(»-l)'(/i a/i-/u/2 ) =/i 2 (^/ii+y/i2 + s/is)-/ii(^/2i + 2//22 + s/23 ) = 0.

Hence fx //u =/2 //M = /3 //„ = »// (» - 1 )/, ; which gives

yi=/2 =/3 = o.

We leave to the reader the modifications required when some of the
quantities fu , /23 , ... are zero.]

§ 5. Points at Infinity.

Suppose that in the equation

p^xn. +p1
xn

~1 + p2x
n- 2 + . . . +pn =

the coefficients are made to vary. Then, if p approaches the

limit zero, one of the roots of the equation becomes indefinitely

large.

For the equation is

Po+Pit+P2i*+-"+2>n£
n = 0,

where xg = 1.

Now if p —> 0, one value of £ given by the latter equation

tends to zero. Hence one value of x given by the former
equation becomes very large.

Similarly, if p , p^, ... ,_p r all—»0, r+1 roots of the equa-
tion in x become very large.

We now apply this result to the theory of plane curves.
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Suppose we have a curve of degree n. Writing its Carte-

sian equation in descending powers of x and y we obtain

{y—m-^x) (y—m
2
x) ... (y—mnx) + axn~1 + bxn

-2 y+... + kyn
~ 1

+ Axn-* + Bxn-3y + ... = 0,

where y— m,
x
x, y—m2

x, ... are the factors of the terms of

highest degree.*

The line y = <mx meets the curve where

(m—mj) (m—

m

2)... (m—mn) xn + (a + b<m+ ...+kmn~ l
) x71' 1

+ ...=0.

One root of this equation becomes very large, if the line

y = mx as it turns about the origin approaches one of the

lines y ="m1
x,...,y = mnx ; for then

(m—m
x )

(m -m
2)

. . . (m—mn)
—> 0.

We may sum up this result in the convenient, if rather

inaccurate, form

The terms of highest degree in the Cartesian equation of a
curve equated to zero give the lines joining the origin to the

points at infinity on the curve.

Let us now discuss a few cases in more detail.

First suppose m
2
not equal to any one of m2 , m3 , ... , m„.

The line y = m 1
x + c meets the curve where

{p + (m
1
—m2) ... {m-L—m^c} a;™"

1 + (q + re + .

.

.) xn
~ 2 + ... = 0,

if we write

p = a+ bm
l + . . . + kni-^- 1

, q = A + Bm
1 + ...

,

r= b + ... + (n—l)Jemjn- 2
.

Hence any line parallel to y = ra^x meets the curve in one
and only one infinite point.f with the exception of the line I

for which p + (% -m2) (m1
—m

3) . . . (uij— m„) c = 0.

It follows at once that any projection of the curve touches
the projection of I at the point where it crosses the vanishing
line, i. e. I is an asymptote (Ch. I, § 4).

Next suppose m
x
= m

2 ^ m3 ,
imi

Now y = m^+c meets the curve where

pxn~1 + {g + rc + (m
1
—

m

3) ... {my^-m^) c2 }xn
~2 + ... = 0.

In general y = m^ + c meets the curve once and only once
at infinity whatever finite value c may have, while the line at
infinity meets the curve twice on y = m^x. This evidently

* The reader will easily make the necessary modification in the argument
if a; is a factor of these terms.

t More accurately, ' meets the curve in exactly n — 1 (finite) points '
; but

it is convenient to keep the. convention ' every straight line meets a curve of
degree n in n points ' ; and so throughout.
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means that the line at infinity touches the curve * where it

meets y = m,
Y
x.

If, however, y — m,
x
x is a factor of the terms of degree n— 1

as well as of the terms of degree n in the equation of the
curve, p = 0. Then every line parallel to y = m-^x meets the
curve in two points at infinity, while the two lines y = m^ + c

for which q + rc + (m
l
—m3) ... {m

1
— m„) c2 — meet the

curve in three points at infinity.

Hence the curve has a double point at infinity at which
these two lines are tangents ; i. e. these two lines are a pair of
parallel asymptotes.

Suppose now m1
= m2

= m3 ^m4,m5 , If the line

y = mx
x + c meets the curve at only one infinite point for

every finite value of c, the curve has an inflexion at infinity

along y = m-^x at which the line at infinity is the tangent.
If y — m-^x + c meets the curve at two and only two in-

finite points for every finite value of c, the curve has a cusp
along y = m1

x at which the line at infinity is the tangent.

If y = to-j a; + c meets the curve at two and only two infinite

points for all finite vahaes of c but one, the curve has a double
point at infinity along y = m1

x at which the line at infinity

is one tangent.

If y = m,
x
x + c meets the curve at three and only three

infinite points for all but three finite values of c, the curve has
a triple point at infinity.

Similarly we may discuss the cases in which

m
1
= m

2
= m3

= m
t ^ m5 , m6 , ...

;

and so on.

If a curve with a real equation passes through one circular

point at infinity, it passes also through the other. For, if

y + ix is a factor of the terms of highest degree in the equa-

tion, so is y— ix. Such a curve is called a circular curve.

Similarly a curve with a real equation having a node at one

circular point has a node at the other. Such a curve is called

bicircwlar ; and so on.

Ex. 1. a?y = a? has a cusp at infinity, ay2 = xs has an inflexion,

(a2 —x l

) y = a3 and %axy — x3 + a3 have crunodes, a3y = x* has a triple

point, ay3 = a;
4 has an undulation.

Trace these curves.

[Use § 5. Another method is to obtain the equation of a projection

of the curve by replacing x, y by ax/y, at/y as in Ch. I, § 3.]

* More accurately : the vanishing line touches any projection cf the
eurve.
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Ex. 2. The equation of an n-ic with n distinct asymptotes

a
l
x + b

ly + c
1
= 0, ..., anx + bny + cn =

is of the form

(a
i
x + b

1y + c
i
)(ai x + b

iy + el ) ... (anx + bny + cn) + un-2 + un-s + ... = 0,

where uk is homogeneous of degree h in x and y.

[Any one of the given lines meets the curve in only n — 2 finite points.]

Ex. 3. Show that a cubic meets its three asymptotes in three finite

collinear points Generalize by projection.

[The cubic is f= uvw+p = 0, where u = 0, v — 0,_ tv = are the

asymptotes and p = is the required line. On projection we get ' the

tangents at three collinear points of a cubic meet the curve again in

three collinear points '. See Ch. XII, § 4.]

Ex. 4. A variable cubic has a cusp and three fixed asymptotes. Show
that the cusp lies on the conic touching at their middle points the sides

of the triangle formed by the asymptotes.

[Theconicisg.|=(^J in Ex. 3.]

Ex. 5. A quartic meets its four asymptotes in eight finite points

lying on a conic.

Generalize by projection.

Ex. 6. If an n-ic has r asymptotes parallel to y = mx, the terms of

the »th
, (» — l)th , ..., (n —r+ 1)* degrees in its equation have respectively

the factors (y — mx)r
, (y — mx)r

~'
i

(y — mx).

The equations of a circular and bicircular n-ic are of the forms

(a;
8 + 2/

2
)»„-2 + «B_i + "«-2 + ... = 0,

and (x* + Z/7X-4 + (*' + y*) V-3 + «W-» + - = 0.

Ex.. 7. An w-ic has n distinct asymptotes all passing through O. Show
that O is the centroid of the intersections of the m-ic with any line

through O.

[Taking O as origin, the curve is un + it„_2 + m„_3 + ... +u = 0. Also

y = mx meets this curve in n points whose abscissae and ordinates have
zero sum.]

Ex. 8. Two curves with distinct finite asymptotes meet in points
whose centroid is the same as the centroid of the intersections wf the
asymptotes.

Ex. 9. A varying ra-ic passing through n given points at infinity meets
a given ellipse in 2m points whose eccentric angles have a constant
sum (to within a multiple of 2n).

If the n points can be paired to form an involution with the points at
infinity on the axes of the ellipse as double points, the sum is a multiple
of 2tt.

The sum of the eccentric angles of the intersections of a circle and
ellipse is a multiple of 2 v.

Ex. 10. If a jeal u-ic meets the line at infinity at the circular points
only, any line through a fixed point O meets the curve in n points
whose distances from O have a constant product.

Conversely, if the product is constant, the curve meets the line at
infinity only at the circular points.

[Use Ch. I, § 6, Ex. 1. n must be even. Note the cases n = 2 or 4.]
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Ex. 11. The sum of the angles which the n asymptotes of the n-ics

u = 0, v = make with a given line is the same. Show that one
curve of the pencil u + kv = is circular.

Ex. 12. The lines joining a point P to n fixed points make angles

with a fixed direction whose sum is a (plus a multiple of it). Show that

the locus of P is an «-ic whose asymptotes are parallel to the sides of

a regular polygon, one of whose sides makes an angle OC/n with the

fixed direction.

[The case n = 2 is well inown.]

§ 6. Relations between Coefficients.

The information that a curve with equation f(x, y) = has

a node at a given point (x, y) is equivalent to assigning three

linear relations between the coefficients of f(x, y), namely

/=^ = ^ = ...... (i).
J

7>x *y
w

If (x, y) is stated to be a cusp, we have a fourth relation

between the coefficients

/jv_y = ^.?v ..... (
ii).

\}>xly) lx2 Zy2 V
'

Similarly the information that a curve has a /c-ple point at

a given point is equivalent to %Jc (k + l) linear relations.

The information that the curve has a node (not at a given

point) is equivalent to one relation between the coefficients

namely the result of eliminating x, y from (i).

The information that the curve has a cusp is equivalent,

to two relations found by eliminating x and y from (i) and

(ii) ; and similarly that it should have a A;-ple point to

i/c(A;+l)— 2 relations.

We see that a curve whose equation is written down at

random has no double point. Such a curve is called iwn-

singular. It has no ' point-singularities ', i. e. multiple points,

though it has in general 'line-singularities', i.e. multiple

tangents.*

The Cartesian equation of a curve of degree n contains one

constant term, two terms of the first degree, three of the

second degree, ... , n + 1 of the nth degree. Hence the- equa-

tion has %(n+l) (n + 2) coefficients.

* The definition is therefore not free from objection. ' Anautotomic' (not

cutting itself) which has been suggested would, however, not exclude aenodes

or unreal multiple points.
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One of these coefficients may be taken as unity without loss

of generality. We have then

^(n + 1) (n + 2)-l = ±n(n + 3)

arbitrary coefficients. Hence

A curve of degree n is determined in general by \n (n + 3)

conditions.

We mean by this that only a finite number of w-ics can be

found to satisfy the given conditions, and that no n-\c can be
'

found in general satisfying given conditions, if their number
exceeds \n (n + 3).

If the conditions are that the curve is to pass through
\n (n + 3) assigned points, we have ^n(n + 3) linear rela-

tions between the coefficients of the curve's equation, which
determine the ratios of these coefficients uniquely. Hence

One and only one curve of degree n can be found in general
passing through %n(n + 3) given points.

We say ' in general
'

; for it may happen that the §n (n + 3)
relations between the coefficients are inconsistent or not in-

dependent, and then the theorem is not true.

Consider, for instance, the case n = 2. We have ' One and
only one conic can be drawn through five points

'
; which is

true in general. If three of the points are collinear, the conic
is degenerate, being a line-pair. This is legitimate, for we did
not exclude in the theorem the possibility of the n-ic splitting
up into simpler curves.

But, if four of the points are collinear, an infinite number of
conies pass through the points ; for the line through these four
points and any line whatever through the fifth point form
such a conic.

As an easy deduction from the results of this section we
have

A finite number of curves of degree n can in general be
drawn having 8 nodes and k cusps and satisfying

%n(n + 3)-8-2 K
other relations.

If the nodes and cusps are at assigned points, tlte number of
other relations is \n (n + 3) — 3 8— 4 k .

For instance, if a curve has 8 nodes, there are 8 sets of
values of x and y satisfying (i). Expressing the conditions for
this, we have 8 relations between the coefficients of / (x, y).

But such results are not universally true, and must be
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applied with due care ; as is shown by consideration of
Ex. 12, 17 below, or of Chap. IV, §7, Ex. 5 to 7.*

Ex. 1. Show that in general exactly one cubic can be drawn through
9 given points ; but that through the 9 intersections of two given cubics
a singly infinite number of cubics can be drawn.

[If « = 0, v — are the two cubics, u + lev = is any cubic through
their intersection.]

Ex. 2. In general one w-ic can be drawn with a given node and
passing through \ (w2 + 3 n - 6) other given points ; while two n-ics can be
drawn with a given cusp and passing through | (m2 + 8m - 8) other points.

Ex. 3. To be given a &-ple point and the tangents at that fc-ple point
is equivalent to being given Jfc(fc + 3) linear relations between the
coefficients of the curve's equation.

Ex. 4. The equation of any n-io through r given points can be put in
the form S+a

1 S1 + a2 S2 + ... +0^^ = 0, where S, Slt ..., S^ are given
polynomials such that S — 0, S1

= 0, ..., S^ =0 are w-ics through the
r given points, the a's are arbitrary constants, and fi = \n(n + %) — r.

It is assumed that there is no identical relation of the form

S+-b,S
1 + b2 S1 + ... +6M S„. = 0.

Ex. 5. The equation of any »-ic with r given nodes is

S+a
1
Sl + a2 S2 + ... + a^S^ = 0,

where S = 0, ... , S^ = are given M-ics with the r given nodes, and

in = |«(» + 3)-3n
[Use § 4, Ex. 8. The result may be extended to cover the case of any

given multiple points.]

Ex. 6. Obtain the equation of any «-ic with r given double points and
given tangents at those double points.

[As in Ex. 5 with ft = \ n (n + 3) — 5 r.]

Ex. 7. The equation of any cubic with a given node is

(al x + b
1 y + z) u? + (a2 x + 62 y + z)y/o + (as x + 6

3 y + z) u2 = 0,

where u = and v = are given lines through the node.

Ex. 8. The equation of any quartic with three given nodes is

a/u* + b/v* + cluP- + 2f/vw + 2g/tm + 2 h/uv = 0,

where u = 0, v = 0, w = are the sides of the triangle whose vertices

are the nodes.

Ex. 9. Find the general equation of quintics with nodes at (1, 1, 1),

(-1,1,1), (1, -1,1), (1,1, -1).

[ax {a? -f) (x* - z1
) + by (y

1 - z2) {y
2 -x1

) + cz (z*- x1

)
(z

2 - y
1
)

+ (l1y +m1
z) {y

l -z*y + {liz + m 2
x) (z'-x'f + il.x + m.y) {x^-tff = 0.]

Ex. 10. The equation of any quintic with six given nodes 1, 2, 3, 4, 5, 6
is aC1 CiLli + bCsCiL3i + cC5 CeLBS

= 0; where C
:
= is the conic

through 2, 3, 4, 5, 6 and Lu — is the line 12, &c.

[Use Ex. 5. The' reader may find the general equation of quintics

with nodes at ( + 2, 0), (0, +1), x = ±y = oo
.]

* The reader may consult a paper by J. E. Campbell in Messenger

xxi (1892).

D 2
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Ex. 11. The.equation of any sextic with eight given nodes is

aUi + 2hUV+hV 2 = CQ,

where ?7=0, V= are two cubics through the eight nodes, C = is

a conic through five of the nodes, and Q= is the quartic through

these five' nodes having double points at the other three nodes.

Ex. 12. Ifa sextic has nine nodes of which eight are fixed, the ninth node

lies on a certain 9-ic with a triple point at each of the eight fixed nodes.

[See Halphen, Bull, de la Soc. Math, de France, x (1882), p. 162;

Hodgkinson, Proc. London Math. Soc, II. xv (1916), p. 343.
_

Note that nine nodes of a sextic cannot be chosen arbitrarily ; even

though such a choice is equivalent to J 6 (6 + 3) = 27 conditions.]

Ex. 13. The general equation of a sextic with seven given nodes is

au? + bt? + cw* + 2fvw + 2gtou+2huv + dJ=
where u = 0, v = 0, w = are cubics through the given nodes, and

i(u,v,w)
jacobian (Ch. VII, § 10).

i(x,y,z)
.

[J = has a node at each of the seven points.]

Ex. 14. If in Ex. 13 d = 0, all cubics through the seven nodes and
a point P on the sextic pass through another point P of the sextic.

Each such cubic meets the sextic again in points Q and Q' such that

all cubics through the nodes and Q pass through Q'.

[If «!,«!, «>! are the values of «, v, w when the coordinates of P are

substituted for x, y, z, the cubics through the seven nodes, and P
are {%im^ — jcjit) + &(»»,— w^v) = 0. Hence at their ninth intersection

u : v : iv = «<! : % : w1
. Therefore, if P lies on the sextic, so does the ninth

intersection. See Eohn, Math. Annalen, xxv, p. 598.]

Ex. 15. If u = is a conic and v = a cubic, w3 = v2 is a sextic

with cusps at u — v = 0, the cuspidal tangents touching v = 0.

[The preceding examples may suggest interesting investigations to

the reader. For instance, is us = »2 the most general sextic with six

cusps ? What is the most general septimic with ten given nodes ?, &c]

Ex. 16. The statement 'a curve has an inflexion at a given point' is

equivalent to two relations between the coefficients in general.

Ex. 17. Show, however, that to be given three collinear inflexions of

a cubic is equivalent to five (not six) conditions. For instance, sfcow

that a singly infinite family of cubics can be drawn with three given
collinear inflexions and a given node.

[Taking (0, 0, 1) as node and (1, 0, 0), (0, 1, 0), (1, m, 0) as inflexions,

the cubic is xy(y — mx) +kz (mxy —m2
a;
s— y*) = 0, where k is an

arbitrary constant.]

Ex. 18. The statement ' a curve has a tangent touching at h points

'

is equivalent to k — 2 relations between the coefficients.

Ex. 19. If (x', y) is a centre of the n-ic f(x,y) = 0, all the partial
derivatives of/ with respect to x, y of orders n— 1, n-S, n—5, ...

vanish when x = x', y = y'.

[The curve comes to self-coincidence when rotated through 180° about
a centre. If the centre is the origin, the terms of degrees n — 1, n — 3,

n — 5,... in x and y vanish.]

Ex. 20. An M-ic passes through r given points and has a centre
;

r being J(w + 2)
2 or £(»i+l) (« + 3) as n is even or odd. Find the

degree of the locus of the centre.



CHAPTER III

CURVE-TRACING

§ 1. The Object of Curve-tracing.

The problem ' Trace a curve -with given Cartesian equation

'

is capable of more than one interpretation. It may mean
that a mechanical construction is required ; for instance, a
circle can be traced by means of compasses. Or it may imply
that the curve is to be drawn with the utmost possible degree
of accuracy, finding for this purpose a large number of points

on the curve. Or we may wish to obtain only a rough idea

of the main features of the curve (e. g. the number of its

branches, the position of its asymptotes and singular points,

&c), and to draw a sketch of the curve which gives some
approximation to the truth.

By ' curve-tracing ' we shall here mean the third of these

alternatives ; though it will be useful to indicate, where pos-

sible, how a more accurate diagram may be obtained ; even if

for most practical purposes a rough sketch of the curve will

suffice, and we can spare ourselves the rather considerable

expenditure of time which a more detailed tracing usually

requires.

§2. The Method of Curve-tracing.

The following hints are useful in curve-tracing; the rect-

angular Cartesian equation of the curve being supposed given.

(i) Find where the curve meets the axes of reference.

(ii) See if the curve has symmetry. If only even powers of

x occur in its equation, the curve is its own reflexion in x = 0.

Similarly if only even powers of y occur. If the equation

contains only terms of odd, or only terms of even degree, the

curve is symmetrical about the origin, which is called a

centre of the curve.

(iii) Notice if any values of x make y unreal (or vice versa).

If so, these values of x do not correspond to any real part

of the curve.

(iv) Equate to zero the terms of lowest degree in the equa-

tion to obtain the tangents at the origin, and equate to zero
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the terms of highest degree to obtain the lines 'joining the.

origin to the points at infinity on the curve. (Ch. II, §§ 3-, 5.)

Use Newton's diagram to get approximations to the shape of

the curve near and very far from the origin (§ 3). If this

fails to give any fresh information, proceed as in § 4.

(v) Find the asymptotes of the curve, and, if necessary, find

on which side of an asymptote the curve approaches it at the

two ends.

(vi) Find the finite intersections of the asymptotes with the

curve : for, if the curve is of degree n, this requires the solu-

tion of an equation of degree n— 2 at most.

(vii) Find if it is possible to get any number of points on
the curve by solving equations of degree 1 or 2 at most.

The above hints are usually more than sufficient to obtain

all the information necessary for tracing the curve, though
occasionally special devices are needed.

It may sometimes be useful to obtain the tangent at one or

more points of the curve. It is also well to remember that a

tracing of an n-ic cannot be correct, if it is met by a line in

r real points, where n—r is negative or odd.

§3. Newton's Diagram.

Suppose that any term in the equation of a curve is Axa y&.

A being a numerical coefficient, and a, /3 zero or positive

integers. Consider a geometrical representation of the terms

of the equation such that Axa
yB is represented by the point

(a, j8) referred to rectangular Cartesian axes placed as in

Fig. 1. The points thus obtained are said to form Newton's
diagram for the curve.

Suppose now that, when x and y are both small or both
large, xp and yl are of the same order of magnitude. Then
the order of the term Axa y& is the same as that of y0+a1/P,

whose index is equal to the intercept made on the axis of y in

Newton's diagram by a line through (a, j8) parallel to the line

making intercepts p and q on the axes of x and y.

Suppose that a line * joining two or more points of Newton's
diagram (not parallel to an axis of reference) is such that all

other points of the diagram lie to the right and above the line.

Then, if the points on this line are considered as representing
terms of the same order of magnitude, all the other points of
the diagram represent terms of higher order of magnitude. If

* If the curve does not pass through the origin, there is no such line. If
the curve does so pass, there may be one or more.
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we suppress all these higher terms in the equation of the curve
and then divide out by any power of x or y, which is a factor

of the remaining terms, we get an approximation to the curve
near the origin.

Similarly, if all points not on the line lie to the left and
below the line, we get an approximation to the curve very far

from the origin.

Illustrations of the use of Newton's diagram are given in

§§4-8.

Ex. 1. Newton's diagram applies even if the original axes of reference

are not rectangular.

Ex. 2. If a line through two or more points of Newton's diagram is

such that all other points lie to the left and above or to the right and
below the line, the terms represented by points on the line give an
approximation at infinity.

For example, in the curve x*y + if — 2xy— x = Newton's diagram
gives the approximation y

1 = x near the origin and a? + y = 0, xy = 1

far from the origin. As another example take the curve in § 7.

Ex. 3. Enunciate and prove a method similar to that of Newton's
diagram for approximating in three dimensions to the shape of an
algebraic surface near and far from the origin.

Apply the method to find the shape of a surface in the neighbourhood
of a parabolic point.

[It approximates to the form of the surface z = ay 1, + bx3 near the

origin.]

§4. Examples of Curve-tracing.

In each of the following examples we shall only give details

of the working when such details illustrate methods which
have not been used in previous examples.

Ex. I. Trace
a;

3 — x2y— 2xy2 + 5xy + 2y* = 0.

The curve meets the axes of reference in no finite point

except the origin. There is no symmetry.

The origin is a crunode at which the tan-

gents are y = and 5x + 2y = 0. The lines

joining the origin to the points at infinity

are x = 0, x = 2y, x + y = 0. jr-jr

Newton's diagram (Fig. 1) gives as approxi- „
t
_

mations near the origin x2+ 5 y = 0, and

5x + 2y = 0, and far from the origin

x(x-2y)(x + y) = 0. Fig. l.

The only new information is that the branch through the

orio-in touching y = approximates to x2 + 5y = near the

origin.

<*rH

H '* )
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To get an approximation to the branch touching

5x + 2y = 0,

Tpxit2y + 5x= Y. The curve becomes

0= Y2-5xy-l8x^ + 9x2 7-x72
,

and Newton's diagram now gives the approximation

57+18a:2 = or 5(2y + 5x) + 18x* = 0.

Another method is to write the equation of the curve in the

form 2y + 5x = (-x3 + x2y + 2xy2
)/y.

On the right-hand side of this equation put in the first

approximation —fa; for y and we get the closer approximation

2y + 5x = —--^x* as before. If the equation of the curve had
contained terms of degree higher than the third, we should
have retained only the terms of lowest degree in x in the
numerator of the right-hand side after putting —f a: for y.

We know that there are asymptotes parallel to x = 0,

x = 2y, x + y = 0. These may be found as in Ch. II, § 5 ; or
we may employ the device just used to find the approximation
at the origin. Thus write the equation of the curve in the
form _ -5xy-2y2

x(x + y)

On the right-hand side put in the first approximation
x = 2y, and we have the second approximation x— 2y = — 2,

which is the asymptote. If the equation of the curve had con-
tained terms of lower degree than the second, we should have
retained only the terms of highest degree in y in the nume-
rator of the right-hand side after putting 2y for a;.

Similarly the other asymptotes are

x = 1 and x + y =1.
Write now the equation of the curve in the form

(x-l){x-2y + 2) (x +y— 1) = -Zx-ty + 2;
where the left-hand side equated to zero is the equation of
the asymptotes.

The curve evidently meets the asymptotes at their inter-
sections with 3x + 4y = 2

giving three points on the curve. (See Ch. II, § 5, Ex. 3.)
We have now enough data to trace the curve (Fig. 2). We

will verify the diagram by finding the side of each asymptote
on which the curve approaches it at either end.

Write" the curve
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An approximation to the curve as it approaches the asymp-
tote x — 2y + 2 = is % = 2y— 2. Put this value of x into the

right-hand side to get a closer approximation, and retain only
the highest powers of y in the numerator and denominator.
We get 5

x-2y +2=--.

For a given large positive value of y x is 2y — 2 for the

5
asymptote, and 2y — 2 —— for the curve; i.e. slightly

smaller for the curve than the asymptote. Hence the curve

Pig. 2.

xS-xty- 2 35!/
2+ 53M/+2J/2 = 0.

lies close to the asymptote and to the left of it. Similarly, if

y is large and negative, the curve lies to the right of the

asymptote.
The reader may discuss the other asymptotes similarly.

The line x = ty meets the curve where

(5t+ 2) bt + 2
x = y=

(l+t)(2-t)' " t(l + t)(2-t)

Putting in any value for t we may obtain any number of

points on the curve, and trace the curve accurately. As stated

in § 1, we do not usually require this. However, the accurate

tracing of most of the curves given in the examples of §§4 to 9

does not present much difficulty.
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Ex. Trace the curves :

(i) x2
y + 2xy2 + 6xy + 2x2+ 4:X-4:y = 0.

(ii) xy(x>-Sxy + 2y*) + xs ~2x2y-23cy1 + 2ys = 5xy+x + 2ij.

(iii) 3x(x* + y*) + 2x* + 6xy + 6y"- = 4a:.

(iv) 9(x + i)y'i + 2ixy + x(x1 + 2x-16) =0.
(v) aj' + j^

3 = {y-x) (y-2x).

, (vi) x(x2 — xy + iy2)+4:y(2x—y) =0.
(vii) 64

2/
2 (a;-4) + i6a:'>+a:2 (5a:-i2) = o.

(viii) 2y2 (x - 1) - 2y (x2 - 2 x) + x2 (x - 2) = 0.

(ix) x2y-y2x+x2 — 4y2 = 0.

(x) xy (x2 + y
2)+x3 + y

3 = x2 - y
2
.

(xi) x(x2 — y2
) = ix2 — 6xy—4:y2

.

(xii) x(x + 2y)(2x— y) = 4a;2—xy + 2y2
.

(xiii) (a; + y) (x
2 + y

2
) + 2x (x - y) = 0.

(xiv) x(2x-y) (x + y) + Sy2 = 0.

(xv) y* — x* = a2xy.

[(i) The curve is x{y + 2) (x + 2y + 2) = 4i/, showing that the

asymptotes are x = 0, y + 2 = 0, x + 2y + 2 = 0, and meet, the curve

again where y = 0.

The asymptote # + 2 = meets the curve in no finite point. 'It is an
inflexional tangent at infinity, and therefore the curve approaches it on
the same side at both ends.

(ii) (x+l)(y + l)(x-2y-l){x-y + l) = x* + y
2-l.

The asymptotes meet the curve on the circle x2 + y
2 — 1.

(iii) Writing the curve y(x + 2) — —x± { — x(x2— l)(x + %)}i, we
see that the real asymptote is x + 2 = and that the tangent is

parallel to x = sX the joints (0,0), (1, -$), (-1, 1), (-f, -4).
For real points x must lie between and 1 or between — § and — 1.

(iv) 3y(a: + 4) = -4a;+{-a:(a: + 2)(a;-4)(a; + 8)}4. See Ch. XIV,
Fig. 1. •

(v) (x + y— 2) (a;
2—xy + y

2)+xy + y
2 = 0.

(vi) Real asymptote x = 1. See Ch. XIII, Figs. 3, 4 for (vi) and (vii).

(vii) Real asymptote x = 4.

(viii) Real asymptote x -= 1. See Ch. XIII, Fig. 2.

(ix) (a? + 4)(i/ + l)(a:-0-3) = a:-162/-12.

(x) \x'+ 1) (y + 1) (x
2 +

y

2
) = xy{x+y) + 2x2

.

Since x + y is a factor of the terms of the third degree as well as of
the terms of the second degree, x + y = is an inflexional tangent at the
origin. (Ch. II, §2.) An approximation at the origin is x + y = — x' ;

the other approximation being x — y = x2
.

(xi) (a;+2/-3)(a;-2/ + 3)(aj-4) + 9a; + 242/-36 = 0.

(xii) (a;+ 1) (x + 2y-2){2x-y-2) + 2 (x+ y-2) = 0.

(xiii) (x2 +y2 -2y + l)(x + y + 2) = x-Sy + 2.

(xiv) (a;-3)(2a;-2/ + 4)(a: + «/+l) + 14a;+9y + 12 = 0.

(xv) Asymptotes x = y, x=r-y. There is an inflexion on each,
branch at the origin. The curve has the origin as a centre of
symmetry.]
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§5.

Ex. II. Trace

(as
2—

2/
2
)
2 -(x2—y2

)
(x + 3y)- 3x2 + 6 xy + y

2 = 0.

Since (x— y)
2
is a factor of the terms of highest degree in

this equation, the curve either has an infinitely distant tangent
with its point of contact on x = y, or else has an infinitely

distant double point on x = y.

We find that x — y + c meets the curve where

4(c-l)V + 2c2 (2.c-3)2/ + c2 (c
2-c-3) = 0;

Fig. 3.

(x'2 -tf) 1 -(x,i -y'!:){x+3y)-3x'1 + 6xy+ y
2 = 0.

giving only two finite values of y, so that the latter alternative

is correct. (See Ch. II, § 5.) The line x = y + c meets the

curve in only one finite point if (c-l) 2 = 0, so that the

tangents at the infinite double point both coincide with

x — y'= 1. Hence the double point is a «usp, and the curve

has two asymptotes coinciding with x— y = 1.

Similarly the curve has an infinite double point on

x + y = 0, the tangents at which are x + y = 1 and x + y = —2.

The curve has these lines as parallel asymptotes.

Writing the curve in the form

(x-y-l) 2 (x + y-l) (x + y + 2) = 5x-3y-2
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we see, as in §4, that the curve meets its asymptotes where
they meet 5x = 3y + 2; and that closer approximations to

the form of the curve far from the origin are

x + y-l=-2/3y, x + y + 2=l/2y, {x-y-Yf = l/2y.

The third tof these approximations shows that the curve

approaches the asymptote x = y + 1 from both sides at one
end only, namely the end at which y is positive. The other

two approximations are interpreted as in § 4.

The origin is a crunode at which the tangents are

3x2— 6xy— y
2 = 0.

See Fig. 3.

The coordinates of any point on the curve may be put in

the form

_ (t
2 + 2t-2)(t2 + t-\) _ (t

2 + 2t-2)(t2 + t-3)
X ~

2(t2 + t-2) ' y ~
#

2(t2 + t-2)

(SeeCh. X, §4, Ex. 3.)

Ex. Trace the curves :

(i) xs + 2x2
y + xy2-x*-xy+ 2 = 0.

(ii) xi
y
i + xy + x + 3y + 3 = 0.

(iii) (x l -yi
f + (xi -yi)(hy-x)-3xi -2xy + 9>y

l = Q.

(iv) xy(2xy-hx-10y) + 50(x-yY = 0.

(v) x(x-y) 2-2y(x-y)+y = 0.

(vi) x2 (x2 -y2
) + (x+ 1) (2x

2 + xy-y2
) + x = 0.

(vii) x2 (2x-y)+x2 + x + y = 0.

(viii) x2 (x-yf-x(x-y)(3x+ y) = 3x2 -8xy + 2y2
.

(ix) y(x-y) 2 = x + y.

(x) xy(x + y)
2 +(x + y)(x2 -3xy-y2)-ix2 + 2y2 = 0.

(xi) xY+12as (3x + 2y) = 0.

(xii) (x2 -l)(x-2)yt -x3 + 4:y = 0.

(xiii) (x + y) x1
y
2 + (x2 + 6xy-y2

) xy + 2 (xs+ y
3
) = 0.

(xi?) x2
y
2 -2xy(x-2y)-3x2 + 8xy+3y2 = 0.

(xv) 100a;y + 2y (100 + 90*)-144a!»-+36a! + 469 = 0.

(xvi) 10{x2 -4:)(y'i -l)+xy + 23x + 26y + 94: = 0.

(xvii) 9*y + 96asy + 144 (as + y) + 496 = 0.

(xviii) ay -9 as' -3/* + 25 = 0.

(xix) 225 (yx2+ l)2 = (5 + as) (1 + x) (1+2*) (3-Bas) (3-4*) (5 -as).

[(i) x(x + y)(x+y-l) + 2 = 0. The asymptote a; = is an in-
flexional tangent at infinity ; compare § 4, Ex. (i).

(ii) Solving the equations as a quadratic in x or y we see that the
tangents are parallel 'to as = at (-3,0), (1,-2), (-f, -2) and
parallel to y=0 at (0, -1), (-6, J), (-6, -}). The asymptotes are
aV = 0. See Ch. II, § 4, Ex. 2 (iii).

(iii) {x-y + l) 2 (x+ y-l)(x + y-2) = x-7y + 2.
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«,„ J
iv) T

f
he CTe h

i
a
! c
n0
Jfal ^ymptote. The tangents are parallel tothe axes of x and y at (5, 10) and (8, ^) respectively. Compare (ii)

(v) (* + 2)(*-y-l)« + 8*-8y-2-.6. There is an inflexion at
the origin.

(vi) (x* + x+l)(x-y+l)(x + y)=y.
(vii) (x-l)(x+l)(2x-y + l) +3x+l=Q.
(viii) (x -1) (x + 2) (x -y -l)(x-y -3) = lla;-8y-6.
(ix) y{{x-yf-2} = x-y. The curve is symmetrical about the

origin and has an inflexion at the origin.

to (x-l)(9 + l)(x+y-l)(x+y-2) = 5x + v-2.
(xi) The asymptotes are x^y* = 0.

(xii) (x*-l)(x-2)(y*-l)=2x* + x-4:y-2. The curve has a
crunode at (oo

, 0), and a triple point at (0, oo ). The intersections with
the asymptotes and with 2x = 3, y = 2 should be found.

(xiii) The curve has acnodes at (0, oo
), (oo , 0) and a triple point at

(0, 0). It has a branch asymptotic to x + y + 6 = and an oval lying
between the asymptote and the axes of reference. Consider its inter-
sections with y = tx or txy + x + y = 0.

(xiv) (x + l)(x + 3)(y+l)(y-S) + lSxy + 12x + 6y + 9 = 0,

(xv) Asymptotes x2
(25y

2 -36) = 0. Solve for x and «. See
Ch. XVIII, Fig. 6.

'

(xvi) Asymptote's x = ±2, y = ±\.
(xvii) Asymptotes xhf = 0. Solve for x and y.

(xviii) Asymptotes x = ±l,y = ±B. Biflecnodes at (0, oo ) and (oo , 0).
Bitangents x = y, Vx = y, 3x + y = 4, &c.

(xix) Asymptotes x*= 0. Solve for y. See Ch. XVIII, Fig. 2.

§6.

Ex. III. Trace

Newton's diagram (Fig. 4) gives us as
the approximation at the origin

2/
4 = 2x\

which is the pair of parabolas

y
2 = ± </2x.

Hence there are two branches of the

curve touching each other and touching
the axis of y at the origin. The origin is F . .

called a tacnode in such a case. It is

sometimes called also a ' double cusp
'

; but this nomen-
clature is open to objection, as we shall see later.*

As in § 5 we find the parallel asymptotes

y+1 = and y— 2 = 0.

— -V 1

* A tacnode is the point of contact of two ordinary branches of a curve.
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There are two infinite points on the curve along x + y = 0,

since (x + y)
2

is a factor of the terms of the highest degree

;

but x + y = c meets the curve at only one infinite point for all

finite values of c. HeDce the curve has an infinitely distant
tangent with its point of contact on x + y = 0. (Ch. II, § 5.)

To get an approximation to the curve far from the origin along
x + y = 0, write its equation in the form

(x + y)
2 =x2

(y + 2)/y
2

.

Now put —y for x on the right-hand side and retain the
highest power of x in the numerator. We get as a closer

approximation (x + yf =? y. This is a parabola with axis

Pig. 5.

/(a; + »)' = *»(» + 2).

parallel to x + y.— 0, touching y = at the origin, and lying
above the axis of a;.

Writing the eqsation of the curve in the form

(y + 1) (y- 2) (x + yf + (y* + 2y) (2x + y)'= 0,

we see that it meets its asymptotes where 2x+ y = 0, and
readily find the side on which the curve approaches either
asymptote.

Solving the equation as a quadratic in x we see that for
real points on the curve y^ — 2. See Fig. 5.

Ex. Trace the curves

:

(i) {x + y)(x~yf = %xy-yi
.

(ii) x*y = x2 + y".
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(iii) x*y = f + 2xy+4x.
(iv) 4y2 = a:

2 (a;-2y).

(v)
(y + x){y-2xy = $x!f.

(vi) a? (x-yf -a? (x — y)* + y = 0.

(vii) a; {y-xf = a (y
8 + a8

).

(viii) aajy + a3 = a^.

(ix) y
2 (x + y)

2 + ctx(x + yf + a'xy = 0.

(x) a;(y-a;)2
(y + a;)

8 + (y-a;) 3
(a; + 2y) = 8a;2.

- (xi) (a;y + 6)
2 = 9(2y + 3).

(xii) (a;y + 4)
2 = 2(2y + 3)(y + 2).

(xiii) a;
2
y

2 = 4 (y + 1).

(xiv) *y = 4(y + 4)(y-l).
'

(xv) aV = 16(y-l).

(xvi) 16(3y + a;
2
)
8 = 7(a: + 3)(a: + 2)(a;-l)0r-4).

[(i) (x + y + l)(x —yf=x(x+ y). Parabolic approximation (x— y)
2= x.

.
(ii) Asymptote y = 1. Parabolic approximation a? = y. Sym-

metrical about x = 0.

(iii) Asymptote y =J). Parabolic approximation a:
8 = y. Tangents

parallel to axes of a; an"y at ( — 1, —1) and (4, 4) respectively.

(iv) Asymptote a; = 2y + l. Parabolic approximation 2y = — x\
(v) Asymptote x + y + 1 = 0. Parabolic approximation (y — 2a;)

2= 6 x.

(vi) x% (x —yf(x — y — 1) = — y. The approximations at infinity are
a;
2 = 1/y

2
,

(a; — y)
2 = 1/y, a; — y — 1 = — 1/y. There is a taenode at in-

finity at which x = is the tangent, and a triple point at infinity at
•which x = y, x = y, x = y + l are the tangents. The tangent at (1,0)
meets the curve again at (1, 2).

(vii) Asymptote x = a. Parabolic approximation (y —xf = ay

(viii) Asymptote x = 0. Parabolic approximation a;
8 = ay.

(ix) y
i (x + y— a)(x + y + a) + a(x + y)(xl + xy + ay) = 0. Parabolic ap-

proximation y^ + ax = 0. Approximations at origin a;
8 + ay = and

y* + ax = 0. The asymptote x + y = a is an inflexional tangent at

infinity.

(x) A taenode at the origin. Asymptotes a;.= —2, x = y twice.

The curve has an infinite cusp. Parabolic approximation (x+ y)
2 = 2y.

(xi) Taenode at (oo , 0), cusp at (0, oo). Asymptotes at a;
2
y
J = 0.

Solve for x and y.

(xii) Taenode at (oo,0), node at (0, oo). Asymptotes y
2
(x°- — 4) = 0.

Solve for x and y.

(xiii) Taenode at (oo , 0), cusp at (0, oo ). Asymptotes aj'y
2 = 0.

(xiv), (xv) Taenode at (oo , 0) at which the tangents are y = 0, but
which is an isolated point on the curve. One curve has a node at

(0, oo ), and the other a cusp.

(xvi) Taenode at (0, oo ) with line at infinity as tangents. Solve for y.

See Ch. XVIII, § 14.]
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Ex. IV. Trace

§7.

y
2 = 2x3 + xy3

-

Newton's diagram (Fig. 6) gives y
2 = 2x3

as the approximation at the origin and
2x2 + y

3 = as an approximation at in-

finity. The asymptote is x — 0.

The curve has an inflexion at infinity

with an infinitely distant tangent. (Ch. II,

§ 5, Ex. 1.)

The tangents parallel to the axes of

reference are readily found.
' The line y = tx meets the curve where

x = t-a {-l±(t* + i)i}, y = t-*{-l + (t* + l)i}.

Putting in values of t we get any number of points on the
curve (Fig. 7). In particular, taking t = - 1, we see that
x = — y touches the curve at (1,— 1).

1 1 HI I >

Fig. 6.

Fig. 7.

y
2 — 2xs + xys.

We may verify our approximations at infinity by writing
down the equation of a projection as in Ch. I, §3. Thus, if

we replace x and y by x/y and l/y, the equation of the
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curve becomes y
2 = 2x3y + x. This is the equation of the

projection in which the axis of y is unaltered, while the line

at infinity is projected into the axis of x, and vice versa. The
projection has x = as an ordinary tangent at the origin,

and therefore the original curve has x = as an ordinary
asymptote.

Again, replacing x and y by l/x and y/x, the equation
becomes x2

y
2 = 2x + y

s
. This is the equation of the projection

in which the axis of x is unaltered, while the line at infinity

is projected into the axis of y, and vice versa. The projection

has x = as an inflexional tangent at the origin, and therefore

the original curve has the line at infinity as an inflexional

tangent- at (oo , 0).

The reader may apply this process to any of the examples in

this chapter.

Ex. 1. Trace the curves

(i) x*-8xy'! + 2y4 + y
s = 0.

(ii) x* + a (x* + y
3
) = ScPxy.

(iii) a?y — x* + y* = 0.

(iv) x3 + (x-yf = y.

(v) y
l-y = x3 -x.

(vi) x{x + y) = y*-yi
.

(vii) x3 (x + y) = y
3 + y

2
.

(viii) y
2 (x— y) = ^(x+ y).

(ix) y* + xys + x2
y
2 + x*y + x6 = x 2

y
3
.

(x) xy + y
4 + x-y* = Xs

.

(xi) x3 {x-2y)=%y2 (y-x)-l(yi -x2
).

(xii) y
3 (x -yf +x

2
y = x* + y*.

(xiii) y
3 {x-y) 2 + xi + y* + 2x2 (x-y) + x(x + 2y) = 0.

(xiv) a?y2 = (y-x*) (y-2x2
)
(y-Bx2

).

(xv) Bxl = 2x2y(x+l)+y2
.

(xvi) y
i + x3 (x2-y2

) = 0.

(xvii) y
2 -2yx3 + x7 = 0.

[(i) Approximations at origin y
1 = m and 2 y

2 = x ; at infinity

x2 +y5 = 0.

(ii) Approximations at origin Bay = x2 and Bax = y
2

; at infinity

x4 + ay* — 0.

(iii) Approximation at origin y
2 = x3

; at infinity Xs + y = 0. The
asymptote y = 1 is tangent at an infinite point of undulation.

(iv) Approximation at origin y = x2
; at infinity y

2 = -x3
.

(v) Approximation at origin x — y-y1
; at infinity y

2 = x3
. The

curve is symmetrical about 2y = 1.

x and
vi) The curve is closed. The tangents are parallel to the axes of

1 y when y = \ (1 + </2) and when x = -
1, §, J respectively.
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(vii) Approximation at origin y = + x2
; at infinity y

2 = xs
. The

asymptote is x+y + l=0 meeting the curve at (0, -1) and (— §, — i).

The line # + 1=0 is an inflexional tangent at (0, —1) and meets the
curve again at (1, —1), where the tangent is x = 1 which meets the curve
again at (1, 1).

(viii) Approximations at origin y
2 = Xs and x + y = 2x2

; at infinity.

y
2 = —Xs and asymptote x + y = 2.

(ix) Approximations at- infinity y = x2 and y* = x*. An isolated

quadruple point at the origin.

(x) Approximations at origin x = — y
3 and y = x2

; at infinity

x = #
3 and y = —x2

.

(xi) Approximations at origin 8(y — x) = xs and y +x = 2y2
; at

infinity a? + 4y2 = 0. The asymptote x — 2y + l = meets curve at

(0, !) and &
-J).

(xii) Approximations at origin y = x2 and x2 = y
s

; at infinity ,

a;
2 = y

3 and (x— y)
2 = 2a-

.

(xiii) Approximations at origin a; + 2y = — 3a;2 and y
s = —2x ; at

infinity y* = — x2 and (x— y)
2 = - 2a:. The curve has a crunode at the

origin, touches y = at (
— 1,0), and passes through (0, —1).

(xiv) Approximations at origin y = x2 and y = 2a;2 and y = Bx2
; at

infinity y = Xs and y
2 = —6a;3

. Any number of points may be found by
considering the intersections of the curve with y = fee

2
. (Take especially

the cases t — § and t = £.)

(xv) Approximations at origin y = x2 and y = —Bx2
; at infinity

y = —2x* and 2y = 3 (a; — 1). Consider the intersections with y = tx2
.

(xvi) Asymptotes + 2y = 2x+l. Approximation at origin y
4 + a;

E= 0;

at infinity i/
2 = a;

3
.

(xvii) Approximations at origin «/ = 2a8 and 2y = x*\ at infinity

2/
2 + a;

7 = 0.J

Ex. 2. Trace a;™ + j/
b = «aa;"

_1 when n is an odd or even positive or
negative integer.

Ex. 3. Trace xn + yn = n2a2xn-2 when n is integral.

Ex. 4. Trace a;
2 "+1 + #

2n+1 = (2n+ 1) axnyn when n is integral.

Ex. 5. Trace (a:
2 - a2

)

2 + \y* - b2

f = c
4

, distinguishing the cases <»>6>c,
a>6 = c, o>c>6, o = c>6, (at + b*)i>c>a>b, (a4 + 64)* = c>a> 6,

a = 6 = c.

§8.

Ex. V. Trace

xi-2xs
y + 2x2

y + y
2 = 0.

Newton's diagram (Fig. 8) gives as an approximation at
infinity 2xs = y. Hence the curve has a cusp at infinity
with an infinitely distant cuspidal tangent.
There is an asymptote x— 2y + l = 0.

Newton's diagram gives (y + x2
f = as the approximation

at the origin, namely two coincident parabolas. This indicates
that the origin is a somewhat complex singularity on the
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curve. To ascertain more closely the nature of the curve at

the origin, write its equation in the form

y = — x2 + x3± V(—2x5 + xe
).

We see that for real points on the curve x must not He
between and 2. Hence the approxima-
tion at the origin is given only by those

parts of the two coincident parabolas for

which x is negative (Fig. .9).

The origin is sometimes called in such

cases a ' rhamphoid (ramphoid) cusp ' * or
' cusp of the second species ', the ordinary

cusp being ' a ceratoid cusp '

f or ' a cusp

of the first species '.

The nomenclature is objectionable, for it

implies that cusps of the first and second species are com-

parable, whereas the former is the cusp of the simplest

V^
*->-

Pig. 8.

--

Fig. 9.

x*-2x3 y + 2x*tj + ij* = 0.

possible type and the latter is really a singularity of con-

siderable complexity.

* From fia/upos = beak.

E 2

)* From Kepanov = a little horn.
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Ex. 1. Trace the curves

(i) st* (x + tjf + x* (x* + 2xy -<y*) +xy (2x-y) + if = 0.

(ii) (if + x*y = yW.
(iii) {hy + x>Y = 4:x(x-Z){x + h).

(iv) (y + x'*Y = 'ix(xi -2x + 2).

(v) 4(xy + iy=x(9x + lG).

(vi) 4(a^+l) 2 = a:(25a; + 16).

(vii) (2y - a:
2
)

2 + 4a:i/ (y + x') = 0.

(viii) (2y + x*y = x.

[(i) The asymptotes are {x+ 1) (a:-l) 2 = 0, and there is a parabolic

approximation at infinity (x + yf = 2x. There is a ' rhamphoid cusp'

at the origin. The tangents at (-|, -\) and (-2, $) are parallel to

x = ; as is seen by solving for y.

(ii) The approximations at infinity are f = x and if = a:
s

. The
approximation at the origin is that part of (f + a:

2
)

2 = for which x > 0.

The curve meets a;
2 = ft/

3 where x = r* (t + l)
6
, y = r5

(t + 1)*.

(iii) Rhamphoid cusp at (0, <x> ), See Ch. XVIII, § 15.

(iv) Rhamphoid cusp at (0, oo). The line x + y = 2 touches at

(2, 0) and (1, 1).

(v) Rhamphoid cusp at (0, oo ). Asymptotes x* (4y* - 9) = 0.

(vi) Rhamphoid cusp at (0, oo ). Asymptotes a?
2
(4j/

2 - 25) = 0.

(vii) Rhamphoid cusp at origin. Node at (0, oo ) with tangents

x+ 1 = and the line .at infinity. Also asymptote 4x+16y + b — 0.

(viii) There is a singularity at (0, oo ) whose projection is like a

rhamphoid cusp in shape.]

Ex. 2. If «,., v,., and «>,. are homogeneous of degree r in x and y, the

curves o = «,
2 + us + ut + ...+«„,

= ul (u1
+ u1)+ui + ... +un ,

= (tt1 + «1
2

)

2 +%2
«0

1 +M1 W3 +M5 + ... +Un ,

have in general an ordinary (keratoid) cusp, a tacnode, a rhamphoid
cusp respectively at the origin. *

[Choose axes of reference such that «jj =y, % = x. Then use

Newton's diagram.]

Ex. 3. The tangent at an ordinary cusp, a tacnode, a rhamphoid cusp

meets the curve in 3, 4, 4 points respectively coinciding with the double

point.

Ex. 4. The radii of curvature of the two branches at an ordinary cusp,

a tacnode, a rhamphoid cusp are respectively both zero, non-zero, and in

general unequal, non-zero, and equal.

[The radius of curvature at the origin of a curve touching y = there

is the limit of xl/2y as we approach the origin.]

Ex. 5. The ratio of the radii of curvature of the two branches of a
curve at a tacnode is unaltered by projection.

[See Ch. I, § 6, Ex. 6. Note the case in which these radii of curvature

are equal and opposite, as in Fig. 5.]
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Ex. 6. The curve

0= (M1 +»1
2
)
a
+(Wl«'i + Ms)(% + V)+V«2+«lM4 + «5+ ... +«„

has two ordinary branches touching «, = at the origin and having
the same curvature there.

[The origin is called an ' oscnode '. Contrast the case of the rham-
phoid cusp in Ex. 2 ; and see Ch. XVII, § 8 (iv).

Making the equations of the curves in Ex. 2 and 6 homogeneous by
means of u^ = v2 , we get the lines joining the origin to the intersections
of the curve and u1 =v1 . If we choose the coefficients of »2 so as to
make as many of these lines as possible coincide with ut

= 0, u
1
= v2

becomes a conic of closest contact with the curve at the origin. A
doubly infinite number of conies meet a curve five times at a rhamphoid
cusp, and no conic meets it six times there.]

Ex. 7. To give a tacnode or rhamphoid cusp and the tangent at that
point is equivalent to assigning 6 or 7 relations respectively between
the coefficients of the equation of a curve.

If the tangent is not given, the number of relations is one les's.

§9-

If the coordinates of a point on a curve are given in terms
of a parameter t by means of the equations

»=/(*). y = m,
we may obtain the equation of the curve by eliminating

t between these two equations and then trace it by the

methods of §§ 4—8.

As an alternative we may obtain any number of points on
the curve by taking various values for t and so trace the

curve. But this is apt to be laborious, and the method of the

following example will often suffice.

Ex. VI. Trace

x = (1 + *) (1—2*)/*, y = (l + t)
2 (l-2t) 2/t.

The curve only meets the axes at the origin, and then

t = — 1 or \ . We have y = tx2, and therefore the approxima-
tions at the origin are y = — x2 and 2y = x2

.

Again, x and y are infinite when t = or oo .

Since y/x = (1 + 1) (1 — 2t), we see that there is an asymp-
tote parallel to y/x = 1 corresponding to t = 0.

Because x—y = (1+*) (1 — 4*2
), we obtain x—y = 1 as the

asymptote, on putting t = 0. The curve meets the asymptote

where (l + *)(l-4*2
) = 1, whence t = or £( + -/2-1), i.e.

x = oo or 2+ </2.

Moreover, putting i = oo in

xs/y--=(l+t)(l-2t)/t2
,



54 EXAMPLES OF CURVE-TRACING III 9

we see that a? + 2y = is the other approximation at infinity,

(see Fig. 10).
dec

The tangents parallel to x = are given by -^- = and are

unreal. Similarly, the only real tangents parallel to y =
are the tangents at the origin.

As other examples the reader may take the curves in §§ 4

and 5, or those given in Ex. 2 below.

Fig. 10.

2y? + x2y(x + l) = xi
.

Ex. 1. The real ordinary cusps of a curve are given by values of the
parameter * making x and y both zero, dots denoting differentiation

with respect to t. The inflexions are given by xy = xy.

[The radius of curvature is (x? +#a
)4 -±(xy—xy). It vanishes at an

ordinary cusp (see § 8, Ex. 4), and is infinite at an inflexion.]

Ex. 2. Trace the curves
,

(i) x = 3 a*Y(l +?), y = 3o*/(l +*3
).

(ii) x = 5e»*7(l + *
6
), y = 5o*7(l +*5

).

(iii) x = (t* + St), y = (*
s +l).

(iv) x = (t*-2ti), y = f-Bt.

(v) x = t + t'
r

, y = 1+f.

(vi)x=*7(l + *), 2/
= *7(l + *).

(vii) x = (t + iy/t*, y=(t + iy/t\

(viii) x = * (2 - *), y = *
4 (2 - *)

3
.

(ix) a: = (1 + *+ **)/(* + **), y = (l + t + t
2)/(l + t).

[(i) Approximations at the origin if = 3ax and x 1 = Bay; at
infinity x + y + a = 0. Symmetrical about x = y, as is seen by changing
* into 1/t.
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(ii) Approximations at origin f = hax* and x* = 5ay* ; at infinity
x +y=a. Symmetrical about x = y.

(iii) Approximation at infinity y
4=x3

. Tangents parallel to axes of
x and y where t = (inflexion) and t = - 2k

(iv) Approximation at origin 2y2 =-9x; at infinity y
1 = a?.

Symmetrical about y = 0. Node at t = + ^/3, cusps at t = + 1.

(v) Approximations at infinity y = 1 anil x1 = y. Symmetrical
about x = 0.

(vi) Approximation at origin y* = x3
; at infinity x+ y = 1 and »2 = y.

(vii) At origin a rhamphoid cusp. At infinity approximates to
x3 = y* and x = y

2
.

(viii) Approximations at origin x* = 2y and 2x3 = « ; at infinity
y

l = -x l
.

(ix) Acnode at origin. Asymptotes x = 1, y=l, a; + «+l = 0.
Symmetrical about a: = y.]

Ex. 3. Trace the curves

(i) x = a cos3
1, y = a sin3 ?.

(ii) x = a cos6 £, j/ = a sin6
<.

(iii) a; = a sin St, y = a cos t.

(iv) x=acos2
£ . cos2i, (/ = asin2

£ . sin2£.

(v) x = a cosh3
<, y = 6 sinh3

£.

(vi) a; = acos3i . cosec2i, y = asiaBt . cosec2*.

§10.

Some curves are most readily traced by turning the Carte-
sian into the polar equation.
For instance, the curve

(x2+ y
2 -bx) 2 = a?(x2 + y

2
)

becomes in polar coordinates

r = a + b cos 0.

This is readily drawn by noting how r alters as 6 increased
from to 2 7r.* The case of 5 a = 6 b is shown in Ch. IV, Fig. 1

.

The asymptotes are given by noting that the polar sub-

tangent r2 -5- becomes the perpendicular from the pole on an

asymptote, if 6 has a value a which makes r infinite. The
perpendicular is positive or negative according as the asymp-
tote lies on the right. or left of a person standing at the pole

and looking along the direction 6 = a.

* It may also be drawn by increasing each radius vector of the circle

r = b cos by the constant a.
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Ex. 1. Trace the curves

(i) (»* + /)• = «»(*_,•).

(ii) (a:
! + y

il)(*-&)2 = »!
a*

2
.

(iii) (x' + tf)* = a!/ (3x*-,f).

(iy) (xi + y
2

)

s =aiy\
(v) a;

2
(a:

2 + i/
2)=ay.

(vi) (a:
2 + if - 2a2

)

2 = a:
2
(a;

2 + j/
2
).

(vii)
2/

2
(a;

2 + 2/
2-o2

)
2 = 4a2

a:
2
(a:

2 +y!

)'.

(viii) (4 a;
2 + y

2
) x'y2 = a2

(a:
2 -*/2

)

2
.

Ex. 2. Trace the curve

(a* + 4y2
)
5 = a2 {xl - 24a;2/ + 16y4

)
2

.

[The locus of the mid-points of the ordinates of

(a;
2 + y

2

)
5 = a2

(x* - §x2
y

t + y*f.]



CHAPTER IV

TANGENTIAL EQUATION AND POLAR
RECIPROCATION

§ 1. Tangential Equation.

If the line

Xx + /iy + vz —
touches a given curve whose equation in homogeneous coor-
dinates is f(x,y,z) = 0, a certain relation, say 0(A, jjl, v) = 0,
must hold between A, jx, v. This relation is called the tan-
gential equation of the curve. j

It is homogeneous in A, /i, v, for it is not altered if we
multiply X, /i, v by the same constant.
We may call f(x, y, z) = the point-equation of the curve,

if we wish to emphasize the difference between it and the
tangential equation.

If the equation of the curve is given in Cartesian coordin-
ates, the tangential equation is the condition that the curve
should touch Xx +liy+\ = 0.

It is not homogeneous in A, \i in general.

,

Suppose that the triangle of reference of homogeneous
coordinates is altered. We shall obtain the new equation of

a curve f(x, y, z) = by putting in this equation

x — l
x
x' + rn

1y
/ + n^z', y = l2 x'+m2

y' + n2
z',

z = i
3
af +m3

y'+n3
z' ....... (i)

lv mj, ... , n3 being constants ; and then dropping the dashes.

We get the new tangential equation of the curve by putting
in the original tangential equation

(f>
(A, /*, v) = 0,

A = L
r
X' +L

2 fj.'
+ L3 v'', /x = M^' + Mo/jl' + M^',

v^NiX' + Nzh' + N^' .".... (ii)

and then dropping the dashes; where equations (i) give on
solving for x, y, z

x' = L
±
x +M

xy +Nx
z, y' = L2x +M2y +N2 z,

z' = L3
x +M3y + JS

T
3
z.
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For on changing the homogeneous coordinates by the sub-

stitution given by equations (i), the line Xx + fty + vz =
becomes

(^A + l
2 /i + l3 v) x' + (m{X +m2

/i+m
3
v) y'

+ (n
1
X + n2p + n3

v) z' = 0.

This is identical with X'x'+ fi'y' + v'z' = 0, if

X'=l
1X + l2 /i + l3

v, /i'=m
1 X +m2

/i +m3 v,

v'= n-^K + n^fi+n^ ..... (iii).

But equations (iii) give equations (ii) on solving for A, fi, v ;

which proves the result.

§ 2. Class of a Curve.

A line is considered as ' touching ' a point in the sense of

§ 1 if it passes through it. The line Xx + fiy + vz = passes

through the point {x', y', z') if

Xx' + fiy' + vz' = 0.

This is therefore the tangential equation of the point. It

is to be noted that the tangential equation of a point is of the

first degree. A straight line has no tangential equation.

If the tangential equation <j>(X, /x, v) = of a curve is homo-
geneous of degree m, in A, /jl, v, the tangents from (x', y',~z

7
) to

the curve are given by solving for A : fi : v from

Ax' + fiy' + vz' = 0, <j>(X, fi, v) = 0.

Eliminating v from these two equations, we have an equation
of degree m in A : fi. 'Hence^m tangents can be drawn from
any point to the curve. This number is called the class of the
curve. As a particular case, m tangents can be drawn to the
curve in any given direction.

*

The common tangents of two curves of class m and M,
.0(X, fi, v) = O' and $(A, fi, v) = 0,

are found by solving these two equations for X: fi:v. They
are piM in number. The proof is exactly similar to that used
in CO, §7.
The point of contact of any tangent having the point-

equation X'x + fi'y + y'z =
with the curve whose tangential equation is <f>(X, /it, v) —
has the tangential equation

^ ¥ ¥ ¥
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, If
where ^ means the result of putting A', //, v for X, /m, v

• <>f
in ~

, &c. The proof is similar to that of Ch. I, § 9.

As in Oh. I, § 8, we may call u + kv = a (tangential) pencil
of curves of the m-th class, u and v being homogeneous of
degree m in A, \i, v.

The curves obtained by taking different values of k have
ma common tangents, namely the common tangents of u =
and v = 0.

§ 3. Tangential Equation of any Curve.

To obtain the tangential equation of

f(x, y, z) = 0,

we find the lines

f{x,y, -(\x + py)/v) = (i)

joining its intersections with the line

Aa3 + fty + vz =
to the vertex (0, 0, 1) of the triangle of reference. Two of the

lines represented by., (i) are coincident if \x + /iy + vz =
touches the curve. Hence, if we find the condition that (i)

considered as an equation in x/y has equal roots, by elimina-

ting x/y between (i) and the result of differentiating (i) with
respect to x/y, we get the required tangential equation.

Similarly, to obtain the point-equation when the tangential

equation 0(A, fjt, v) = is given, we find the condition that

two of the intersections of the curve with a side of the tri-

angle of reference

<f>{\, p, - (\x+ fty)/z) =
should coincide, i. e. that this last equation should have equal

roots considered as an equation in X/fi.

An alternative method of finding the tangential equation of

f(x, y, z) = is as follows.

Suppose (a/, y', z') is the point of contact of the tangent

Xx + jiy + vz — 0. This line must pass through (x'
',

y', z') and
be identical with the taDgent

If if 3/ „

7>x tty oz

to / = at (x\ y', z').

We therefore obtain the required tangential equation by
eliminating (x\ y', z') between

Xx> + fi y' + „z>=0 and g/A = */? = g/„.
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Again, if the coordinates of any point of the curve are

known functions of a parameter t, the equation of the tangent

at the point is ax + by + cz = 0, where a, b, c are known
functions of t. (See Ch. I, § 9.)

Eliminating t between a/\ — b/ji = c/v, we have the tan-

gential equation required.*

Ex. 1. The tangential equation of

ax2 + by2 + cz1 + 2fyz + 2gzx + 2hxy =
is A\2 +BJ + <V + 2.F>.. + 26?i/X + 2//V = °»

where A = be—

f

2
, F = gh — af, &c.

Ex. 2 A conic is of degree 2 and class 2.

Ex. 3. If in Ex. 1 the point-equation is deduced from the tangential

in the same way as the tangential from the point-equation, we have the

original equation multiplied by (abe + 2/gh - of2 - bg2— ch2).

Ex. 4. If in Ex. 1 the original equation is a line-pair, the tangential

equation is the intersection of the lines twice over.

If the original equation is a pair of coincident lines, the tangential

equation vanishes identically.

Ex. 5. Find the tangential equations of

* (i) kx3 = y
2
z.

(ii) ay2z = x{x2 +y2
).

(iii) 3 (x + y) = Xs
.

(iv) x(x2 + y
2
) = ay2

.

(v) a3 »s = xy (x+ y + az).

(vi) (x2 + y
2
)

2 = a2 (x2 -y2
).

(vii) x% -iyi = a%z$.

(viii) y"zq = x*+«.

[(i) 27V + 4V! = 0.

(ii) 27aV« + 4(aX + i/)
s = 0.

(iii) 9/i + 4(X- M)

3 = 0. »

(iv) 27aV+ 4
(
a* + l)

8 = 0.

(v) 27 a*\2
p

2 -18a2
\pV + 4:a (K + p) v

2 -i? = 0.

(vi) 27a4 (X2 + ^)
2 = (4-a2 \ 2 + aV)s

-

(vii) (\
a +jiV = a2kV-

(viii) (-XY^pPq9 = F
p i/«(p + 2)

p+».]

Ex. 6. The product of the perpendiculars from m fixed points on
a line is proportional to the cosine of m times the angle which these
perpendiculars make with a fixed direction. Show that the envelope of

the line is a curve of class m, and that the tangents from any one of the
fixed points are parallel to the sides of the same regular polygon.

* The third method is usually best when it can be applied. The second
method is best in Ex. 1.
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E/- 7" T
!j
e enveloPe of the asymptotes of the pencil of w-ics S+ kS' =

is ot class 2n—l.
Any one of these asymptotes meets S = and S' = in two sets otn points with the same centroid.
The envelope touches the line' at infinity at each of the 2(n-l) points

where a curve of the pencil touches it.

[It follows from Ch. VIII, § 1, that the degree of the envelope is
4(n-l) m general.]

§4. Tangential Equation of the Circular Points.

The tangential equation of the circular points is obtained
by writing down the condition that any line should be per-
pendicular to itself. For instance, in rectangular Cartesian
coordinates the tangential equation of the circular points is

A2 + /*
2 = 0,

for this is the condition that \x+/j.y+ l = should be self-

perpendicular.

Ex. 1. The circular points are

X l!-2X/icosa) + /i
2 =

for Cartesian axes inclined at an angle a.

Ex. 2. The circular points are

X2 + /
i
2 + »a -2^i/cos^-2eXcosB-2Vcos C=

for trilinear coordinates.

Ex. 3. Write down the tangential equation in trilinear coordinates of
a conic with foci (a,, &, yj, _(a2 , j3

? , y2 )
and minor axis 2k.

Deduce the equation of a circle with given centre and radius, e.g. the
circle inscribed in the triangle of reference.

[(Xa
t + p/3, + vyj (Xa

a + M/3a + vyt )

= is (X2 + ^
2 + »2-2^cos^-2vXcos£-2XM cosC).]

Ex. 4. Obtain the equation of the director-circle of a conic whose
equation is given in any coordinates.

[The locus of a point such that the tangents from it to the conies

^IX2 + By? + Gi? + 2Ffiv + 2 Gv\ + 222V = 0,

A'\2 + 2J>2 + CV + 2F> + 2 (?VX + 2 22> =
form an harmonic pencil is

(BC' + B'C-2FF')x>+ ... + ...

+ 2{GH'+G'H-AF-A'F)yz + ... + ... = 0.

Take the second conic as the circular points, and this ' harmonic locus
'

becomes the director-circle of the first conic]

Ex. 5. A curve of class m touches the line at infinity at the circular

points and m— 3 other points. Show that the sum of the angles which
the tangents from any point make with a fixed line is constant to within

a multiple of ir.

[The curve is /(X, p) + (\* + n") <£(X, p) = ; / and (/> being homo-
geneous of degrees m and m — 3 respectively in X and ft. The inclination

of the tangents from (x, y) to y = is given by /= (X 2
+/*

2
)
(\x + iiy)<j>.]
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Ex. 6. More generally, the sum of the angles which the common
tangents to this curve and any curve of given class make with a fixed

line is constant to within a multiple of w.

Discuss the case m = 3.

[(i) As in Ex. 5. (ii) The three-cusped hypocycloid.]

§ 5. Polar Reciprocation.

Suppose we have a certain * base-conic '. The envelope of

the polar of any point on a given curve 2 is called the polar
reciprocal 2' of 2 with respect to the base-conic.

Consider two consecutive points P and Q on 2. Their
polars meet at the pole B of PQ with respect to the base-

conic. But these two polars are consecutive tangents to 2' in

the limit, and R is the point of contact of either. Also PQ
is in the limit the tangent at P to 2. Hence 2 is the envelope
of the polars of points on 2' ; or the relation between the

curves is a reciprocal one, a point on 2 and the tangent at this

point being the pole and polar with respect to the base-conic

of a corresponding tangent to 2' and its point of contact.

If I is any line, its intersections with 2 are the poles of the
tangents to 2' from the pole of I with respect to the base-conic.

Hence

:

The degree of a curve is equal to the class of its polar recip-

rocal.

§ 6. Equation of Polar Reciprocal.

The polar reciprocal of the curve having tangential equation
<j> (X, ji, v) = with respect to the base-conic x2 + y* + z2 = is

<p(x, y, z) = 0.

For the polar of (x', y', z') with respect to the base-conic is

xx' + yy' + zz' = ;

and this touches <#>(A, /i, v) = 0, if 0(0!', y\ z') = 0.
* But

(x\ y
1

, z") lies on the polar reciprocal in this case.

Hence the polar reciprocal of a curve can be obtained when
its tangential equation is known, which is always the case
when its point-equation is given.
The reader will notice the close connexion which exists

between the algebraic notion of 'tangential equation ' and the
geometrical conception of ' polar reciprocal '.

Ex. 1. If the condition that a curve (in Cartesian coordinates) should
touch *x+y +v=0 is cj> (X, v) = 0, the polar reciprocal with respect
to x* + 2y = is <l>(x, y) = 0.

[The polar of {x', y') with respect to x"1 + 2y 1= is xx' + y + y' = 0.]

Ex. 2. The polar reciprocal of a 'Lame Curve' (x/a)
n + («/b)

n = 1
with respect to {x/Af + (y/Bf = 1 is a Lame Curve.
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Ex. 3. The base-conio, any conic, and its polar reciprocal have in
general a common self-conjugate triangle.

Ex. 4. The polar reciprocal of
<f> (\, /*, v) = with respect to

ax2 + by2 + cz2 + 2fyz + 2gzx + 2hxy =
is (ax + hy + gz, hx + by +fz, gx +fy + cz) = 0.

§ 7. Singularities of Curve and its Reciprocal.

We shall now consider what corresponds in the polar recip-

rocal to the ' singularities ' of a curve, i. e. its nodes, cusps, &c.

A node is a point of a curve at which there are two tangents.

Hence to a node corresponds in the reciprocal curve a
tangent with two points of contact. Such a tangent is called

a bitangent.

If the base-conic has a real equation, to a crunode corre-

sponds a real bitangent with two real points of contact, and
to an acnode corresponds a real bitangent with unreal points

of contact.*

In the same way, to a triple, quadruple, . . . point with
distinct tangents corresponds a tangent with three, four, . . .

distinct points of contact, which may be called a triple, quad-
ruple, . . . tangent.

To a cusp C of a curve and its cuspidal tangent i correspond

an inflexional tangent c of the reciprocal curve and its in-

flexion J.

For the cusp has the properties that every line through

C meets the curve twice at C, except i, which meets it thrice

at C ; while of the tangents from any point P on i one
coincides with i, unless P is at C, when three of the tangents

coincide with i.f

Hence from any point on c two tangents can be drawn to

the reciprocal curve coinciding with c unless the point is at I,

when three of the tangents coincide with c ; while any line

through I meets the reciprocal curve once at 7, except c, which
meets it thrice at I. Therefore I is an inflexion and c the

inflexional tangent.

Hence

:

To a node of a curve and its tangents correspond a bitangent

of the reciprocal curve and its points of contact, to a cusp and
its cuspidal tangent correspond an inflexional tangent and

* Sometimes called an ' ideal ' bitangent. For pictures of bitangents see

Ch. IV, Fig. 1 ; Ch. X, Fig. 1 ; Ch. XVIII, Figs. 2, 6, 7, 9, 10.

f These properties of the cusp are evident from the fact that, by Newton's
diagram, any curve approximates near a cusp to a semi-cubical parabola
ay2 = a;

3
, for which the properties are at once established. They are almost

intuitive from a figure. Similarly for the inflexion.

A more rigorous proof is given in Ch. VI, §§ 3, 5.
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its inflexion. More generally, to a k-ple point and its k tan-

gents correspond a k-ple tangent and its k points of contact.

The relations between the singularities of a curve and its

reciprocal are illustrated by Fig. 1. This diagram shows the

limacon r = 6 + 5 cos and its reciprocal with respect to the

circle 4(r2— 3rcos0) = 55.

The singularities of the limacon are an acnode, two unreal

cusps (at the circular points), a bitangent with real points of

contact, and two real inflexions. These reciprocate respec-

tively into an ideal bitangent, two unreal inflexional tangents,

a crunode, and two real cuspidal tangents. The degree and
class of the limacon and its reciprocal are both four. The two
bitangents are shown by the dotted lines.

Fig- I-

Ex. 1. To a triple point with three coincident tangents corresponds
in general the tangent at a point of undulation ; and so for quadruple
quintuple, ... points.

'

Ex. 2. If is a multiple point of a curve with distinct tangents, two
of the tangents from to the curve coincide with each tangent at O.

Ex. 3. If <£ (X, ii, v) = is the tangential equation of a curve, the

<H[> _ d$ _ d<£

u\ S/L4 5f
Find the inflexions.

[Compare Ch, II, § 4.]

bitangents are given by
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Ex. 4. The singularities of y"zq = xv+i at (0, 1, 0) and (0, 0, 1) are
reciprocals of each other.

[Use § 3, Ex. 5 (viii).]

Ex. 5. A quintic cannot have a triple point and three cusps.

[Its reciprocal would be a quintic with a triple tangent.

Note that to be given that a curve has a triple point and three cusps
is equivalent to only 4 + 6 conditions, whereas a quintic can satisfy

20 conditions in general.]

Ex. 5. A sextic cannot have a triple point, a node, and six cusps.

Ex. 7. A 7-ic cannot have a quadruple point, four nodes, and five cusps.

§8.

If a curve has degree n, class m, 8 nodes, k cusps, r bitan-

gents, and i inflexions, we have shown, in § 7, that the polar

reciprocal has degree m, class n, t nodes, i cusps, 8 bitangents,

and k inflexions.

If the point-equation of a curve is written down at random,

it has no node or cusp (Ch. II, § 6), but we shall see that it has

bitangents and inflexions. The point-equation of its reciprocal

must not be considered as ' written down at random ', for this

reciprocal curve is specialized by the fact that it has been

derived by reciprocation from a curve with random point-

equation. In fact the reciprocal has both nodes and cusps in

general.

If the tangential equation of a curve is written down at

random, the curve will have no bitangent or inflexion, but will

have , nodes and cusps. In fact the writing down of the

tangential equation of a curve is equivalent to writing down
the point-equation of its polar reciprocal with respect to the

base-conic xz + y
2 + z2 = 0.

Suppose a curve is subjected to r conditions ; then its polar

reciprocal with respect to any given conic is also subjected to

r conditions. For instance, if the given curve is made to pass

through r assigned points, the reciprocal has r assigned tan-

gents, &c.

Suppose we are told that the curve is of degree n, has 8

nodes, has k cusps, and satisfies r other conditions ; and also

that only a finite number of curves can be found with these

properties. Then (Ch. II, § 6)

±n(n + 3) = S + 2k + t.

The polar reciprocal is of degree m, has r nodes, t cusps,

and satisfies r other conditions, and only a finite number of
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polar reciprocals exist ; the base-conic being supposed given
throughout. Hence

|m(m+3) = r + 2i + r.

We deduce

in(n + 3)-8-2K = §m(m + 3)— t-2l.

Ex. 1. A singly infinite family of curves has the equation

f{x, y, z, a) = 0,

which is an algebraic equation of degree p in the parameter a. Show
that the tangential equation of the family <£(X, /i, v, a) = is also an
algebraic equation in a, say of degree I.

Show that the general p curves of the family pass through any given
point, and I touch any given line.

[(p, I) is called the characteristic of the family.]

Ex. 2. The characteristic of the polar reciprocal of the family is (I, p).

Ex. 3. Find the characteristics of the following families :

(i) Conies through r points and touching s lines, where r+ s = 4.

(ii) Conies touching two given lines at given points,

(iii) Conies through two given points touching a given line at a
given point.

(iv) Conies through a given point, touching a given line, and touching
a given line at a given point.

(v) Circles touching a given circle with their centres on a given line,

(vi) Conies with a given focus, point, and length of major axis,

(vii) Conies with given vertices.

(viii) Conies with axes along given lines and passing through a
given point.

(ix) Conies with given centre and eccentricity, passing through a
given point,

(x) The circles of curvature of a given parabola.

[(i) (1, 2), (2, 4), (4, 4), (4, 2), (2, 1) as r = 4, 3, 2, 1, 0. (ii) (1, 1).

(iii) (1, 2). (iv) (2, 2). (v) (2, 4). (vi) (10, 6). (vii)*(l, 1).

(viii) (1, 2). (ix) (2, 4). (x) (4, 6).]

Ex. 4. Find the characteristics of

(i) A pencil of w-ics.

(ii) Curves of degree n and class m with a common centre of
similitude.

(iii) The family obtained by rotating a curve through any angle
about a fixed point.

(iv) The family obtained by translating a curve through any distance
in a given direction.

(v) Curves parallel to a given curve.

[(i) (1, 2n-2). (ii) (n, m). (iii) (2», 2m). (iv) (n, m).
(v) (n + m, m). See Ch. XI, § 2, Ex. 4, and § 10.]
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Ex. 5.* Find the characteristics of

(i) Cubics with a given cusp, cuspidal tangent, inflexion, and in-

flexional tangent.

(ii) Cubics with a given cusp, point, inflexion, and inflexional tangent,

(iii) Cubics with a given cusp, inflexion, tangent, and point of contact.

[(1, 1), (2, 3), (2, 3). The families are

zy* = ax3
, z (y + ax) 2 = 2 axy1 + a?x*y, a (y + ax) 2 = axy1 + 2a?xi

y,]

Ex. 6. Find the characteristics of

(i) Cubics with a given node, nodal tangents, and inflexions,

(ii) Nodal cubics with, three given collinear inflexions and given

tangents at two of them.

[(1, 4) and (3, 4). The families are

ax (a2 + y
i
) = y (3a2 - y

1
), a3a3 = xy (x + y + S az).]

Ex. 7. Find the characteristics of

'

(i) Cubics with nine given inflexions.

(ii) Cubics with three given collinear inflexions and corresponding

inflexional tangents.

[(1, 4) and (1,2). See Ch. XIV, §§ 5 and 8.]

Ex. 8. Find the characteristics of

(i) Lemniscates of Bernouilli with a given node and axis.

(ii) Quartics with a given node, two given cusps, and given tangents

at these cusps.

(iii) Quartics with three given biflecnodes and given tangents at one

of the biflecnodes.

(iv) Quartics with three given nodes and four other given points.

[(1, 3), (1, 3), (1, 3), (1, 6). See § 3, Ex. 5 (vi), and Ch. XVII, §§ 3, 6.]

Ex. 9. Find the characteristic of the conies having 5-point contact

with a given cuspidal cubic.

[(6, 6). See Ch. XIII, § 3, Ex. 7.]

Ex. 10. The complete primitive of the differential equation

which is algebraic and of degree ft in — , while <j> (x, mx, m) = is

an equation of degree v in x, is a family with characteristic (/*, v).

Ex. 11. Find the Pliicker's numbers of the locus of the point of

contact of tangents from a given point to a family of curves with

characteristic (p, I).

W = p + 1, m' = 2p + M, k = in general, where M is the class of the

envelope of the family. is a p-ple point of the locus. Consider the

intersections with the locus of any line through 0, and the tangents

from to the locus. Verify by considering conies through four points

or touching four lines.]

* Ex. 5 to 13 should be omitted on a first reading.

f2
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Ex. 12. Find the degree and class of the locus of the intersection of

tangents from fixed points A and B to a family of curves of degree n
and class m with characteristic (p, I).

[n' — l(2m — l), m'. — m(M+p)+2l{m — l), where M is the class of

the envelope. A and B are l(m — l)-ple points of the locus and the

tangents from A and B to the envelope are »»-ple tangents of the locus.]

Ex. 13. Find the degree and class of the locus of the foci of a family
of curves of degree n and class m with characteristic (p, I). The foci of
the envelope are w-ple foci of the locus.

[In Ex. 12 take A and B at the circular points.]



CHAPTER V

FOCI

§ 1. Definition of Foci.

If co and a> are the circular points, and the lines Sco, Sa>'

touch a given curve (not at a> and co'), S is called a focus of the
curve.

If the curve is of class m, m tangents can in general be
drawn to the curve from co, and m from to'. If such a tangent
is x + iy = a+ib, then x—iy = a—ib is also a tangent, the
curve being supposed real.

These tangents meet in the real focus (a, b), so that there

are m real foci. There are no more than m real foci, for no
tangent from a can contain more than one real focus, since the

line joining two real points is real, and cannot pass through co

or co'.

Hence

:

A curve of class m has in general m real and m2—m un-
real foci.

,

' If/(A; /i, v) = is the tangential equation of the curve, any
curve with the same foci is

f(\,p,v) + 4>(X,ii,v).+(\,ii t ») = . . (i),

where (j> (X, fi,v)=0 is the tangential equation of the circular

points, and ^r(\, p, v) = is any curve of class m — 2.

For to say that a curve is confocal with / = is equivalent

to saying that it touches the 2m common tangents of / =
and <p = 0. Hence the general tangential equation of a curve

confocal with / = has

%m(m + 3)— 2m = Jm(m— 1)

arbitrary coefficients. But (i) evidently touches the common
tangents of /=0 and 0=0 and has %m(m— 1) arbitrary

coefficients, since this is the number of coefficients in \j/.

As a special case, the general tangential equation of the

curve whose m real foci have tangential equations /, = 0,

/2 = 0,...,/m = is

f\k -../«

+

<P
(a, /*, ")• * (x, *") = o,
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1

where
<f>
= is the circular points and i/r = any curve of

class m— 2.

Not many properties of the foci of the general curve are

known (but see the examples below). The foci of special

curves may have interesting geometrical properties.

That the ' foci ' as defined in this section are the 'foci ' of

the conic, when m = 2, according to the usual definition of

foci of a conic may be shown as follows.

If P(x,y) is any point of a conic, ^{x^, yj a focus, e the

eccentricity, and p = x cos a. + y sin a the directrix, the equa-

tion of the conic is

(x—x^+ (y
— i/^ 2 = e

2 (p—x cos oc—y sin. a)*;

since SP = e . PM, where PM is the perpendicular from P to

the directrix.

It is seen at once that the circular lines through S, namely

{x-x
1f + (y-y,f = Q

touch the conic, and that the directrix is the chord of contact.

By analogy we may call the chord of contact of the two
circular lines through a focus S of any curve the directrix

corresponding to S.

Ex. 1. If the middle point P of the line joining two foci of a real

curve is real, Pis the middle point of the line joining two real foci.

Ex. 2. The coaxial family of circles through two foci of a curve have
two other foci as limiting points.

Ex. 3. Tangents are drawn from any point to two confocal curves.

The tangents to one curve make with any fixed line angles whose sum
is a, and the tangents to the other curve make angles whose sum is 0.

Show that Of — is a multiple of n.

[Taking rectangular Cartesian axes through and the fixed line

parallel to the axis of x, suppose the terms of highest degree in the
tangential equations of the curves to be t

p \TO -p
1
\m-V+i'2V,!~V- • and q ^m-q

1
\m'1

li + q2 \
m'i

H-

i~
Since the difference of these has X 2 + /j? as a factor.

tana == (-p1 +pi~pi + '»)+(Pi>-Pt+Pi- •)
and tan0 = (-g1 + gs -gB + )^{q -q2 + qi - ...)

are equal.]

Ex. 4. The tangents from to a curve make with a fixed line angles
whose sum is (X, and the lines joining to the foci make angles whose
sum is 0. Show that a — is a multiple of n.

[A particular case of Ex. 3. The theorem is well known in the case
of the conic]

Ex. 5. The sum of the angles (to within a multiple of w) which the
common tangents to two curves c and c' make with any fixed line is not
altered, if c and c' are replaced by curves respectively confocal with them.

[See American Journal Math., x, p. 58, and xii, p. 161.]
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Ex. 6. If the two curves of the family Pa?+Qa + R = which pass
through any point are always orthogonal, where P, Q, R are polynomials
in x, y and a is a parameter, then the curves of the family are confocal.

[The envelope of the family must evidently consist of circular lines.
The case in which the family consists of conies is familiar.]

Ex. 7. If four foci are concyclic, the curve has three other sets of
four concyclic foci. The four circles cut orthogonally.

[If a, b, c, d are tangents from &> and a', b', c', d' tangents from a such
that the intersections of aa', bb', cc', dd' are concyclic, the pencils {abed),
(a'b'c'd') have the same cross-ratio. Therefore so do the pencils (abed),
(b'a'd'c'), &c]

§ 2. Singular Foci.

If a curve of class m touches the line at infinity com', the
number of tangents, other than moo', which can be drawn to

the curve from m and a>, and by their intersections determine
the foci, is less than in the general case ; so that the number
of foci is less than m2.*

For instance, if the curve has ordinary contact at one point

with mm', it will have (m— l)
2 foci, of which m— 1 are real.

A well-known example is the parabola.

If the curve passes through a and a/, the tangents at m and
co'f meet in points which are not usually included among the

ordinary ' foci '. They will be called singular foci. If the

curve has /c-ple points at m and m, it will have in general k2

singular foci of which k are real, and (m— 2k) 2 ordinary foci

of which m— 2k are real (see Ch. IV, §7, Ex. 2).

For example, the centre of a circle is a singular focus, and
the circle has no ordinary foci.

Ex. 1. The projection of a curve nearly touches the projection of a>a.

Show that the projection of (m-1) foci are close to the projection of a,

and so for a ; and that the projection of another focus is near the point

of approach of the projection of a>u' and the curve.

Ex. 2. The projection of a curve nearly passes through the projections

of a> and a. Show that the projections of four of the foci are close

together and in the limit coalesce at the projection of a singular focus.

Ex. 3. Find a curve with no. focus, singular or ordinary.

[A curve of class m touching a>u>' at o>, <a' and m — 3 other points; or

touching <b a at a, a and m — i other points, and having cusps at a and to'.]

Ex. 4. The envelope of a line of given length with its ends one on

each of two given curves has no (ordinary) foci.

[A segment through « must have zero length.]

* A point is not called a ' focus ' unless it is finite.

t Excluding coai', if this is a tangent. The intersection of a tangent at a

with a tangent from a', or vice versa, is not counted as either a singular or

an ordinary focus.
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Ex. 5. If 2 = 0, 2' = are the tangential equations of two curves of

the m-th class, the locus of the foci of the pencil 2+&2' = is a

(2m— l)-ic having an (m— l)-ple point at a and w', and passing through
its own singular foci.

[By § 1 if (x,., yr) and (a/,.
,
y',.) are the foci of

2 = and 2'= (r= 1, 2, ..., m),

2 = n (\x,. + pyr + 1) + (Vs + fi
2
) yjf, and so for 2'.

r

Writing down the conditions that the lines joining (x, y) to d and w
should touch 2 + &2' = 0, and eliminating h, we have for the locus

n(x,. + iy,.-x- iy) (x',.-iy',.-x+ iy)

= n (x,. - iy,.-x + iy) (a/,. + iy\ -x-iy).

For another proof see Ch. XXI, § 2, Ex. 4, and Ch. IV, § 8, Ex. 13.]

Ex. 6. The lines joining any point of the locus of Ex. 5 to the foci of

2 = and 2' = make angles with any fixed line whose sum is the
same for both curves to within a multiple of n.

[If a is the angle which the line joining (x, y) and (x,., y,.) makes
with y = 0, eiia = (x,. + iy,.—x-iy)/(xr— iy,.-x + iy).]

Ex. 7. The tangents from the real foci of 2' = to any curve of the
tangential pencil 2 + fc2' = touch a curve confocal with 2 = 0.

Ex. 8. The sum of the angles made with a fixed line by the tangents
to a curve of class m from any point of an m-ic through all its foci

is constant.

The asymptotes of the latter curve are parallel to the sides of a
regular polygon.

[See Ex. 6, and § 1, Ex. 4.]

Ex. 9. If f(x) = is an algebraic equation of degree n with roots

»! + j|3j , (X2 + i/32 , . .
.
, and the roots of /' (x) = are OL\ + t , Oi\ + iji\ , . . .

,

prove that the centroid of the points (ptlt ft), (0Cit j32), ... coincides
with the centroid of the points (a'D/3'j), (a'

2 ,

/3'
2 )

Show that there exists a curve of class n — 1 with real foci at the
former points which touches at its middle point the line joining any
two of the latter points.

[The curve is (Xa
1 +^1 + l)- I + (\a2 + /i/32 + l)-1 + ... = 0.]

Ex. 10. Fixed segments AiBu A^B^, ..., AmBm subtend angles at P
whose sum a- is constant. Show that the locus of P is a m-circular Zw-ic.

If o- is an odd multiple of \n, the real singular foci of the locus are

the middle points of the segments.
Discuss the case in which a is an even multiple of \ir.

[The difference of the sums of the angles which PAlf ..., PAm and
PBlt ..., PBm make with a fixed line is <r. Now use Ex. 5, 6.

If <r = kir, we have the locus of Ex. 5.]

Ex. 11. If Alt ..., An , Blt ..., Bn_, are fixed points, the locus of P
such that pai

. PA2 PAn = h . PB* . P£2 PBn^
has Alt ..., An as ordinary foci.

The locus of P such that

PA, . PAt PAn = h . PB, . PB2 PBn-x

has A lt ..., An as singular foci.

[In connexion with the above examples see Darboux, Sur une classe

remarquable de coiirbes et de surfaces algibriques, § 30.]
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§3. Method of obtaining the Foci.

The singular foci are the intersections of the asymptotes
which are circular lines. These asymptotes may be found in
the usual manner. If one such asymptote is x + iy = a + ib,
another is x-iy = a ~ib, the curve being supposed real, and
(a, b) is a real singular focus.

To.obtain the ordinary foci, find the value of c such that
x + iy = c touches the curve, by putting -1/c for A and -i/c
lor n in the tangential equation, or otherwise. If c = a + ib
is such a value, a and b being real, (a, b) is a real focus.

Ex. 1. Find the real singular and ordinary foci of
(i) 2x{xl+ yi

) = a(Zxi

-tf).
(ii) {x + y) {a? + y*) +2x {x-y) = 0.

(iii) x(a? + y*) = ay\
(iv) (a;

2 + 2/
!!

)

i! -5a:
2-4^+7 = 0.

(v) (a* + y*)*-2f(a?-y*) + *-a* =>Q.

[(i) (o,0); (-80,0).
(ii) (0, 1); (-3 + 2vV2+l, -1 +2^2-1).

(iii) (~ia, 0); (4o, 0).

(iv)
( +h 0); (±1, 0), (+./7,0).

(v) (±c, 0); ( ± (c
«_ a4)|/Cj ) or (0) ± (

ai
4_ c4)j/c) ag c>a Qr c<a _j

Ex. 2. Find the real foci of

(i) (\
2-2

Al
2
)' +V + 0.

(ii) 4\V~3X2 +1 = 0.

(iii) 2\V + 2X
/
x-2 fl

2 + 2\ + /;. + l =0.

[(i) (1^2,1^2), (-1^2, -§72).
(ii) (±2,0), (0, +1).

(iii) (1, ±1), (0,1).]

Ex. 3. Given the tangential equation $ (X, p) = of a curve in
rectangular Cartesian coordinates, find an equation giving the distances
of the real foci from the origin.

[If (r, 6) are the polar coordinates of a real focus,

(j)(-r- 1 e-Bi
,

-«'?-' e~W) = and ( - r^1 ««•', tV 1 eW) = 0.

Now eliminate eei.]

Ex. 4. The product of the distances between a given real focus of that
curve of a tangential pencil which touches the line at infinity and the
real foci of any other curve of the pencil is constant.

Ex. 5. The distances from the pole of the intersections of a curve
with its directrices are given by putting p infinite in its pedal equation.
Apply to the case of a conic.

Ex. 6. If x —f{t), y = </>(') is the parametral equation of a curve,

the circular lines through the foci are the tangents at the points given
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Ex. 7. Find by means of Ex. 6 the foci of

(i) x=af + 2bt + c, ij = AP + 1Bt+C.
(ii) x = atp

, y = atp+q , p and q being positive integers,

(iii) x = aty(\ +f), y = at3/(l + t%

Ex. 8. Find the singular foci, if any, of the curve in Ex. 6.

[Ch. Ill, § 9 shows the method of obtaining the tangents at the

circular points. Apply it to Ex. 7 (iii).]

§ 4. Inverse and Eeeiproeal of Foci.

If S' is the point inverse to S With respect to a point 0,

>SV and S'a> are the inverses of Sa> and Sea' respectively

(Ch. I, § 10).

If S is a focus of a given curve, Sa> and Sea' touch the curve.

Hence S'a>' and S'co touch the inverse curve. Therefore :

The inverses of the foci of a curve are the foci of the inverse

curve.

The inverses of the lines joining m' to the intersections of

the curve with Oco are the tangents at a> to the inverse curve

(see Ch. I, § 10, Ex. 3, or Ch. IX, § 1). Hence, if is a focus

of the curve, two tangents at a> to the inverse curve coincide.

Hence

:

The inverse of a curve with respect to a focus has cusps at

a> and <o.

As an example, the inverse with respect to of a conic with

real foci S and is a limacon

r = a + b cos 6,

which is a quartic having cusps at a>, a>' and a node at 0. The
real focus of the limacon is the inverse of S.

If we reciprocate with respect to (i. e. with respect to a

circle whose centre is 0), the lines Oco and 0a>' becomfc the

points co and <o'. Hence :

The reciprocal of a curve with respect to a focus is a curve

through a> and a/, and the reciprocal of the corresponding
directrix is a singular focus.

For instance, the reciprocal of a conic with respect to a focus

is a circle, and the reciprocal of the corresponding directrix is

the centre of the circle.

If we reciprocate with respect to any point 0, the recipro-

cals of the foci are the lines joining the intersections of the

reciprocal curve with Oco and Oco'.

Ex. 1. The singular and ordinary foci H and S of the limacon
r = a + hcos6 with node are (|6, 0) and ((6

2 - a2
)/2 6, 0).
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Ex. 2. r(l-fcs
) = a(cos6-k), where fc is a parameter, is a family of

limacons with a common node and focus.

Ex. 3. Trace the limacon of Ex. 1 in the cases

&>a>0, a = 6, a>6>0.
[0 is a crunode, cusp, acnode; the curve being the inverse with

respect to a focus of an hyperbola, parabola, ellipse.
There are real inflexions if alb lies between 1 and 2 ; see Ch. IV,

Fig. 1, and Ch. XVII, Fig. 1.

If a = b, the curve is called a cardioid.]

Ex. 4. If P is any point on the limacon, OSP is twice the angle
between OP and the tangent at P.

[Invert with respect to 0. Then we get :
' The tangent to a conic

makes equal angles with the focal distances of the point of contact.'
Obtain similarly other properties of the limacon or cardioid.]

Ex. 5. In Ex. 1 4HP2 = 4bSP+2ai -b\ P being any point of the
curve.

[The equation with S as pole is

4V r*- 4br (a? cos 8 + h*) + (a? -V)*-0.]

_ Ex. 6. A limacon is its own inverse with respect to the circle through
the node with its centre at the ordinary focus.

[The equation of Ex. 5 is not altered on replacing r by (a2 -&2
)

2/46V.]

Ex. 7. The angle <j) between the tangent and radius vector of a
limacon is a maximum when $ = 8.

[tan = - {a + b cos B)/b sin 8.]

Ex. 8. Find the locus of the inflexions and of the points of contact of
the bitangent of the family r = a + b cos 8 when (i) b, (ii) a is kept
constant and a or 6 respectively vary.

[(i) r2+fercos5 + 2&2 sin2 5 = 0, »- + &cos<9 = 0.

(ii) 2r2 + ar(3cos2 0-2)+2a2 sin2
i9 = 0, 2r = <*.

For the inflexions 3 ab cos 8 + a 1 + 2 b2 — 0, for the points of contact of
the bitangent 26 cos 8 + a = 0.]

Ex. 9. The inverse of any curve with respect to a singular focus has
also a singular focus at 0.

Ex. 10. If in § 4 S and O are reflexions of each other in the directrix

corresponding to S, the inverse curve has inflexional tangents at a and w'

which meet at S'.



CHAPTER VI

SUPERLINEAR BRANCHES
»

§ 1. Expansion of y in terms of x near the Origin.

Let f(x, y) = be the equation of an algebraic curve pass-

ing through the origin.

In the neighbourhood of the origin it is possible to express

the value of y on any branch of the curve through the origin

(not touching x = at the origin) in the form

y = ax + b<o&xa + C(a(xa + (i),

,
where a>

a = 1, a, b, c, ... are constants, and a, (3, y, S, ... are

positive integers in ascending order of magnitude.* The
entire portion of the curve near the origin obtained by putting

for co every a-th root of unity in turn is called a superlinear

branch of order a whose tangent is y = ax.

If we take a single a-th root of unity for <o we get a ' partial

superlinear branch '.

If a = 1, the branch is called linear. If we take the origin

at any ordinary point of the curve, just one linear branch
passes through the origin. Through an ordinary multiple
point of order Jc with distinct tangents, k linear branches pass.

It is only at multiple points where two or more tangente co-

incide that we can have superlinear branches,f
We assume the above results as proved in books on the

' Theory of Functions ', and only give here the practical

method of obtaining the expansions such as (i).

First suppose the curve has a linear branch through the
origin. Take, for example, the curve

y-2x+2x2-3xy-y2 + 4.x* = 0;

the method being general.

Substituting for y the expansion ax + bx2 + cx3 + ... in the

* For points on a curve near (0, m) add m to the right-hand side of (i);

f We can also have multiple points with coincident tangents formed by
the contact of distinct linear branches ; see, for instance, Ch. Ill, .Fig. 5.
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equation of the curve, which we assume legitimate when x is

sufficiently small, we have

(ax + bx2 + ex3 + ...)-2x+2x2 -Sx(ax + bx2 + cx3 + ...)

— (ax + bx2 + cx3 + ...)
2 + 4x3 = 0.

Equating to zero the coefficients of x, x2
, x3

, ... in turn,
we obtain a = 2, b = 8, c = 52, ... , and have as the required
expansion

y = 2x + 8x2 + 52x3 + ....*

As another example, consider the curve

y= Axy + By2 + Cx3 + Dx2y + Exy2 + Fy3 +Gxi + ...,

which has an inflexion at the. origin with y = as inflexional

tangent.

Put y = ax2 + bx3 + cx* + ... in this equation, and equate to

zero the coefficients of x2
, x3

, x*, ... . We get a = 0, b = G,

c=AG+G...,.
Hence

y - Cx3 + (AC+G)x* + ....

Similarly for a curve having r-point contact with y = at

the origin we obtain an expansion of the form

y = axr + bxr+1 +cxr+2 + ...

.

Suppose now that the curve has any singularity at the

origin and that y = ax is a tangent at the origin. Putting
ax + y for y in the equation of the curve, we obtain a curve
touching the axis of x at the origin ; x and y being considered

as the current coordinates of any point on the curve. By the

method given below we can expand y in terms of * and thence

get y in terms of x. We may therefore confine ourselves to

the case in which the curve touches the axis of x at the origin.

Suppose that Newton's diagram (Ch. Ill, § 3) gives us as an
approximation to the curve touching y = at the origin terms

represented by points which lie on a straight line making an
angle tan" 1 p/q with x = 0, p and q being positive integers

prime to one another.

In the equation /(*, y) = of the curve put

y = YXP, x = XI.

We thus get a new curve f(Xi, YXP) = 0, if we consider X, Y
as current coordinates. Suppose that (0, m) is an intersection

* Another method is to differentiate the equation of the curve repeatedly.

Putting x and y zero, we obtain the values of — , -~-j, —
-j, ... at the origin,

Then the expansion may be written down by Maclaurin's theorem.
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of the new curve with X = 0, and that through this point

there is a linear branch of the curve. Then transferring the

origin to (0, m) we get an expansion Y = rn + bX + cX2 + ....

Whence
p 1 2

y = xV(m + bxl + cx% + ...).

l ill
Replacing xl by coxl, a>

2xl, ccPxi, ..., where w is a primi-

tive g-th root of unity, we get a complete superlinear branch
of the original curve.

But if no linear branch of the new curve goes through its

intersection (0, m) with X = 0, we put in the original curve

y=Y+ mXP, x=Xl,
so that our new curve is f{Xl, Y + mXP) = 0.

We now apply Newton's diagram to this curve as before, in

order to expand Y in terms of X and thence y in terms of x.

Substitutions similar to the above must be repeated as often

as»necessary.

For example, suppose the curve has an ordinary cusp at the

origin, the tangent at the cusp being y = 0. The curve is

y
2 = ax3 + bx2

y + cxy2 + dyz + exi + ....

By an ' ordinary ' cusp we mean that there is no relation

between the coefficients a, b, c, d, e, ...; in particular, none of

them are zero.

Newton's diagram gives the approximation y
2 — axs at the

origin, and therefore put

x = X 2
, y= YX\

The curve becomes

Y2 = a + eX 2 + bXY+cX2Y2 + ....

This has linear branches through (0, + ai).

Putting

Y= ±ai +BX+GX2 + ...

into the equation of the curve and equating to zero the co-
efficients of X, X 2

, X 3
, . . . , we have

Y= ±a* + ibX±ia-?(e + ca + %b2)X2 + ...,

and thence

y = ±a^x^ + ^bx2±^a-i(e + ca + ^b2)xi + ...

.

Exactly similarly for the curve

y
k = axk+1 + bxky + cxk

~1
y
2 + ...

,
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which has an ' ordinary ' superlinear branch of order k at the
origin touching y = 0* we get an expansion

fc + l fc + 2 fc + 3

y = A<ox k + B<o2x k +Ca>3x k +...,

a> being any Jc-th root of unity.

If we have found the expansion

y

y = bxtt + cxa + ..., where a<)3<y<...,

for a curve touching y = at the origin, we may expand x in

terms of y near the origin by putting

a a 12
a = &

-^ (l +4^ + -B^ + . . .),

in the given expression for y in terms of x, expanding by the

binomial theorem, and equating coefficients of powers of y on
both sides of the resulting identity. Each possible value

a

of b P gives an expression for x.

This process is known as ' reversion of series '.

In expanding y in terms of x we assumed that the curve did

not touch x = at the origin. If it does, we may use the pre-

ceding method to expand x in terms of y, and then obtain the

expansion of y in terms of x by reversion of series.

The arithmetic of the methods described in this and the

following section is often tedious. Devices for saving some of

the labour will be described under the head of 'quadratic

transformation' (Ch. IX, §§ 3 to 12).

Ex. 1. Find the expansion of the branch of the curve

(y-x2
f = x'

1
y

1 -yt

near the origin.

[Putting y = YX\ x = X, we get (F-l) 2 = Y!X*- Y*X\ Putting

Y= l+aX+ bX* + cX3 + ... and equating to zero coefficients of

X 2
, X3 we have a = ±1, 6 = 1, c = +| Hence the required

expansion is y = x2 (I ±x + x2
± \x*+ ...).]

Ex. 2. Expand the branches of the following curves near the origin :

(i) (y-x2
)
3 =ary.

(ii) {y~3?f = a;V-

(iii) y-x"i = xi
y— 2y*.

(iv) if + 3x*y-xy'> + 2xi = 0.

(v) y
s -Zx2

y
i + xiy-xS = Q.

(vi) (y-x3Y = x!
'y.

(vii) (!/ + a;
2
)
2 = V(^ + 2/

z
)-

* ' Ordinary ', because there is no special relation between the coefficients

a, b.c, ... ; none of them, for instance, being zero.
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[(i) y = x- + aass + wix%& + aslx
i + ... ; where e»

3 = 1.

(ii) y = a;
3 + <aa;V- + o)

1!a;V-|-(B3 aj5 + ....

(iii) y = x2 + x* + ....

(iv) y = x2 (-2-lx + 0x2 + ...) and y
2 = x2{-\ +x-Sx2 + ...).

(v) y = a;t (1 +aw + §a;:r+ ...) and two similar expansions.

(vi) y = x?{\±x + \xi ±\xs + ...). ^.

(vii) y = x*(-l±2x~ix'i ±9xs + ...).]

Ex. 3. Find the expansion of the branch of the curve

(y-x2
)

2 = xf-yi

near the origin.

[The method of Ex. 1 gives a non-linear branch at (0, 1) after putting

y = YX\ x = X. Put then instead y = Y+X2
, x = X and the curve

becomes Y2 = X {Y+

X

2
f - (Y+X2

f approximating to Y2 = X7 at the

origin. Writing therefore Y=r)g, X=ff we get

,
2 = (l + |

3
,)

s -^(l +^ 7 )
4

.

Put in this r) = l + ag + 6£
2 + c<;

3 + <2£
4 4-e£6 + ., and compare coefficients.

We get a = 0, b = -£, c = f, $ = - $•, e = —2. Hence

y = a;
2 + 2:£ + £a$ + fa:

B + |a;V-— 2a?6 + ....]

Ex.4. Find the expansion of the branch of (y—

x

3
)
2 = ifx™ + yx*

near the origin.

Ex. 5. Find x in terms of y if

(i) 2/ = 4ic2 + 8a;
3 -2a;4 + ....

(ii) y = x% + Sx2 -xi + ....

(iii) 8y = x*-Zxi -Zx* + ....

(iv) y =xb + 2x-3x%+ ....

[(i) Put x = ±\yi (1 + Ayi + By+ ...), expand, and compate co-

efficients. We get «

-

±lyi-ly±Hy| + ....

(ii) Put a; = yi (1 + Ayi + Byl + ...). We get

a: = y*-2y + ^yf + ...,

and the expansions obtained on replacing yi by u>y§ and <o
2
2/&.

(iii) x = 2^4 (l+2y* + 16^1 + ...).

(iv) x = y
2 (l-iy + 26y2 + ...).]

Ex. 6. A curve has a rhamphoid cusp at the origin with y = as

tangent. Show that near the origin

y = ax2 + &#f + (Xs + dxi + ....

[Cf. Ch. Ill, § 8, Ex. 2.]
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§ 2. Intersections of Two Curves.

We showed in Ch. I, § 7, that two curves of degrees n, N
f(x, y) = a y

n +a^1 + a2y
n~* + ...+%

= fo-«i) (#-««) ••• (y-un) = o

F(x, y) = b y»+b
1
y»-* + b

2
y»-* + ...+bN

. „ =(y-v
1
)(y-v

2)...(y-vN) = 0)
meet in nN points.

In this ar , br denote polynomials of the r-th degree in x ;

while ult u2 , ... , un and v
x , v2 , ... , vN are functions of x, of

which we have obtained the expansion (§ 1), when x is suffi-

ciently small.

We assume that x = meets the curves in finite points
only and does not touch either curve, also that no intersection

of the curves other than the origin lies on x = 0.

The result of eliminating y between the equations of the

two curves may be expressed by equating to zero a certain

determinant (Ch. I, § 7), or in the form

(f>(x)= K-fi) (u
1
-v2)...(u 1

-vN) x (u
2
-Vj) (u2

-v
2
)...(u2-vN)

x ... x (<!*„-*>!) (un -va)...(un-vJf) = 0.

In this equation ^>(x) is a polynomial of degree nN in x*
Suppose we wish to find the number of zero roots, i. e. the

number of intersections of the given curves which coincide

with the origin.

The number is e, where xe
is the lowest power of x in (f>(x),

i. e. the product of the lowest powers of x in each of the ex-

pressions

(uf-Vj) i = l,2,...,n;j = l,2,...,N.

It is evident that the lowest power of x in Uf—Vj is x°

unless y = uit and y = Vj are (partial) branches through the

origin. Hence

:

The number of intersections of two given curves which'coin-

cide with the origin is the index of the product of the lowest

powers of x in all possible expressions of the form u^— Vj;

y = U{ and y = V; being expansions of y in terms of x for

branches of the two curves passing through the origin.

Let us consider the following examples, which will be useful

later on.f

(i) One curve has a node or cusp at the origin, and the

other passes through the origin but does not touch it there.

* It is the determinant just mentioned multiplied by a constant,

f Cases (i), (ii), (v) have been already dealt with in Ch. I, § 7.

221fi G«
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2

In this case

w
1
= ax + bx2 + ...,% = a'x + b'x2 + ... ;v

1
= Ax + Bx2 + ....

Hence n(w
f -«_,)

= {(a-A)x+ ...} {(a'-4)a: + ...}, and

the curves meet twice at the origin, as might have been

anticipated.

(ii) One curve has a cusp at the origin, and the other passes

through the cusp and touches the first curve there.

Here

Ul = axi+ bx2 +...,u2
= -axi + bx2- ...;i\ = Ax2 + Bx3 + ...;

and the curves meet thrice at the origin.

(iii) The curves have a node at the origin, the tangents at

the node to the two curves being the same.

Here
%! = ax+ bx2 + ..., u2

= a'x + b'x2 + . .

.

;

v
1
= ax + Bx2 + ..., v

%
— a'x+ B'x2 + ...

.

Hence

n(Ui—vA = {(a— a')x+...} {(a'—a)x + ...}

{{b-B)x2 + ...} {(b'-B')x2 +...};
and the curves meet six times at the origin.

(iv) One curve has a cusp at the origin, while the other

has a triple point, two tangents at which coincide with the

cuspidal tangent.

Here

Uj = axi + ..., «2
= —axi+.„ ; v

x
= bx + cx2 + ...,

v
2
= Axi + . . .

, v
3
= — Ax%+

.

.
.

, or v2 = Bx2 + . .

.

, v3 = Cx2 + ....

In either case the curves meet eight times at the origin,

(v) The curves have k and K linear branches through the

origin, no two of the Ic +K taDgents coinciding.

Here II (^— Vj) has IcK factors each of the type *

ax + bx2 + cx3 + ...;

and the curves meet JcK times at the origin.*

(vi) The curves have k linear branches through the origin

with the same tangents for each curve.

Here k(k— 1) of the factors in U^— vA are of the type

ax + bx2 + cx3 + ...

and k are of the type
Bx2 + Cxs + ....

The curves meet k (k + 1) times at the origin.

* This result imght have been expected ; for each of the k branches of one
curve at the origin meets each of the K branches of the other curve once at
the origin.
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Ex. 1. The tangent at the origin to the superlinear branch (i) of § 1
meetsit in /3 points coinciding with the origin.

Ex
-.
2

- Two curves have linear branches through the origin. Show
that, if the expansions of y in terms of x for the two curves are identical
as far as the terms in xr

, the curves have (r-f-l)-point contact at the
origin.

Ex. 3. The expansion of y in terms of x for the conic

y= mx + ax2 + 2hx(y-mx) +b (y-mxf
is y = mx + ax2 + 2ahx3 + a(4:h2 + ab)xi + 2ah(4:}i 2 + Sab)x* + ....

Ex. 4. Use Ex. 2 and 3 to obtain the conic of closest contact at the
origin with x — y + xy + x3 = 0.

[For the curve y = x + x2 + 2x3 + 2xi + 2x5 + .... Comparing the co-
efficients of x, x2

,
x3

,
x* in this and the expansion of Ex. 3 we have

m = 1, a—1, h = 1, 6 = -2.
Other methods are (i) to differentiate the equations of curve and conic
four times and to identify the values of

dy <Py cPy d*y
J

' dx' dx2 ' dx3 ' dx*

for curve and conic at the origin ; (ii) to find the lines joining the
intersections of curve and conic to the origin and to choose m, a, h, b so
that five of them are y = x.

]

Ex. 5. Find the conies of closest contact at the origin with

a2x + by2 + y
3 = and x3 + y

s = 3 axy

.

[b
3 {a?x + by2

) = (aix + a2 b2y)x and if = Sax, x2 = Sat/.]

Ex. 6. Find the parabolas of closest contact at the origin with

= x + y + xy + x3 and y = x + x2 - 2xs
.

[x +y=y2 and y — x = (2x-y) 2
.]

Ex. 7. Two curves have linear branches touching the same tangent
at 0, one having p-pomt and the other g-point contact with the tangent,
where p^q. Show that they meet q times at 0.

[See Ex. 2 and § 1. See also Ch. IX, § 12, Ex. 11.]

Ex. 8. A curve has a &-ple point with superlinear branches of order

*'ii ^z. ..., n having distinct tangents (h = 2j-). Another curve has at
a {k — l)-ple point such that the tangent to the branch of order r

t
of the

first curve is a tangent to a branch of order r
t
— 1 of the second. How

many of their intersections coincide at ?

[Sr {(f- 1) (r+l)/r+(k-l) - (>— 1)} = k'-L]

§ 3. Tangential Equation near a Point.

Suppose that it is required to obtain an approximation to

the tangential equation of a branch of a curve near a point.

We may of course find the tangential equation of the curve

as in Ch. IV, § 3, and then employ a method similar to that

used in § 1 for point-coordinates. But a less laborious process

•will usually be the following.

G 2
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3

Suppose the branch touches y = at the point (h, 0). We
want the condition that \x + fiy + v = should touch the

branch. We shall take ft = 1, and obtain the condition by

expressing v in terms of X, just as in § 1 we expressed y in

terms of x.

Transfer the origin to the point (h, 0). The line becomes

Xx + fiy + v + h\ — 0, and we have the point-equation of the

branch by § 1 in the form
$ 7 s

y= ba>Pxtt + C(6~'xa + dwsxa + (i)

The tangent at the point (£, y) of the curve is

or, substituting
' e i s

ba>0ia + ca>y£" + da>s £
a + ...

for i\ and writing £ = X a
, it is

(bPm0Xt3-a + cya>yXy- a + d8cosXs-a +...)x-Ocy
= b (j8 - a) a>PXP + c (y- a) <»7j7 + . . .

.

Comparing with Xx + fiy + v + hX = 0, we have on putting

/* = 1 and X = A0-Q

aA0-°= -(&/3w0X0-a + cy<»7X7-«+...) 1

a(r + fcA0-a) = &(/3-a)ffl0X0 + c(y-a)a>7X'Y+... J' "
W *

Substituting in the first of these equations

X=AA + BA 2 + CA3 + (iii)

and equating to zero the coefficients of powers of A, we get

A, B,C, ... in turn.

Then substitute the value of X given by (iii) in the second

of equations (ii) and we have v expressed in terms of A, which

is \^".
If we now replace X by a; and v by y, we get the point-

equation of the polar reciprocal of the branch (i) with respect

to the base-conic x* + 2y = (Ch. IV, § 6, Ex. 1).

For example, in the neighbourhood of a cusp at the origin

at which y = is the tangent, we have

y = ± ax% + 6a;
2 + cxi + dx3 ± . . .

.

The above process gives now

X= +|aZ-26Z 2 + |cZ3 -...l

" = ±|aX3 + 6Z* + |cZ5 +... T
where £ = X2

-
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Putting X=A\ + B\* + C\3 +... in the first of these
equations, and equating to zero the coefficients of A, A2

, \3
, ...

we get

v _ 2 , _ 166 ,„

whence
4

;X3-i^ + ....
27aa 81a4

The polar reciprocal of this branch with respect to
x2 + 2y — is ,

4
3

166
4V ~ 27a*

X
~81tf

X + --

This equation represents a linear branch with an inflexion
at the origin, verifying the result of Ch. IV, § 7, that to a cusp
of a curve corresponds an inflexional tangent of the polar
reciprocal.

Ex. 1. Expand v in terms of X for the curves of § 1, Ex. 2, (i) to (iii).

Ex. 2. Show that, if

i/ = a1x1 + a3x
3 + ai!c

i + ... and v = b2X
2+ b3 \

3 + biX*+ ...

represent the same linear branch touching y = at the origin, &,.

involves o2 , a„ ..., a,., but not a,+1 , ar+! , ....

§4. Common Tangents of Two Curves.

As in § 2, we prove that

:

The number of those common tangents to two curves, which
coincide with the axis of x, is the index of the product of the

lowest powers of A in expressions of the form ui
— Vj ) v= u$

and v = Vs being expansions of v in terms of A for branches of
the two curves touching the axis of x.

We may also find the number of common taDgents by recip-

rocation.

Ex. 1. Two curves have superlinear branches of orders^ and q(p^q)
with a common tangent I. How many of their common tangents
coincide with I ?

[One or q according as the point-singularities do not or do coincide.

Reciprocate and use § 2, Ex. 7.]

Ex. 2. Show that, if two linear branches have r-point contact at P,
r of their common tangents coincide with the tangent at P.

[See §2, Ex. 2, and § 3, Ex. 2.]



86 RECIPROCAL OF SUPERLINEAR BRANCH VI 5

§5. Polar Reciprocal of Superlinear Branch.

Ifthe polar reciprocal of a, superlinear branch of order <x at

whose tangent meets it in /3 points coinciding with is a
superlinear branch of order a.' at 0' whose tangent meets it in

fi' points coinciding with 0', then

a + «' = /? = /3'.

Take the superlinear branch (i) of § 3. It is seen at once by
§ 2 that its tangent meets it in (3 points coinciding with the

origin.

The polar reciprocal is obtained by putting* a;, y for A, v in

the tangential equation of the branch (§ 3).

From equations (ii) and (iii) of § 3 we have v + hX expressed
in ascending powers of A, the lowest power being A# ; where
A = A^-0(

- Hence a' = /S— a and /S' = /8, unless the index of

every power of A in the expansion of v + h\ is divisible by
a factor of /3— a, in which cases (j8— a)//3 = a'/;8' and
/3-a>a',/3>/3;. '.

,

But considering the original curve to be obtained by a
second reciprocation from the reciprocal, we should obtain

03'-O/73' = a//3 and /3*-a'>a, j9'>/S.

This is inconsistent with the preceding, and therefore

a + a' = /3 = /3'.

We deduce at once that

:

The polar reciprocal of a superlinear branch of order a. is in
general a linear branch having (a. + l)-point contact with its

tangent.

For taking the tangent to the superlinear branch at the
origin as axis of x, the Cartesian equation of the curve takes
the form

y'Xuk .a = uh ,. 1 + uk+2 + ...;

where ur is homogeneous in x and y of degree r. Putting
y = we get an equation of degree Jc + 1 for x in general.
But the origin is a multiple point of order k, so that the
tangent to the superlinear branch meets the other branches in
k— oc points at the origin. Therefore j8 of the theorem at the
beginning of this section is a + 1. Hence a' = 1 ,

j8' = a + 1

;

as was to be proved.
The theorem may also be established directly by the process

of § 3.

For example, the polar reciprocal of an inflexion is a cuspi-
dal tangent, of a point of undulation is the tangent to a
superlinear branch of the third order, &c. (cf. Ch. IV, § 7).
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The number of tangents from to a superlinear branch at
which coincide with the tangent at is equal to the number

of intersections of the reciprocal branch with its tangent which
coincide with the singularity 0'.

Also the number of tangents from a point on the tangent at

which coincide with this tangent is equal to the number of

intersections of a line through 0' with the reciprocal branch
which coincide with 0'.

Hence the relation a + a! = ;8 = /8' gives us

If a superlinear branch of order ocatO meets its tangent in
j8 points coinciding with 0, /3 tangents from to the branch
coincide with the tangent at 0, and j8— a tangents to the

branch from any point on the tangent at coincide with the

tangent at 0.

Ex. 1. Suppose a curve has a superlinear branch of order 2 at the
origin with y = as tangent and expansion

y = axi ±bx*+ cx!> ±dxTz + ....

Then a = 2, /3 = 4, so that a' = 2, /3' = 4. The origin is a rhamphoid
cusp (§ 1, Ex. 6). We see that the reciprocal singularity is of the same
type as the original.

Ex. 2. If a is the ' order ' and — OC the ' class ' of a superlinear branch,

the order and class of a branch are respectively the class and order of

the reciprocal branch.

[For the nomenclature see Halphen, Bull, de la Soc. Math, de France,

vi (1877), p. 10.]

Ex. 3. Write down the order and class of the branches in § 1, Ex. 2 to 5.



CHAPTER VII

POLAR CURVES

§1. Polar Curves.

Let be any fixed point. Through draw any line OP
meeting a given curve of the 7i-th degree in Q x , Q2 Qn .

The locus of P such that

OQ.OQz . OQn_r
)

pQl

+ FQ2

+ - + PQn
-

is called the first polar curve of with respect to the given

curve.*

Similarly the locus of P such that

20& • OQj/PQt .PQj = (i,j=l,2,...,n;i* j)

is called the second polar curve of with respect to the given

curve ; the locus of P such that

ZOQi.O Qj . OQk/PQi . PQj . PQk =
(i,j, k=l,2,...,n;j=£ It, k&i,i ^j)

is called the third polar curve of with respect to the given
curve ; and so on.

We shall see in § 2 that the first, second, third, ,. .
.

,

{n-— 2)-th, (n— l)-th polar .curves are of degrees n— 1, n— 2,

n— 3, ..., 2, 1 respectively. They are therefore also called

the polar (m-l)-ic, (n— 2)-ic, (n— 3)-ic, ..., conic, line of

with respect to the given curve.

If I is the polar line of 0, is called a ' pole ' of I with
respect to the curve.

If we project the curvefrom a vertex V, the h-th polar curve

of {for each value of k) projects into the k-th polar curve of
the projection of with respect to the projection of the given
curve.

* Or ' first polar of for the given curve ', if there is no ambiguity ; and
so for ' second polar ', &c.
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For in the figure, denoting projections of points by dashes,

OQ = VO . sin OVQ . oosec VQP __ VO . sin OVQ
PQ~ VP. sin PVQ . cosec VQP ~ VP . sin PVQ

'

and similarly

Hence

Therefore, if

SOQ^OQ,
we have

O'Q' _ VO'. sin OVQ
P'Q'~ VP'. sin PVQ'

OQ _ ov vo • VP'
PQ ~ P'Q'

X
VO' . VP

'

.OQk/PQi.PQz...

0'Q{/P'Q(.P'Q±..

PQk = o,

P'Qk' = o.

Fig. i.

The locus of points whose polar conies degenerate into

a pair of straight lines is called the Hessian of the given

curve.

The theorem just proved shows that

The projection of the Hessian of a curve is the Hessian of the

projection of the curve.

§2. Equation of Polar Curves.

In § 1 let be (X, Y, Z) and P be (x, y, z), while the

equation of the curve is f(x, y, z) = 0. The point Q dividing

OP so that OQ/QP = X/fi is

/Xx'+iiX \y + /i.Y \z + /iZ\

\ X + fi
' X+/i X + n J
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If this lies on the curve,

f(Xx + /iX, Xy + fiY, Xz + fiZ) = 0,

i.e.

+ ±- Xn-* /iz(x*+Y?-+Z±)
2

f + ...

2! V ix <>y dz/

7i!
r V da? <>y <>z/

or

by Taylor's theorem.

In this (x~- + F— + Z-) f means
V to ly W J

where (a: + 2/ + s) 7' = 2 apqrxPylz
r
.

Also (a; ^-y. + y y^ + z —y j / means the same thing with

x, y, z, X, Y, Z put for X, Y, Z, x, y, z respectively.

If Q lies on the &-th polar curve, the sum of the products of

the roots taken k at a time of the equation in X/fi is zero.

Hence the equation of the /c-th polar curve is

/ 3 <> <> \ Ji / i <s 3 \n~k

(
x
Vx

+ Y
Ty
+z^)f=°> ™ (*rx +yw + **z) f=°>

the two equations being of course identical.

We have at once

The h-th polar curve of an n-ic is an (n—k)-ic.

To find the polar curves, if the equation of the curve is given
in Cartesian coordinates as f(x, y) = 0, we find the polar curves

of f(x/z, y/z) = by the above method, and then put 0=1.
(See Ch. I, § 3.)
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Ex. 1. The k-th polar curves of the vertices of the triangle of reference

^„o ^-0 ^-0
3a* ' 3y*~ ' 3z*

Ex. 2. Any polar curve of the ' triangular-symmetric ' curve

(x/a)« + (y/b)« + (z/c)
n =

is triangular-symmetric.

Ex. 3. If a curve has a ' centre ' 0,* the polar curves of and the polar
curves of any point at infinity have as a centre.

Ex. 4. The r-th polar curve of is the s-th polar curve of with respect
to the (r-s)-th polar curve.

Ex. 5. If P lies on the k-th. polar curve of Q for an n-ie, Q lies on the
(n— &)-th polar curve of P.

[The polar curves are

(*s + -P- ° and (-^ + -)^-°-
Pand § being (xlt ylt z

x ) and {x2 , yt , «,).

An alternative method in Ex. 5, 6, 7 is to take P and § as vertices of
the triangle of reference]

Ex. 6. If § is a node of the (n — k)-th nolar of P for an ,ra-ic, P is a
node of the (k- l)-th polar of Q.

Ex. 7. The &-th polar of P with respect to the r-th polar of Q for/=
is also the r-th polar of Q with respect to the k-th. polar of P.

[It is (a,| +...)*(*£ + "...)'/- 0.]

Ex. 8. If the polar conic of with respect to a given cubic has ABC
as a self-conjugate triangle, the polars of A with respect to the polar

conies of B and C, &c., must be concurrent at 0.

If B and C? are given, there is in general one position of A and 0.

[Take ABC as triangle of reference.]

Ex. 9. If P lies on a given line, the envelope of the polar line of P
with respect to a given w-ic is of class n — 1.

[Take the line as z = and find the number of tangents from (0, 0, 1).

More generally, if P lies on a given JV-ic, the class is N(n — 1).]

Ex. 10. If the asymptotes of a curve are parallel to the sides of a
regular polygon, so are the asymptotes of the polar curves of any
infinitely distant point.

Ex. 11. On the polar line of O there are three points whose first

polar curves have an inflexion at O.

[Take the curve as zn+sn-'i u^ + zn
~'6us + ... +un = 0, for which z =

is the polar line of (0, 0, 1). See Ex. 5.]

Ex. 12. (i) If the polar conic of O with respect to a given n-ic has

a self-conjugate triangle which is inscribed in a given conic, the locus of

O is an (n — 2)-ic.

(ii) If a triangle can be inscribed in the polar conic of O which is

* The curve is brought into self-coincidence by rotation through 180°

about O.
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2

self-conjugate with respect to a given conic, the locus of is a 2 (n— 2)-ic

(of. § 9, Ex. 9).

[See Salmon's Conic Sections, §§ 373, 375. The reader may consider
the cases in which the conies touch, or a triangle can be inscribed to one
and circumscribed to the other, &c]

Ex. 13. Through a point any line is drawn meeting a given n-ic in

Qi> Qn •••> Qn- Show that an 'axial' direction of the line making
OQ

1 . OQ2 OQn a maximum or a minimum is perpendicular to the
polar line of the point at infinity in this direction.

Show that there are n such axial directions in general, and that they
are independent of the position of 0, and are the same for all w-ics with
the same infinite points.

Discuss the case in which the curve passes through the circular points
any number of times.

[Use polar coordinates. Note the case n = 2, and the case of an jt-ic

only meeting the line at infinity at the circular points. See Bull, de la

Soc. Math, de France, ix, p. 49.]

Ex. 14. The &-th polar curve of P with respect to an «-ic having an
(n— l)-ple point at is an (n—k)-ic having an (n— h — l)-ple point at 0.

If two of the tangents at to the polar curve coincide (or are per-

pendicular), the locus of P is straight lines through O.

§ 3. Folar Curves of a Point on the Curve.

Suppose the triangle of reference chosen so that is (0, 0, 1).

7>
h
fThen the &-th polar curve for / =' is :—^ =0 by § 2.

If the given curve is

= azn + (b x + \y)

z

n'x + (c x2 + 2c
1
xy + c

2y
2)zn

' 2 +... . (i),

the k-th polar curve of is

(n— k)l (n— k— 1)

!

v ° ia/

+
(J-I-2)l (^ + 2«i^ + «!») «*-*- + ^-

If lies on the given curve, a = ; and the tangent at

is b x + b
xy = 0. Hence the polar curves of all touch the

given curve at 0. And, more generally, we show in the

same manner that

Any polar cwrve of an r-ple point of a given curve has
an r-ple point at with the same tangents as the given curve.

If is an inflexion of the given curve, a = and b x + b
xy is

a factor of c x2 + 2c
x
xy + c2y

2
.

Hence is an inflexion of all the polar curves; and similarly

in general

:

The polar curves of a point at which the tangent has"

r-point contact have r-point contact at with the same tangent.
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Ex. 1. The [n — r)-Va. polar curve of an r-ple point of an «-ie consists of
the r tangents at the point.
The (n — r+l)-th, (n — /•+ 2)-th, ... polar curves are non-existent.

Ex. 2. The ratio of the curvature at of an »-ic to the curvature of
the k-th. polar curve of Oat is (n-l)/(n-k-l).

[If the curve is = y+axt + ..,, the Wh polar of the origin is

= (»-l) y+(n-k-l) ax2+ ....]

Ex. 3. The polar conic of (|, ij, f) with respect to

(6-c) (r)Z-Cy)yz + (c-a) {(,x-^z)zx+{a-b)(^y- nx)xy =
has the triangle of reference as a self-conjugate triangle.

[It is (a|» + brf + c£>) {x1 + y* + z*) = (|
2+ r,* + f

2
)
(az8 + ty

2 + cs11

).]

Ex. 4. The locus of a point whose polar conic with respect to a given
»-ic is a rectangular hyperbola is a (n — 2)-ic.

[If the equation of the curve in rectangular Cartesian coordinates is

f(x, y) = 0, the locus is + |!{ = 0.]

Ex. 5. The number of points on an n-ic whose polar conic is a
rectangular hyperbola is n (n — 2).

Ex. 6. The locus of a point whose polar conic with respect to a given
n-ic is a parabola is a 2 (n

—

2)-ic.

Ex. 7. The number of points on an »-ic whose polar conic with respect

to the curve is a parabola is in general 2n(n — 2)— 2k, where k is the
number of cusps.

[The locus of Ex. 6 passes through each cusp of the «-ic, as is seen by
taking the origin at the cusp and writing down the equation of the
locus. The polar conic of a cusp is the cuspidal tangent twice over by
Ex. 1, which we do not count as a parabola.]

Ex. 8. The locus of a point whose polar conic with respect to a given

n-ic has given eccentricity (=£0, 1, or 2i) is a 2 (n — 2)-ic ; and the

number of points on an n-ic whose polar conic with respect to the curve

has a given eccentricity is 2n (n — 2).

Ex. 9. There are (n— 2)
s points in the plane of an ra-ic whose polar

conic is a circle.

\<A = <rZ> and =j-£- = are equations giving the points.]
<Sx

2
t)y* dxdy

Ex. 10. If all the polar conies for

f(x,y) = un + un-1 + ... + Mi + m =
are rectangular hyperbolas, where « t is homogeneous of degree k in

x and y, then uk
= are lines parallel to the sides of a regular polygon.

The n asymptotes meet in a point and are parallel to the sides of

a regular polygon ; and so are the tangents at any multiple point.

^Therefore uk = r*> (a cos k 6 + b sin k 6).

If one asymptote passes through the origin, up
and w„_i have a

common factor. If two asymptotes meet at the origin, un. x
— 0.]
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Ex. 11. All the polar conies for y — a + al x + a2a? + ... + anx
n are

parabolas ; and conversely every curve all of whose conies are parabolas

is of this type.

The curve is of degree and class n. It has a superlinear branch of

order » - 1 at (0, oo ), the line at infinity being the tangent.

The centroid of the intersections of this curve with any other lies on

a fixed line, if ra>2.

[Choose axes of reference for the curve of Ex. 10 such that a; is a

factor of un . Then substitute in

ay ay_ / ay y

The centroid lies on x — 0, if <»„_! = 0.]

Ex. 12. If every polar curve of degree r goes through two fixed points

A and B, the curve is a (2»— 2 — &)-ic with a (r— l-&)-ple point at

A and B.

[Taking A and B as (1, 0, 0) and (0, 1, 0),

2^=0 and ?/S 0;

/= being the equation of the curve.

Taking r = 2 or 3, we have the two following examples.]

Ex. 13. If every polar conic is a circle, the curve is a circle.

Ex. 14. If every polar cubic is circular, the curve is a circular cubic

or bicircular quartic.

Ex.15. If a line meets a (2» + l)-ic in P17 P%, ..., P2„+1 , and we
derive a series of curves <rlt <r2 , ..., o-2 „, such that o-j is the first polar of

Pj for the given curve, cr2 is the first polar of P2 for cr
1 , cr

3
is the first

polar of Ps for o-3 , ... , then the line cr2 „ goes through P2n+1 .

[Take the line as z = 0.]

Ex. 16. The k-th polar curves of a point O with respect to a pencil of

»-ics form a pencil of (n — &)-ics.

Ex. 17. The tangent at O to that curve of a given pencil which passes

through O goes through the intersection of the polar lines of 0#rith
respect to any two curves of the pencil.

[Take k = n-l in Ex. 16.]

Ex., 18. The locus of the poles of a given line with respect to all curves
of a pencil of n-ics is a 2 (»— l)-ic passing through the points of con-
tact of those curves of the pencil which touch the line.

If P is any point of the line, the first polar curves of P form a pencil
of (n — l)-ics. As P travels along the line the base-points of this pencil of

(» — l)-ics trace out the same locus.

[If u + kv = is the pencil and z = the given line, the locus is

3« 2>v _ iv in .

<>x 2iy <)x <>y

Ex. 19. 3 (n - Yf of a given pencil of m-ics have a node in general. ,
The polar line of such a node is the same for each «-ic of the pencil

;

and the node lies on the 2 (»-l)-ic of Ex. 18.
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Ex. 1. Show that the harmonic polar of (0, — 1, 1) for

3? + y
3 +s? + Gmxyz =

is the same for all values of m.

[The polar conic of (0, — 1, 1) is (2mx—y—z) (y — z) <= 0.

2mx—y—z = is the tangent at the point, and y—z = the harmonic
polar.]

Ex. 2. Find the harmonic polar of

(i) (0,0,1) for « (y-*) •=& + <*) (*b* + V)-
(ii) (0, -1) for %x* = xl

y + y'i + x + y.

(iii) (-1, 1, 0) for (x + y+ zf + ^hxyz = 0.

[(i) * = 0, (ii) x+y = 1, (iii) x = y.]

Ex. 3. Any two chords OPQ, OPQ' are drawn through the inflexion O
of a cubic. Show that PF and QQ' meet on the harmonic polar of O.

Show also that the tangents at Pand Q meet on the harmonic polar of O.

[Use the harmonic property of the diagonals of a quadrilateral. Then
make the two chords adjacent.]

Ex. 4. Two chords through a point O of a cubic meet the curve again
in P and Q, P and Q'

; while they meet the polar conic of O in R and fl'.

Prove PF, QQ', RE concurrent.
Show also that the tangents at P, Q, R are concurrent.

[As in Ex. 3.]

Ex. 5. A conic touches a cubic at O and cuts it at P, Q, R, S. Show
that OP, OQ, OR, OS meet the cubic again at four points on a conic
also touching the cubic at O.

Ex. 6. Any line through an (n — 2)-ple point O of an »t-ic cuts the
curve again in Q1 and Q%. Find the locus of P, if (OP, Q1 Q2) is

harmonic.

[The first polar of O less the inflexional tangents at O, if any.]

§ 5. First Polar Curve.

We consider now the intersections with a given curve of
the first polar curve of O with respect to this curve. Take
(7(0, 0, 1) as such a point of intersection, O as (1, 0, 0)* and
any point as B(0, 1, 0). Take the curve as (i) in § 3. The
first polar curve of (1, 0, 0) is

= 60a"-1 + 2 (c x + c
x y)

2»" 2 + 3 (d x* + 2dlXy + dtf)

z

n~ s + . . .

.

Since this meets the given curve at (0, 0, 1), we must have
one of various alternatives.

Firstly, we may have a = b = 0.

Then the tangent at (0, 0, 1) to the given curve is 2/ —
and passes through O. Hence G is the point of contact of a
tangent from 0. The curve and the first polar curve have'
C as an ordinary point and the tangents to the curves at G are
distinct. Hence a single intersection of the curve and its first

polar is at G.
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Secondly, we may have a = b = b
t
= 0.

The given curve has a node at C, and the first polar curve
has G as an ordinary point, the tangent at G to the first polar
curve not coinciding with either tangent to the given curve at

G. Hence two of the intersections of the curve and its first

polar coincide at G.*

Thirdly, the given curve may have a cusp at G. Taking
« = 0as the tangent to the cusp, we have

a— b = b
1
= c

x
= c2 = 0.

We see that the first polar touches the given curve at the
cusp, and three of the intersections of the curves coincide at G*
We sum up our results thus

:

The first polar curve of meets the given curve once at the

point of contact of each tangent from to the given curve,

twice at each node, and thrice at each cusp of the given curve.

It follows at once that, if m is the class of the given n-ic

(Ch. IV, § 2), 8 the number of nodes, and k the number of cusps,

m = n(n-l)-2S-3K (i).

For m is the number of tangents from 0, i. e. the number of

intersections of the first polar of with the given curve at

points which are not multiple points of the given curve.

If the curve has t bitangents and i inflexions, the reciprocal

curve is of degree m, is of class n, and has r nodes and i

cusps (Ch. IV, § 7).

Hence n = m(m— 1) — 2r— 3t (ii).

If lies on a curve, the first polar touches the curve at 0,-

i. e. meets it twice at (§ 3). Hence two of the tangents from

a point on a curve must be considered as coinciding with

the tangent at 0.

Ex. 1. Find the tangents from (1, 1, 1) to {a? + y
2
) z = 2xs

.

[The first polar curve of (1, 1, 1) is y^-b^ + iz (x + y) = 0. This

meets the curve where (y^-Vxy + x1
) (y

i + 2xy-xi
) = 0. The points of

contact of the tangents are therefore (1, — 1 +2i, 1 + 2~4).]

Ex. 2. Find the tangents

:

(i) "From (1, 1, 1) to a?+ys = 2z3
.

(ii) From (0, 1, -1) to x'+y' + s3 = hxyz.

(iii) From (11, 16, 9) to x3 + y
s = %xyz.

(iv) From (Jo, 3a) to ay2 = a?.

(v) From (a, a) to x3 + y
s = a3

.

(vi) From (0, 0, 1) to ax(y*-s*) + by (z'-x^ + cz (.r
2 -/) = 0.

* See Ch. I, § 7 or Ch. VI, § 2.

2'ilfi H
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[The points of contact are given by

(i) xi + 2x*y +2xf + y
l = 0.

(ii) x/y = 2 or - 1 + a/2.

(iii) (x-y)(2x-y)(8x2 + xy + Uy') = 0.

(iv) x = at2 , y = a? ; where t = 1, 2, —3.

(v) xh/(Bxi-2xy + Sf) = 0.

(vi) c*x= {a±(a2 -c2)i} {&±(&
2 -c2

)4} </.]

Ex. 3. Extend the result of Ch. I, § 9, Ex. 6 to the case in which

tangents are drawn to an »-ic from a («-3)-ple point.

[The tangents from (0, 0, I) to

touch at points on the first polar

and meet the curve again on

§ 6. Equation of Hessian.

In § 1 we denned the Hessian of a curve as the locus of

points whose polar conic with respect to the given curve

degenerates into a line-pair. The polar conic of (X, Y, Z)

with respect tof(x, y, z) = is

2£ + 2„JV .«-.->£.X
IX* y "'"ay* aFaZ

+ 2zx
}>Z7>X

+ 2xy ZXIY
= 0.

This is a line-pair if (X, Y, Z) lies on

H =

ay
alF

ay
aj/aa;

ay

a&a^
ay
ay2

ay

2>x 2>z

<>yiiz

ay
as2

= o,

I

a^ax a^ay

which is the equation of the Hessian of / = 0. If / is of

degree n in x, y, z, each element of the determinant is of

degree n— 2. Hence

The Hessian of an n-ic is a 3(n— 2)-ic.

To find the Hessian of a curve whose equation is given in

Cartesian coordinates we make the equation homogeneous by
writing x/z and y/z for x and y. Then after finding the

Heesian we put z — 1,
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Multiply the columns of the determinant H by x, y, s, and
add the first two columns to the third ; then multiply the

rows by x, y, z and add the first two rows to the third. We
shall obtain the identity *

*h = in-iY h a/a/ y'f r^V -f
- - r^V ^ iv ' \ Zx 2>y %x<sy \hyJ 7>xl \ix^ dj/2 )

This gives an alternative method of calculating the equation

of the Hessian which is convenient when the equation of the

curve is given in Cartesian coordinates, or when an approxi-

mation to the Hessian is required in the neighbourhood of

(0,0,1).

Ex. Find the Hessian of a curve f{r, 8) = given in polar co-

ordinates.

[Putting = 1 in § 6 (1) the expression in the first brackets {} is

i
(

a/a/ a 2/ /W ^f (*f'y v/\
? 1 dr 7>8 3rd0 ^7>6J dr2

I dr/ d<0
2

j

and the expression in the second brackets
{ } is

i Vf{#£ j, JJ\ - 1 fill - l */V 1

^d»-2 Vdfl2 dW r*\l>rl>6 > 18J
' J

§ 7. Intersections of a Curve with its Hessian.

By relation (i) of § 6 the intersections of an %-ic / = with

its Hessian H = are the same as the intersections of / =
with

- Ix ly Ix ~by \ly/ da;2 Vda;/ 7>y
2

except that / = and K = meet, not only at the inter-

sections of/ = and H — 0, but also twice at each intersection

of /=0and 2 = 0.

To determine the intersections of /= and H =0 which

coincide with any point on / = 0, we shall take as

(0, 0, 1) ; and for this purpose we may evidently replace the

Hessian H = by K = 0.

* For by Euler's theorem on homogeneous functions

3/ 3/ 3/ , d2/ d2/ 32/ _,„ n 3/ *„

da; di/ 3s da? da;dj/ dzds da;

H2
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Suppose, then, the triangle of reference chosen so that any

point on / = is (0, 0, 1) and the tangent at is y = 0.

We have

/= byzn
~ x + (c x2 + 2c

t
xy + c2y

2)zn
~ 2

+ (d x* + 3 d
Y
x2
y + 3 d2

xy2 + d3y
s)+....

The polar conic of is

c x2 + c.2y
2 + (n- l)byz + 2c^xy = 0.

If this is a line-pair, either c = and the coefficient of z™
-1

in /is a factor of the coefficient of zn
~ 2

, i.e. the curve / =
has an inflexion at 0, or else 6 = and is a multiple point

of the curve. Hence

The Hessian meets a curve only at the inflexions and multi-

ple points of the curve.

In the case 6 =£ 0, c =
K= {(Sbc

1
2-6b2d

1
)y-6b2d x}z3n

-6 + ...

,

keeping only the highest power of z.

Hence the curve and K = (and therefore the curve and

the Hessian) meet only once at 0.

Suppose now/= has a node at 0, so that 6 = 0.

In this case

K = 8(Cl
2 ^c c2) (c

Q
x2 + 2c

1
xy + c2y

2)zSn
- 6 +... .

Hence K = (and H = 0) has a node at with the same
tangents as the given curve. The curve and Hessian there--

fore meet six times at the node (Ch. VI, § 2, Ex. (iii)).

Suppose now that is a cusp of the given curve at which

y = is the tangent. Then

/ = y
2zn

~2 + (d xs + 3d
x
x2
y + 3d2xy

2 + d
zf) zn

~ 3 + ...

,

and
K = -24,(d x + d

1y)y
2zin

-'
J +. l . .

«

Hence K = (and H = 0) has a triple point at at which
two tangents coincide with the cuspidal tangent of the given
curve.

The curve and the Hessian intersect eight times at the

cusp (Ch. VI, § 2, Ex. (iv)).

Summing up the above results we have :

The intersections of a curve with its Hessian lie one at each
inflexion, six at each node, and eight at each cusp of the given
curve.

If 8 is the number of nodes, k of cusps, and i of inflexions of
the 7i-ic,

i = 3n(n-2)-6S-8ic.
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For the curve and Hessian meet altogether in 3n(n— 2)
points.

The number of intersections of the Hessian with the curve
at the nodes and cusps may also be obtained in the following

manner (due to Cayley). The number is evidently indepen-

dent of n, so that there are constants A and B such that

t = 3n(n-2)-A8-B K , k= 3m(m-2)-AT-Bi;
the latter equation being derived from the reciprocal curve as

in § 5.

But by § 5

m = n(n— 1) — 28— 3k, n = m(m— 1)— 2t— 3t.

Eliminating m, r, i from these four equations, we have

(A-6){ni-2n-28-3 K)(n2 -28-3K) + 4:8+6K}
+ (3A-2B-2){-3n2 + 6n + A8+(B-l)K} = 0.

Since this must hold for all values of n,

A-6 = 3A-2B-2 = 0, or A = 6, B = 8.

Ex. 1. Find the Hessian of x3 + y
s + z3 + Smxyz = 0, and find its

inflexions.

[The Hessian is m2 (x3 + y
3 + z3) = (2m3 + 1) xyz, meeting the original

curve where xyz = 0. Hence the inflexions are the intersections of the

curve with the sides of the triangle of reference.]

Ex. 2. Find the Hessians of the following curves :

(i) y*>zq = a;P+ *.

(ii) \x+ y + z) 3 + 6 hxyz = 0.

(iii) x3 + y
3 +z3 = h(x + y + z)

3
.

(iv) xs = z (x2 ±y2
).

(v) x(x2-Sy2
) + a(x2 + y

2
) = 0.

(vi) Gz^ + y
2
) = (x + y) {x2— ixy + y

2
).

(vii) x3 + y
3 = xy(x + y + z).

(viii) z2x = y(y— x)(y — lc
2x).

(ix) y
2z=i:x3 -glxz

2-g
s
z3 .

(x) a x3 '+3a
l
x2
y + 3a2xy

1 + a3y
3 + 6xyz = 0.

(xi) y
2 z + x2

y + z2x + 6pxyz = 0.

(xii) ax (y
2 — z2

) + by(z2 —x2
) + cz (x2 -y2

) = 0.

(xiii) x3
y + y'6 z + z3x = 0. *

(xiv) (yz+ x2
)

2 = xy3
.

[(i) xp+t-'y2I'- 2 z2^-2 = 0.

(ii) {x+y + z)(2yz+2zx + 2xy-x2 -y2 -z2
) + 2kxyz = 0. The in-

flexions lie on (x + y + z) (x + ay + a2z) (x + a2
y + az) = 0.

(iii) xyz = h (x + y + z) (ys + zx + xy).

(iv) 3 xy2 = z(y2 ± x2
).

(v) 3x(x2 -3y2
) + a(x2 + y

2
) = 0.
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(vi). 2z{xl + y
i
) + (x + y) (x*-4xy + if) = 0.

(vii) S(xs + y") = xy(z — x— y).

(viii) z\{(l+.k'i)x-By}+x{k4 x*-k,i (l+k
,

>)ry + (l-k ,1 + kt
)y*\ =0.

Jix) 12 xy* = z (12 g^x1 + 36 g.xy + g^).
(x) a x3 — a

1
x'y — a

s
xyl + a

s y
s = 2xyz.

(xi) Xs +ys + z? -9p*(xz2 + yx'
i + zif) -3 (18p

s + l)xyz = 0.

(xii) (6
2 -c-)(fy+c2)a;2 + ... + ...

= {x^ + y' + z1

}
{a{W-e^)x + ... + ...}.

(xiii) x^z + ifx + z'y = bx^y'z*. Similarly for xny + y'"z + znx = 0.

(xiv) 8 (yz + a;
2
)
3 + 1 6 xys (yz+ a;

2
) + 3 y

e = 0.]

Ex. 3. The number of inflexions of an »-ic is even or odd according as

the n is even or odd.
A curve of odd degree has at least one real inflexion.

Ex. 4. If a curve has r-point contact with its tangent at 0, the Hessian
has (r— 2)-point contact with the same tangent at ; and the curve and
Hessian meet i— 2 times at 0.

[The Hessian of yu + v = 0, where the terms of lowest degree in v are

of the r-th degree, is of the form yU+ V= 0, where the terms of lowest

degree in Fare of the (r-2)-th degree.]

Ex. 5. The Hessian of the ' triangular-symmetric ' curve

(x/a)n +(y/b)n + (z/c)
n =

is the sides of the triangle of reference n — 2 times.

Each side passes through n points of the curve at which the tangent
has m-point contact and passes through the opposite vertex.

[By Ex. 4 each such point counts as (n — 2) inflexions.]

Ex. 6. The locus of the inflexions of zx^y = y
8 (2x + y)+axl for

varying values of a is 2y* + x> z = 0.

[The Hessian is x%
(2 ax* + 4 xys + xiyz + 8yi

) = 0. Now eliminate a.]

Ex. 7. The locus of the inflexions of a pencil of n-ics is a 6(n — l)-ic.

Explain the case n = 2.

Ex. 8. The locus of the points whose polar conic with respect to a
given ra-ic touches a given line is a 2 (n — 2)-ic.

This (n — 2)-ic divides the plane into parts in one of which the n-ic

has no real inflexion or crunode, while in the other the «-ic has no acnode.

[If / = is the M-io and z = the given line, the 2 (n — l)-ic is

ft
p.=!v *!/_/_£/ y = a

i>x
!

5j/
2 \iix<)y/

If F>0, the degenerate polar conic of a point on the Hessian is unreal.
In the case n = 3, the 2(n— 2)-ic is called the 'polo-conic' of the

given line.]

Ex. 9. The 2 (»-2)-ic of Ex. 8 is the envelope of the (»-2)-th polar
curve of any point on the given line.

Ex. 10. If the given line of Ex. 8 is the tangent at an inflexion O, the
locus has a node at with the given line as one tangent at O.
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Ex. 11. The tangents to a curve at the multiple point (0, 0, 1) are
u = 0. Show that the tangents to the Hessian at the same point are in
general u = and yu yu , #u ,»

ox* oy 1 \oxoy)

Ex. 12. A fc-ple point of a curve is in general a (3& — 4)-ple point
of the Hessian, and the tangents to the curve at are tangents to the
Hessian at 0.

Ex. 13. The lines joining (0, 0, 1) to the inflexions of zx^yi + u = 0,
where u is homogeneous of degree p + q + 1 in a; and y, are

9(2+1)* ^S +i>(i' + l)r^ = 2i'2^ oxoy

o2u
If ^ = 0, they become v-„ = 0. If p = q, they become

ox

p (p + \)u = xy
oxoy

[Eliminate z between the equations of curve and Hessian ; or use

Ex. 14 (v).]

Ex. 14. Suppose that X, ix, v are homogeneous functions of x and y of

degrees p, q, r not less than 2. With the notation

2 a
Ali
= Au p22 + X22 /i,i - 2 X 12 ^12 ,

2 ^M,,=

cAM - = »(AV + '
;a^ + v(,!v) + (

w_ l)(6wA + ^A,^ + V,).
where the suffixes 1 and 2 denote partial differentiation with respect

to x and y,

\l /'l2 ''1
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(iii) Hence show that the Hessian when expressed in terms of

^Sn—Sk-2 s3n-3k-S0= —y- (»-fc)MflMM + /
fe _ 1

)a
{-2(fc-l)(»-fc)«aM,

+ [n(-*+8) + (* + l)(*-2)]«iIW}

+ ^.l
1
)

a
{-(fc-l)2 (w-^-l)(ttS

1,
+ 2pgMi,)-2fe(fc-l)(w-fc)ttaMa,

(iv) In particular the Hessian of st» + » = 0, where u and ?> are of

degrees (»— 1) and n'rax and y, is

(*-2)«aw,s = *»«MB-2(n-2)wa,u,.

(v) The inflexions of zu+v — lie on

(»-l)a«M z + (w-2)aM!)
= and on {n-l)vam = (n-2)uam .

[(i) In the definition of 6
Aft „ substitute for A^, &c, from the

identities

2(j>-l)(s-l)X 1 /i
1
=2(g-l)pAu +2>(i>-l)V1i-2y'aA^ >

2(p-l) (2-1) A,ji» = 2(2-1) i^„ + p (p- l)Xfts -2a;
2aAll ,

(p-V)(q-\){\ 1^ + \nl ) = q(q-l)i1Xu +p(p-\)'K ll.n + 2xyaKll ;

which are derived from (p — 1)\ = x\n +y\n , &c.

(v) Eliminate » between the equations of the curve and Hessian.]

Ex. 15. The ratio of the curvatures of the branch of an n-ic through
a fc-ple point and of the branch of the Hessian touching this branch
atOis (n-k)(k-l) : (nk-Sn-k2 + k + 2).

[If the curve is

= 2/ (x
1'- 1 + axk"'y + ...) + bxw + ...,

by Ex. 14 (iii) the branch of the Hessian touching y = at the origin is

Q = y(n-k)(k-l) + (nk-3n-ks + k + 2)bx* + ...,

using Newton's diagram.]

Ex. 16. The curvatures of two branches of an w-ic and its Hessian
which touch at a crunode of the w-ic are in general in opposite directions.

[If k — 2 in Ex. 15, the ratio of the curvatures is (2 — ») : n.)

Ex. 17. In what cases is it true that each branch of the Hessian
touching a given n-ic at a fc-ple point is inflexional ?

[nk-Zn-W + k + Z = gives » = 10, fc = 4; n = 10, &'= 7 ; or
n = 9, k = 5.]

§8. The Steinerian.

Suppose that the first polar curve of a point P(g, rj, ^) with
respect to a curve f(x, y, z) = of degree n has a double
point at Q (X, Y, Z). The locus of P is called the Steinerian
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of the given curve. Writing down the conditions that the
first polar curverof P, namely,

il +^ +^ = °>

should have a double point at Q, we have by Ch. II, § 4,

« d2/ a2/ a2/ yy 32y yy
§ aZ2

+

^aTaF +
^aZa*

=0
' ^vi^ry + Tr2 +^p^=0,

i
ay

+ 7,

aFaZ ' 'aF2 T *dF2>Z'

»2/ ,

.ay
*ZIX^ '«iiF TS ^+^ = ° (i).

Eliminating Z, F, ^ from the equations (i) and replacing

£> V> £ by a;, i/, z we have the equation of the Steinerian. It

may be shown that, since each of the three equations (i) is of
degree n— 2 in X, Y, Z, the Steinerian is in general of degree
3(%-2) 2.*

Eliminating |, rj, g from equations (i) we have

iV */ ay
aZ2

ay
aFaZ
ay

azaF aza^
ay ay
aF2

"

aTal
ay ay

= o (ii).

a^az a^aF zz2

Hence

:

The locus of the double points of the first polar curves of a
given curve is its Hessian.

The conditions that P should be a node of the polar conic

of Q

*f ,„,2
32/

az s
+y aF2

+ Z'
ay
aX2

ay a2/
1 ay =

hYiz'
rK
""'hZiX n ~^azaF

are the equations (i).

Hence :

If the first polar curve of P has a node at Q, the polar conic

of Q is a line-pair meeting at P.

Suppose now that corresponding points P' and Q' on the

* Salmon's Higher Algebra, § 76. Another proof is given in § 9, Ex. 9. For

an extension of the theorems in §§ 8, 9, see Henrici, Proc. London Math. Soc, ii

(1868), pp. 112, 183.



106 THE STEINERIAN VII

8

Steinerian and Hessian consecutive to P and Q-have coor-

dinates

(£ + d£, rj + dr), (+d£) and (X + dX, Y+dY, Z + dZ)

respectively. Then, since the first polar curves of P and P'
go through Q and Q' respectively,

s<>x + v
?)Y

+hz '

^ +dKli +^dX+&d¥+^zdZ
h--- + ---- -'

or, using (i),

e*f + r)
¥ ,,¥_

These equations show that the polar line of Q

is identical with the line through the points P and P', which
is the tangent at P to the Steinerian in the limit. Hence

:

If the first polar curve of P has a node at Q, the polar line

ofQ is the tangent at P to the locus of P.

A tangent from (x\ y', z') to the Steinerian is the polar line

of a point (X, Y, Z) on the Hessian, such that (ii) holds and
also

X
7>X +V 7>Y

+Z
*Z~°-

Therefore the tangents from (x\ y', z') to the Steinerian are
the polar lines of the intersections of the Hessian with the
first polar curve of (x', y\ z'), other than the double points of
the original curve. This Hessian and first polar curve are of
degrees S(n— 2), n-l, and may be shown to meet twice at
each node and four times at each cusp of the original curve
(Ch. VI, §2). Hence:

The class of the Steinerian is

3(w-1)(to-2)-2<5-4k,
where S, k are the number of nodes and cusps of the given
curve*

* For the effect of multiple points of a curve on the degree and claas of the
Steinerian, see Koehler, Bull, de la Soc. Math, de France, i (1873), pp. 124-9.
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§ 9. The Cayleyan.
If the first polar curve of P has a double point at Q, the

envelope of PQ is called the Gayleyan (or ' Pippian ') of the
given curve.

Suppose that the line Ace + py + vz = is the polar line of
(X, Y, Z) with respect to f(x, y, z) = 0. Then

¥ a ¥ . ¥ /

Therefore the given line is the polar line of each of the
(n— I)

2 intersections of

, ¥ ¥ , ¥ ¥A ^- = v ^- and /x
-J-
= v +- . . . . (i),

dz dee Zz 7>y
'

which are the first polar curves of (v, 0,— X) and (0, v, — p.).

Hence :

In general a given line has (to— l) 2 poles with respect to a
given n-ie.

Suppose now that two poles of Xx + fiy + vz = qoincide at

the point (X, Y, Z). The two curves (i) touch at this point.

The tangents at the point to the curves (i) are

<xidx- v d^) + y{x^Y- v^Y)

/ a2/ a2/ \ / S2/ a2/\
<^izix~ v wix) +y^^ziY- v^)

Identifying them and eliminating X, /j,, v between the rela-

tions thus obtained we get equation (ii) of § 8. Hence
(X, Y, Z) lies on the Hessian. Moreover, the corresponding

point (£, tj, ^) of the Steinerian lies on either of the (identical)

tangents by equations (i) of § 8. Summing up, we have :

If two poles of a line coincide, the coincident poles lie on the

Hessian and the line touches the Steinerian at the correspond-

ing point. The Gayleyan is the envelope of the tangent at the

point of contact of two first polar curves of the given curve.

Ex. 1. If the first polar curve of P(l, 0, 0) with respect to /= has

a node at Q (0, 0, 1),

f=azn+ hz
n- 1y + cz

n-iy*+zn
-
a {d a? + %d1 x

l
y + ^ dixf + ds y*) + ....

Ex. 2. Use Ex. 1 to show that Q lies on the Hessian and that the

polar conic of Q is a line-pair meeting at P.
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Ex. 3. The second polar of P touches the Hessian at Q.

[The common tangent is d^x + d^y = 0.]

Ex. 4. The tangent at Q to the Hessian is the harmonic conjugate of

PQ for the tangents to the first polar of P at Q.

[The tangents are dqX1 + 2d1xy + d2y
l = 0.]

Ex. 5. The tangent at P to the Steinerian is the harmonic conjugate
of PQ for the degenerate polar conic of Q.

[The tangent at P is the polar line of • Q, which is naz + by = 0. The
polar conic of Q is

' n(n-l)asi + 2(n-l)bzy + 2cy'i = 0.]

Ex. 6. The first polar of any point on the tangent at P to the

Steinerian touches PQ at Q.

Ex. 7. If PQ touches the Hessian at Q, it touches the Cayleyan at Q.

[If P and Q, P' and Q' are consecutive pairs of points on Steinerian

and Hessian, PQ and PQ' meet at Q'.]

Ex. 8. The Steinerian and Cayleyan touch the inflexional tangents of

the given curve.

[These tangents are the polar lines of the inflexions.]

Ex. 9. The locus of § 2, Ex. 12 (ii) meets the Hessian at the points

corresponding to the intersections of the Steinerian with the given

conic.

Ex. 10. The Hessian and Steinerian of the 'triangular-symmetric'
curve

(*/«)» + (y/by + (z/c)« =
degenerate into the sides of the triangle of reference, and the Cayleyan
into the vertices of this triangle.

Ex. 11. The polar cubic of with respect to a quartic degenerates
into a line and a conic. Show that O is a node of the Steinerian and
that the line is a 4-ple tangent of the Cayleyan.

[Take O as (0, 0, 1) and the quartic as

z* + zsu1 + z^xy + ti
t
= 0.]

If U = 0,

the curve

§ 10. Jacobiau of Three Curves.

V = 0, W = are the equations of three curves,

dec 7>y

iv yv
ix iy

yw yw
<)x <>y

or, as it is usually written,

a (U, v, W)
3 (x, y, z)

is called the Jaeobian of the three curves.

yv
Zz

Zz

=

= 0.
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The polar lines of (x, y, z) with respect to the three curves are

V IU ^iU „bU

X, Y, Z being current coordinates.
Hence the Jacobian is the locus of a point whose polar lines

with respect to the three given curves are concurrent.
It follows that the Jacobian of three curves projects into

the Jacobian of their projections.
If the curves are of degrees n

1 , n2 , ns , the Jacobian is evi-
dently of degree

% + n2 + n3
— 3.

We at once verify that, if 17 = and V = are straight
lines, the Jacobian is the first polar curve of their intersection
with respect to W = 0. Hence a first polar curve is only
a particular case of a Jacobian.

In § 5 we discussed the intersections of a curve with any
first^ polar. We may generalize this investigation by finding
the intersections with a given w-ic W = of the Jacobian of
an 7i,ric U= 0, an n2-ic V = 0, and the n-\a W = 0.

Multiplying the columns of the determinant J by x, y, z
and adding the first two columns to the third, we can express
Jz in the form

Suppose that (0, 0, 1) is an intersection of W = and
J = 0. Take the tangent to W = at (0, 0, 1) as y = 0.

Then
W = b yz71' 1 + (c x2 + 2 Cj xy + c2 y

2
) z

n~2 + . . .

.

Arranging the determinant just given for Jz in descending

powers of z, and taking for U and V the most general ex-

pressions of degrees in
x
and n

2
also arranged in descending

powers of z, we readily find that the Jacobian passes through

(0, 0, 1) in the following cases.

(i) That curve of the pencil U+ kV = which passes

through (0, 0, 1) touches W = there.

The Jacobian does not in general touch W = at (0, 0, 1)

in this case. Hence the Jacobian cuts W — once at

each point of contact of W = with a curve of the pencil

Jz =

2>U

<>x
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JJ+kV = 0. This may also be proved by identifying the
tangents to If = and U+kV=0 at any point of inter-

section.

(ii) b - 0.

Now W = has a node at (0, 0, 1) and the Jacobian passes

through (0, 0, 1). Hence the Jacobian meets W = twice at

every node of W = 0.

(iii) b = c = «! = 0.

Now W ="0 has a cusp at (0, 0, 1) with y = as cuspidal

tangent. The Jacobian touches y = at (0, 0, 1). Hence the

Jacobian meets W = thrice at every cusp of W = 0.

These results are true only if U and V are perfectly general.

Some important special cases are discussed in the examples
below.

Ex. 1. If the first polar curves of P with respect to three given curves

are concurrent at Q, Q is on the Jacobian.

Ex.2. Any three curves of the family all+bV+cW = have the same
Jacobian as the three curves U = 0, V= 0, W = 0, provided the equation
of the Jacobian does not vanish identically.

Ex. 3. The Jacobian of U= 0, V= 0, TT= is the locus of the nodes
ofthefamily aU+bV+cW = 0, and also of aVW+bWU* cUV = 0.

Ex. 4. If three curves pass thrdugh 0, their Jacobian passes through
0. If the curves are of the same degree, is a node of the Jacobian.
If two of them are of the same degree, the Jacobian touches the third

curve at 0.

[In Ex. 4 to 7 take O as (0, 0, 1).]

Ex. 5. If O is a cusp of W = 0, the Jacobian of V = 0, V = 0, W =
touches W= at O.

If O is a &-ple point of W = 0, the Jacobian has a (k— l)-ple point at O.

Ex. 6. If O is a Xyple, ftyple, Jyple point of an n^ic, «2-ic, «
s
-ic

respectively, the Jacobian of the curves is an (ra, +«, + », — 3)-ic with
as a multiple point of order not less than i

1
+ &

2 + ifc
s
— 2.

If n
1
= n

l
and " fcj = ft, , O is a (2 ft

t + fts
— 2)-ple point of the Jacobian

'

at which ft8
tangents coincide with those of the «

3
-ic.

If «, = w2
= n

s
and ft

x
= ft2 = ft3 , O is in general a (Sftj— l)-ple point

of the Jacobian.

Ex. 7. If O is a cusp of a curve, the Jacobian of this curve and any
other two curves through O has a node at O one of whose branches
touches the given curve at O,

If the two other curves have the same degree, the Jacobian has a cusp
at O with the same tangent as the given curve.

Ex. 8. The number of curves of a pencil of N-ics TJ+kV = which
touch a given curve W = of degree n and class m is in general
2n(N-l) + m.

[The points of contact are the (2N + n—S)n intersections of W—0
and the Jacobian of £7=0, V=Q, W=0 less the nodes of W=0
counted twice and the cusps counted thrice. Now use equation (i) of § 5.]
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Ex. 9. A pencil of N-ics has as its base-points each of the S nodes and
k cusps of an w-ic (n > N) and other points of the n-ic. Show that the
number of N-ics touching the n-ic at a point other than a base-point is

(n-N)(N-»> + 3) + 42)-2;
where D = |(»-1) («-2)-8-k.
[By Ex. 4, 6, 7 the Jacobian of the ra-ic and two N-ics of the pencil

meets the w-ic at the points of contact required, six times at each node
and cusp of the w-ic, and twice at the other r base-points of the pencil.
The number of points of contact is therefore

(2N+n-3)n~6(8 + K)-2r, while r+8 + x = £N(N+3)-l.]
Ex. 10. Show that the result of Ex. 9 is true if the w-ic has multiple

points, the .N-ics having a (k — l)-ple point at each fc-ple point of the
n-ic

;
where

Z) = |(m - 1) (« - 2) - S £ fc (& - 1).

[Use Ex. 6.]

Ex. 11. A pencil of N-ics has as base-points points of an n-ic. Any
curve of the pencil meets the n-ic at p points other than the base-points,
and q curves of the pencil touch the «-ie at a point which is not a
base-point. Show that q = 2p + 2(D- 1)— k', where k is the number
of cusps of the m-ic which are not base-points of the pencil.

[By Ex. 4 to 7 the q points of contact are the intersections of the
Jacobian of the n-ic and two N-ics with the n-ic, less each node base-
point six times, each cusp base-point six times, each other base-point
twice, each other node twice, and each other cusp (k' in number) thrice.]

Ex. 12. Show that the result of Ex. 11 still holds, if the n-ic has
ordinary multiple points with distinct tangents at some of which the
N-ics have ordinary multiple points of assigned order.

,Ex. 13. The number of curves of a singly infinite family with
characteristic (p, I) which touch a given curve F=0 of degree n and
class m is in general nl + mp.

[This example is a generalization of Ex. 8. For the definition see

Ch. IV> §8.
If f(x, y, z, a) = is the family, and </> (A, p, v, a) = its tangential

equation, the points of contact of a curve of the family with the line

\x + fiy + vz — are the intersections of this line with the curve obtained
by eliminating a between /= and = 0, say yjr (X, n, v, x,y.z) = 0;
where yjr is homogeneous of degree p in X, n, v and degree I in x, y, a.

Then the points of contact of a curve of the family with F= are the

intersections of F = with the {l+pn— p)-ic

. (IF 7>F iF \

To discuss the intersections of F= and | = at » node, take the

node as (0, 0, 1).]

Ex. 14. If 24«2 + 25 is a square number, the locus of the nodes of

those |• {-y/ (24w2 + 25) — 3}-ics which go through the 3»2 intersections

of three n-ics taken in pairs is the Jacobian of the x-ics.

[The family whose nodal locus we require is the second family of Ex. 3.

The two simplest cases are n = 2 and n = 5. The reader may find

other cases.]



CHAPTER VIII

PLUCKERS NUMBERS

§1. Pliicker's Numbers.

We shall use the following notation for any curve through-

out the book unless otherwise stated :

n = degree, m = class, 8 = number of nodes, k = number of

cusps, t = number of bitangents, i = number of inflexions.

The six quantities n, m, 8, k, t, i are called the Pliicker's

numbers of the curve. They are not independent, but are

connected by various relations, of which the most useful are

perhaps

(i) m = n(n-l)-28-3K,
(ii) n = m(m— 1) — 2r— 3t,

(iii) i = 3«(%-2)-6<S-8/c,

(iv) k =3m(m-2)-6T-8i,
(v) in(n + 3)-8-2ic= Jm (m + 3)-T-2t,
(vi) %{n-l)(n-2)-8-K = f(m-1) (m-2)-T-i,
(vii) i — k = 3 (m — n),

(viii) 2(t— 8) = (m— n) (m + n— 9),

(ix) n2-28-3 K = m 2 -2r-3i.

Of these Pliicker's equations only three are independent. »If

we take three, for instance, (i), (ii), (iii), or '(i), (ii), (v), the

other relations may be deduced.

Thus, assuming (i), (ii), (v), we get (ix) by subtracting (ii)

from (i). Then, subtracting (v) from (ix), we get (vi) ; and
so on.

The Pliicker's numbers of the reciprocal curve are by
Ch. IV, § 7

m, n, t, i, 8, k.

Hence, if we prove (i), (ii) follows at once on consideration

of^the reciprocal of the given curve.

Similarly, (iv) follows from (iii). The equations (v) to (ix)

do not give any fresh equations by consideration of the recip-

rocal curve.
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It remains now to establish three of Pliicker's equations.

We proved (i) in Ch. VII, § 5, by considering the inter-

sections of the first polar curve of any point with the given
curve. These intersections lie one at each point of contact of

a tangent from 0, two at each node, and three at each cusp
of the given curve.

Then (ii) follows from the reciprocal curve.

We proved (iii) in Ch. VII, § 7, by considering the inter-

sections of the Hessian with the given curve. These inter-

sections lie one at each inflexion, six at 6ach node, and eight at

each cusp of the given curve.

We may deduce (v) from (i), (ii), (iii), which we have
proved. But we have given an independent proof of (v) in

Ch. IV, § 8 ; and we may deduce (iii) from (i), (ii), (v), if

preferred.

It is readily seen that a curve has the same Pliicker's

numbers as any projection of the curve ; but that curves with
the same Pliicker's numbers are not necessarily projections of

each other. All curves with the same Pliicker's numbers may
be said to belong to the same type.

§ 2. Deficiency.

We shall denote
%(n-l)(n-2)-8-K

by the symbol D, which is called the deficiency (or genus) of

the curve.

We shall prove in Ch. X, § 3, that D cannot be rfegative
;

and that, if D is zero, the coordinates of any point on the

curve can be expressed rationally in terms of a parameter

;

while conversely, if the coordinates can be so expressed,

D = 0.

For instance, a cubic cannot have two double points unless

it degenerates. For the line joining two double points meets

the curve twice at each, whereas a straight line meets a cubic

in only three points.

Also if (a, b) is a double point of a cubic, the line

y— b = t{x—a)

meets the cubic again in a point whose coordinates are rational

functions of t.

Again, a quartic cannot have four double points. . For the

conic through four double points and any other point of

a curve meets it in nine points at least.

Also the pencil of conies through three double points of a

quartic and any other given point of the curve meets the
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quartic again in an eighth point, whose coordinates are

rational functions of the parameter of the pencil.

Equation (vi) of § 1 states that the deficiency of a curve and
its reciprocal are the same. For a more general theorem of

which this is a special case see Ch. XXI, § 3.

For a more general definition of ' deficiency ' when the

curve has multiple points other than ordinary nodes and
cusps see Ch. IX, § 7.

Ex. 1. Prove the rest of equations (i) to (ix) in § 1.

Ex. 2. Prove that

r = 8 + £(n1! -2re-2S-3/<)(re!! -9-28-3K).

Ex. 3. Enumerate the types of cubic and quartic.

[See Ch. XIII, § 1, and Ch. XVII, § 1.]

Ex. 4. (i) If n = m, or if k = i, we have re = m, k = t, and 8 = t.

The curve is then of the same type as its reciprocal. If re is given, the
number of such types is the integral part of f (re

2 — 5 n + 12).

(ii) Find the type of curve for which n = m = 8 = K = r = i.

[(i) Use § 1 (vii), (viii).

8 = £(w-2)(re-3)-3Z), K = n-2 + 2D.

For example, the cubic with a cusp, the quartic with a node and two
cusps, the quintic with three nodes and three cusps, the quintic with
five cusps, &c. (ii) re = 7.]

Ex. 5. If 8 = t, either n = m, k = i ; or else the curve is a non-
singular cubic, a quartic with two nodes and a cusp, a quintic with
two nodes and four cusps, or a sextic with nine cusps.

[Use § f (vii), (viii). The exceptions are given by 8 = t, n + m = 9.]

Ex.6. If n>m, then x>t and 8 >, =, <t as n + m>, =, < 9.

Ex.7. If L = n+ m, k = 4(Z>-1).

Ex.8. If 8 = 0, « = 1, T = £(re + l)(re-3)(re2 -12).

Ex. 9. m> ${l+(4n + l)*}. »

[For m(m — l) > «.]

Ex.10, (i) m = 2(n-l)+2D- K , i = 3 (re-2) + 6D-2k,
8 = \(n-\)(n-2)-D-K.

(ii) If m=8, 6Z)= (re-l)(re-6). If 2«*=i, 2D = n + 2.

If 28 = i, 8Z> = (re-2)(«-4).

Ex. 11. The number of cusps cannot exceed the smaller of

l(n-2 + 2D) and \ {4re-3-(4« + l)i + 4Z>j.

[Use Ex, 9, 10, and i > 0.]

Ex. 12. If D = and n >4, not all the double points are cusps.

Ex. 13. If D = 0, m^ 2(re-l); while m > \(n + 2) if n is even,
and m > \ (re + 3) if re is odd.

[If £ = 0, m=2(n-l)-K = l(n+2 + i).]
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Ex. 14. Through a fixed point any line is drawn meeting a fixed
curve in P and a fixed line in Q. If the range (OPQE) has a fixed cross-
ratio, the locus of R is a curve of the same type as the fixed curve.

[Project the fixed line to infinity ; or note that the two curves arc in
plane perspective.]

Ex. 15. The result of Ex. 14 holds if we replace the fixed line by
a fixed conic through 0.

[Project the conic into a circle, and invert with respect to 0.]

§ 3. Multiple Points with Distinct Tangents.

So far we have supposed the curve to possess only ordinary
cusps and nodes.

Let us now suppose that the curve has one or more multiple
points with distinct tangents. We shall show that

:

Plucker's equations still hold, if ive reckon each ordinary
multiple point with distinct tangents as equivalent to

^k(k— 1) nodes and each ordinary Jc'-ple tangent with k'

distinct points of contact as equivalent to Jk' (/<;'— 1) biiangents
in the evaluation of S, r, and D.

One of the statements in this theorem is the reciprocal of

the other. It will be sufficient to prove one of them.
We require to show that any first polar curve and the

Hessian meet the given curve k(k— 1) times and Bk(k— 1)

times respectively at a /c-ple point of the curve. For, if that

is so, equations (i), (ii), (iii) of § 1 hold good when each fc-ple

point is considered equivalent to %k(k— 1) nodes; and from
these three equations the other equations of § 1 can be
deduced.

The result is plausible ; for a curve which has k veal

branches all nearly passing through has evidently ^k(k— l)

crunodes in the neighbourhood of ; and these coalesce at 0,

if the branches are all made to approach 0.

Suppose the curve has a /c-ple point at (0, 0, 1). Its

equation is

/= zn
- ku

l
. + zn

-
]c
- 1u

rc
_
1
+...+un = 0,

where ur
is homogeneous of degree r in x and y.

The first polar curve of (0, 1, 0) is ^- = 0, which has evi-

dently a (k— l)-ple point at 0, the tangents to the curve and
the first polar at being all distinct.

Hence by Ch. I, § 7, or Ch. VI, § 2, the curve and first polar

meet in k(k — 1) points coinciding with 0, as required.

To find the number of intersections of curve and Hessian at

we adopt an indirect method. (See also Ex. 2, below.) The
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3

number is evidently dependent solely on the nature of the

curve in the neighbourhood of ; and there Is therefore no

loss of generality in supposing that the curve has besides

only ordinary point or line singularities, namely 82 nodes,

k cusps, r bitangents, and i inflexional tangents.

The\i from the reciprocal curve as in § 1

n = m(m— 1) — 2r-3t, k = 3m(m- 2) — 6r— Si;

and we have just proved that

m = n(n-l)-282
-3ic-k(k-l).

These give

i = 3n(n-2)-68a
-8ic-Sk(k-l),

and therefore the curve and Hessian meet 31c (k— 1) times

at 0.

The first polar of has evidently a /c-ple point at with

the same tangents as the given curve. Hence the curve and
first polar meet k(k + 1) times at (Ch. I, § 7 ; Ch. VI, § 2,

(vi)) ; so that 2/c of the tangents from a fc-ple point must be

considered as coinciding with tangents at that point.

Ex. 1. The deficiency of a curve with no singularity other than
ordinary multiple points with distinct tangents is £ (m — 2n + 2).

.

[£(m-2» + 2) = £(w-l)(»-2)-8, since k = 0.]

Ex. 2. Establish directly the fact that the Hessian meets the curve
3Jc(k — 1) times at a fc-ple point.

[If u = are the tangents to the curve at the multiple point (0, 0, 1),

the tangents to the Hessian at the point are

cla:
2 dy" \ ixiyj

by Ch. VII, § 7, Ex. 14 (iii). Hence curve and Hessian meet
fc(fc+l) + 2fc(fc-2) = 3fc(Jfc-l)

times at (0, 0, 1). A similar method will apply to § 4.]

§ 4. Multiple Points with Superlinear Branches.

We show now more generally that

:

PliicJcer's equations hold if (i) each multiple point of order
k having I ordinary superlinear branches with distinct

tangents is counted as equivalent to %k(k— 3) + 1 nodes and
k— l cusps ; and (ii) each multiple tangent meeting the curve
in*k' + V points at its V points of contact* is counted as equiva-
lent to %k'(k'—3) + l' bitangents and k'—l' inflexions. The
deficiency is taken as %(n— 1) (n— 2) — ^2fc(&— 1).

* It is supposed that the tangent touches only one branch of the curve at
each of these I' points.

« = and - • — = ' I
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By an ' ordinary ' superlinear branch of order q we mean
one whose Cartesian equation near the origin (taken at the
multiple point) is of the form12 3

y = x (a + bxl + cxi + dxl + ...),

where there is no special relation between a, b, c, d, ... , except
that a may be zero, if the tangent to the branch is taken as

y = (Ch. VI, § 1).

The proof of the theorem is similar to that of § 3. We only
note the modifications which are necessary.
As before, (ii) is the reciprocal of (i).

Since a factor repeated r times in uk is repeated r— 1 times

in -r-^ , every tangent to a superlinear branch of the curve is

a tangent to a superlinear branch of any first polar of order

lower by unity. Hence (Ch. VI, § 2, Ex. 8) the curve and the

first polar meet in

k2 -l = 2{%k{k-3) + l)+3(k-l)
points at 0.

Again, to prove that the number of intersections of curve

and Hessian at is

6{±k(k-3) + l} + 8(k-l),

we may suppose that the curve has besides no singularities

except <?
2
nodes, k2

cusps, r2
bitangents, and t2

inflexions. As
before,

n = m (m— 1) — 2r2
— 3 12

and m = n(n— 1)—2S2
— 3k2

— (k2— I)
;

while

kz = 3m (m— 2)— 6r2
— 8t

2
— (k— I),

since by Ch. VII, § 7, Ex. 4 the Hessian of the reciprocal

curve meets it k— L times at its points of contact with the

multiple tangent which is the reciprocal of 0. We deduce

c2
= 3n{n-2)-682-$K2-6{%k(k-3) + l}-8(k-l);

which establishes the result.

Ex. Find Plucker's numbers for a curve of degree n with a single

superlinear branch of order (i) n — 1, (ii) n— 2.

[(i)m = », S = r = \(n-V)(n-%), <e = t = »-2, I) = 0.

(ii) m = S(n-l), 8 == £(ra-3)(»-4), < = n-S, t = £(»j-3) (9»-16),

i = 7»-12, D = n-2.]
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§5. Higher Singularities.

The general problem, special cases of which have been dis-

cussed in §§ 3 and 4, is as follows :

Given a curve with any multiple point whatever 0, how
many nodes, cusps, bitangents, and inflexions * must be con-

sidered as coinciding with 0, in order that Pliicker's equations

may formally hold ?

Suppose the numbers required are 81} Klt tv tr Let any
first polar curve and the Hessian meet the given curve in a
and /S points coinciding with respectively. Then we must
have

28
l + 3K

1
= a, 6^ + 8/q + t! = /3 . . . . (i).

Similarly, if for the reciprocal curve the line corresponding

to passes through p intersections of curve and first polar

and a- intersections of curve and Hessian,

2r1 + 3i
1
=

j
o, 6^ + 81! + *! = a . . . (ii).

First of all it is to be noted that (i) and (ii) give identically

3(a + p) = /3 + (r.

Hence the quantities 8lt k
x , t1 , tj could not be found if this

relation were not satisfied. To show that it is satisfied, take
8
2 , k2 , r

2 , i
2
aa the number of nodes, cusps, bitangents, and

inflexions not coinciding with O.f
Since the curve and the first polar of P meet altogether in

n(n—l) points, namely at the points of contact of the m
tangents from P, twice at each of the 8

2
nodes, thrice at each

of the k2 cusps, and a times at 0,

a = n(n— 1) —m— 28
2
— Sk

2
.

Similarly from the Hessian,

£ = 3n(n-2)-68
2 -8ic2

-i
2 .

Likewise from the reciprocal curve

p — m(m— 1) —n— 2r2
— 3i

2 ,

a- = 3m(m— 2)— 6r2
— 8t

2
— ac

2
.

The last four equations give 3(a + p) = jS + o-, as required.
The equations (i) and (ii) are then consistent but not in-

dependent. Our problem is soluble but not definite ; there
are an infinity of solutions. We could make the solution
definite if we had a definition of the deficiency D, which was

* i. e. How many bitangents have both points of contact at 0, and how
many inflexional tangents have their points of contact at ?

t We may consider these as ordinary nodes, &c, without loss of generality;
for a, 0, p, a only depend on the nature of the curve in the immediate
neighbourhood of 0.
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applicable to singularities other than ordinary nodes and
cusps, for then we could add to equations (i) and (ii)

i(n-l)(n-2)-(8
1 + 8

2 + Kl + K2)
= D.

Such a definition will be given in Ch. IX, § 7.

We have not proved that Slt Klt t
x , i

1
thus obtained are

positive integers or zero.

In § 4 we proved that for the case there considered

a = k2~ I, p = 0, (T — h— l,

and verified that (i) and (ii) were satisfied by

S
1
=^k(k-3) + l, Kl = k-l, ^ = ^=0.

In this case the solution was made definite by our knowledge
of the fact that the reciprocal curve had no multiple point on
the line corresponding to 0.

Ex. 1. Discuss the singularity of y*sfl = xv+i at (0, 0, 1).

[Using Ch. IV, § 7, Ex. 4 and Ch. VII, § 7, Ex. 2 (i) we find

0t = (p-l)(p + q), p = 3p(p + q)-4p-2q,
P= (2-l)(P + 2), cr = 3q(p + q)-2p-4q.

These satisfy '3 (a + p) = /3 + <r, and § 8 (i) and (ii) give

*i = lp(p+q)--2p-iq+%F, ^=P-F,
T
1 =iq(p +q)-%p-2q + %F, H=q-F;

where Fis any symmetric function of p and q.

We may determine F by noticing that, since the curve is unicursal

(Ch. X, § 4, Ex. 12), the reciprocal singularities at (0, 0, 1) and (0, 1, 0)

must be together equivalent to %(p + q— 1) (p + q— 2) nodes and cusps

;

i.e. »i+«i + T
l + «l

= i(j» + s-l)(p + «-2).

Hence F = 1 and

«i=*Cp-l)Cp + ff-S), «i-j»-l, r^ite-ljfci + a-a), 1 = 2-1.]

Ex. 2. Discuss the singularity of (yz + x*) 1 = tfx at (0, 0, 1).

[By Ch. XVII, § 8 (V) the curve has a single point singularity at

(0, 0, 1) and three other inflexions. The reciprocal curve is a 5-ic with
the reciprocal singularity, no other inflexions, and three other cusps.

Hence a = p = 7, /3 = <r = 21. These give

8
1
= r

1
= 2 + 3k, «, = «, = l-2fc

We may prove k = 0, bv noticing that, since the curve is unicursal,

«! + «! = 3'.]



CHAPTER IX

QUADRATIC TRANSFORMATION

§1. Definition of Quadratic Transformation.

Suppose we have a fixed conic 2 with fixed tangents

GA, GB (Fig. 1). Let any variable transversal through G cut

2 in Q, It and let (PPf

, QM) be an harmonic range on the line

CQR. In Fig. 2, if P lies in any portion of the plane, P' lies

in the other portion labelled with the same letter, as is easily

verified.

The dotted conic in Fig. 2 is the locus of the middle point

of the chord QR.
Suppose that P traces out a locus c, P' will trace a locus c'.

The loci c, c' are said to be derived from one another by
quadratic transformation ; 2 being the ' base-conic ' and C
the pole of the transformation.

Choosing ABC as triangle of reference, we may take homo-
geneous coordinates so that 2 is z 2, = xy.

If P' is the point (X, Y, Z), P is
( y , -^ , ~\ ; for these
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points are collinear with C and conjugate with respect to
z1 = xy.

r

Hence, if f(x, y, z) = is the locus c of P, then

\y x z/
is the locus c' of P' *

. From this result, or from the original definition, we at once
derive the following

:

If P is on AB, P' is at C.

If P is on BG, P' is at B.

If-Pison^C, P'isat A.
If c is a line through C, c' is the same line.

If c is a line through A, c' is a line through B.

If c is a line through B, c' is a line through A.
If c is any other line, c' is a conic through A, B, G.

For instance, if c is the line \x + fiy + vz = 0, c' is

X/y + n/x + u/z = 0;

which is a conic through A, B, C.

* It is more usual for reasons of symmetry to take the transformation in

the form X : Y : Z = 1/x : 1/y : 1/s so that the curve f(x, y,z) = is trans-

formed into f(l/x, 1/y, 1/a) = 0. This is equivalent to quadratic trans-

formation followed by interchange of the vertices A and B of the triangle of

reference.
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Again

:

If c meets AB at P, c' touches CP at C*
To the tangent at P to c corresponds the conic osculating c'

at G and passing through A and B.

For if Q is close to P on c, Q' is on c' close to C, and the

limiting position of CQQ' (which is CP) is the tangent to c'

at G.

Also, to the line joining P to any point R of c corresponds

a conic through A, B, R' touching c' at 0. If i? approaches
P, the conic becomes the osculating conic to c' at G.

Again

:

If c meets CA at P, c' touches at A the line through A
corresponding to BP, i. e. the line joining A to the second

intersection of BP with 2. Similarly if c meets CB at P-

Pig. 3.

For, if P is close to GA, P' is close to A (Fig. 3), and
AP', BP meet on 2.

,
Hence to every intersection of c with AB corresponds a

branch of c' through G, to every intersection of c with CA
(or CB) corresponds a branch of c' through A (or B) ; and
conversely.

If c touches AB, two tangents to c' at G coincide ; and
similarly if c touches GA, two tangents to c' at A coincide.

Suppose c is an n-ia with a ft-ple point at G, a p-ple point

at J., and a ^-ple point at J5.

Then c meets J..B, G'j4, CB respectively at n—p— q, n—p— k,

n— q— k other points. Hence c' has n—p— q, n—p— k,

* Provided P is not at A, B, or C ; and so throughout. It follows that, if

c has k linear branches touching CP at C, P is an ordinary fc-ple point of c;

and vice versa.
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n— q— k branches respectively through C,A,B. Also it meets
AB at the k intersections of AB with the tangents to c at G

;

and similarly it meets GA and GB at p and q points re-

spectively other than A, B, C.

Since c' meets AB at { (n —p— k) + (n— q— k) + k
}

points, it

is a (2n—p— q— k)-ic. Hence :

If c is an n-ic with a k-ple point at G, a p-ple point at A,
and a q-ple point at B, then c' is a (2n—p — q — k)-ic with an
(n— p — q)-ple point at G, an (n-p-k)-ple point at A, and
an (n— q — k)-ple point at B.

For instance, taking n = 2, p = q = 1, k = 0, we see that

the transform of a conic through A and B is a conic through
A and B.

Ex. 1. Properties of any quintic with three or more double points can
be deduced from those of a quartic with the same deficiency.

[Take three double points as A, B, C of § 1. The properties so derived

are not usually of much elegance or importance. Our knowledge of the
theory of quintic curves (and still more of sextic) is very limited.]

Ex. 2. If two curves (or branches of the same curve) have r-point

contact at a point on CA, the transformed curves (or branches) have
(r+ l)-point contact at A.

§ 2. Inversion.

If in § 1 we project A, B into the circular points, 2 becomes
a circle with centre C, and P, P' are inverse points with
respect to this circle. The loci c, c' of P, P' are now inverses

of each other with respect to the circle. Hence inversion is

a particular case of quadratic transformation, and quadratic
transformation is the generalization by projection of inversion.

From the results of the last section we may derive many
well-known theorems connected with inversion. For instance,
' the inverse of a circle is a circle ',

' the inverse of a curve with
respect to a focus is a curve with a cusp at each circular

point ', and so on.

One of the main uses of quadratic transformation is to

deduce properties of a curve c from those of its transform c'.

This is exactly equivalent to the process of projecting two
points into the circular points and inverting with respect to

some other point.

The main advantage of quadratic transformation over pro-

jection followed by inversion is that, if A, B in Fig. 1 are to

be projected into the circular points, it is convenient that they

should bear similar relations to the curve c (e. g. be both nodes,
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or both cusps, &c.) ; and this restriction is unnecessary if we
employ the generalized form of inversion, namely, quadratic
transformation.

Quadratic transformation (or the equivalent process of in-

version) will also enable us to simplify the solution of problems
which have been discussed in Ch. VI and elsewhere, such as

the determination of the number of intersections of two
curves at a given point, the expansion of y in terms of x near
a given point, the number of tangents from a point whose
points of contact coincide with the point, &c.

§3. The Number of Intersections of two Curves at

a given Point.

If the point P in Fig. 1 does not lie on a side of the triangle

ABC, the quadratic transformation evidently transforms two
curves meeting at P into two curves meeting at P'. Suppose
then we have two curves of degrees n and N, and we want to

know how many intersections of these curves must be con-

sidered as lying at a certain point, which is a /c-ple and a
.fif-ple point on the two curves respectively, if we are to

observe the convention that an n-ic and an iV'-ic meet at nN
points.

Take the point as C, and take the sides of the triangle ABC
(Fig. 1) so as to have no other special relation to either curve.

Suppose that the curves meet in r points other than G, and
therefore nN—r times at G. The transformed curves are of

degrees 2n— k and 2N—K, have multiple points of orders
n— k and N—K at each of A and B, and have multiple points
of orders n and N at G (§ 1).

At A, B, and G no two branches of the transformed curves
touch one another, since we took the points A and B in a
general position. The transformed curves therefore meet
(n— k) (N—K) times at each of A and B, and nN times at G
(Ch. I, § 7 ; Ch. VI, § 2). They meet also at the transforms of
the r intersections other than G of the original curves. Hence
they must meet at s points on AB other than A and B, where

s = (2n-k)(2N-K)-2{n-k)(N-K)-nN-r
= nN—kK—r.

Therefore nN—r = s + kK, so that

:

If two curves have a k-ple and a K-ple paint at G respec-
tively, and the transformed curves meet at s points on the line
AB other than A and B, the two given curves meet s +kK
times at C.
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We suppose, as stated before, that the lines GA and GB
have no special relation to the curve, though this restriction

may at times be removed if due precautions are taken.
If the transformed curves intersect at a point H on AB, and

it is not immediately evident how many times they meet at

H, we may apply the above theorem to the transformed
curves, taking G at H.
As a simple example of the above theorem, take the case of

a curve passing through the cusp G of another, the two curves
having a common tangent at G, which meets AB at H. The
ti'ansformed curves pass through H, one touching AB and the

other not, so that they have a simple intersection at H.
Hence the number of intersections of the original curves at G
is 1+2.1 = 3.

As another example, take the case of curves with k and K
linear branches at C respectively, all the branches having GH
as a common tangent. The transformed curves have /c-ple

and IT-ple points at H, and therefore meet in IcK points coin-

ciding with H. The original curves therefore meet at 2kK
points coinciding with C.

§4. Class of a Curve.

Suppose we wish to find the number of intersections a of

a curve with any first polar curve at a multiple point G of

order k on an n-ic. We may find the equation of the polar

curve and then use § 3. An alternative method is the

following.

Suppose A and B have no special relation to the curve.

The first polar of P meets the Ti-ic a times at G, and at the

m points of contact of the tangents from P. We shall assume

the n-ic has no multiple poiDt other than C* Then

m = n(n— 1) — a.

To each of the m tangents from A to the n-ic corresponds

a tangent from B to the transformed curve whose point of

contact does not lie on AB. Now the transformed curve is of

degree 2n— k. It has ordinary (n— /c)-ple points at A and B,

and an %-ple point at, G. It meets the first polar of B
(n-k)(n—k-l) times at A, (n-k)(n-k+l) times at B,

n(n-l) times at G (Oh. VIII, § 3), at the m points of contact

of tangents from B not lying on AB, and (say) a.' times at

points on AB other than A and B.

* a depends only on the shape of the n-ic in the neighbourhood of C, so

this assumption involves no loss of generality.
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Therefore

(2n-k)(2n-k-l) = (n-k) (n-rk-l) + (n-k) (n-4 + 1)

+ w(to— l) +m + <x',

or (ti— fc) (ti + Zc— 1) — a' = m = ii(?i— ])— a.

This gives

a = <x' + k(k— 1).

Now the number of intersections at H of a curve with the

first polar of is dependent on the shape of the curve in the

neighbourhood of H in general and not on the position of

(unless is near H or on the tangent at H).
Hence

:

The number ofintersections of a curve with any first polar
curve at a k-ple point G is equal to the number of intersections

k{k—\) at an ordinary k-ple point together with the number
of those intersections of the transformed curve with any first

polar which lie on AB but not at A or B.

For example, if the curve has k linear branches with a

common tangent at C meeting AB at H, the transformed
curve has a /c-ple point at H. The effect of this on the class

of the transformed curve is to lower it by k(k— \) ; and there-

fore the effect of the singularity at G is to lower the class of

the original curve by 2k (k — 1).

§5. Tangents from a Singular Point to a Curve.

Suppose that in the curve of § 4 X of the tangents from C
have their point of contact at G, and that u of the tangents
from G to the transformed curve have their points of contact
on AB. The other tangents from C to the transformed curve
are the n tangents at G each counted twice, and the mT X
tangents from C to the given n-ic which do not touch at C.

Hence the class of the transformed curve is

m— \ + p+ 2n.

But we see, as in § 4, by consideration of the tangents from
B that this class is

m+2(n— k) + e,

where e is the number of tangents from B to the transformed
curve whose points of contact are on AB but not at B (or A).

Therefore X = 2k+u— e, or:

The number of tangents from the k-ple point C to a curve
whose points of contact coincide with G is 2 k, plus the number
of tangents from G to the transformed curve whose points of
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contact are on AB, minus the, number of tangents from B to
the transformed curve whose points of contact are on AB but
not at B.

For example, if the curve has k linear branches at C with
a common tangent meeting AB at H, the transformed curve
has a /c-ple point at H at which in general neither AB nor
CH is a tangent. Hence the points of contact of 2k tangents
from C coincide with C.

Ex. If a tangent at a /c-ple point C of an n-ic meets the curve in
k + r points coinciding with C and meets AB at H, the transformed
curve meets CH in r points coinciding with H.

[The transformed curve meets CH n times at C and n-k-r times not
at C or H. But it is of degree 2 n - k.]

§ 6. Latent Singularities.

Suppose that the transform of a curve with a /c-ple point at
G has a J-ple point at H on .djB, not coinciding with A or 5.
Suppose now that the transformed curve and the lines GA, CB
are kept fixed while the line AB is slightly displaced so as not
to pass through H. Then the original curve will alter its

shape slightly. The transformed curve now cuts AB in k
distinct points not close to A or B (j of them very close to H),
so that the original curve has an ordinary /c-ple point at G
and a ^'-ple point corresponding to H at the point H' very
close to G. As AB is moved hack into its origiDal position

the J-ple point at H' moves up to G and coalesces with the

&-ple point to form a ' higher singularity ' at G. The J-ple
point of the transformed curve is said to be latent in the &-ple

point G of the original curve.

We say that G has been ' analysed by quadratic transforma-

tion '.

§ 7. Deficiency.

We defined the ' deficiency ' D of an n-ic in Ch. VIII, §§ 2
and 3 as i(n— l)(n— 2)—S— k, where S was the number of

nodes and k the number of cusps, with the proviso that an
ordinary /c-ple point is to count as ^k (k— 1) nodes.

It is desirable to give a definition which shall be valid when
the curve has higher singularities. It is difficult to do this

satisfactorily without a knowledge of function-theory, but an
attempt is here made. (See also § 12, Ex. 10.)

First we word the definition of deficiency when no higher

singularities exist a little differently. We say that the
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deficiency of an n-ic is one more than the number of arbitrary

coefficients in the equation of the most general adjoined

(n— 3)-ic.*

By an ' adjoined ' J\T-ic we mean one which has a (k— l)-ple

point at every /c-ple point of the n-ic.

That this definition of deficiency is equivalent to the earlier

one is readily proved.

To state that a curve has a (k— l)-ple point at a given

point is equivalent to assigning •§&(/«— 1) linear relations

between the coefficients of its equation (Ch. II, § 6). Hence
the (n— 3)-ic has

J(TO-3)»-2ifc(ft-l)

arbitrary coefficients, the summation being taken over every

multiple point of the n-ic. But this is the number we have
defined in Ch. VIII, § 3 as D-l.
We shall state the fact that an iV-ic.has a (k— l)-ple point

at a given /c-ple point of an n-ic, by saying that the JV-ic is

' adjoined to the n-ic at 0'. If the Ar-ic is • adjoined' to the

n-ic, it is adjoined at every multiple point.

§ 8. Deficiency unaltered by Quadratic Transformation.

We now show that the deficiency of a curve and its quadra-

tic transform are the same, when the curve has only ordinary

multiple points. Suppose as in § 1 that an n-ic has p-Tpie,

g-ple, /c-ple points at A,B,C respectively. Any adjoined

(n— 3)-ic has (p— l)-ple, (q— l)-ple, (k— l)-ple points at A, B, G.

By § 1 the transforms of" the n-ic and (to— 3)-ic are there-

fore a (2n—p— q— k)-ic with (to—p— /fc)-ple, (to— q— /c)-ple,

(to—p— g)-ple points at A, B, G and a curve of degree

2(n-3)-(p-l)-(q-l)-(k-l) = 2n-p-q-k-3 %
with a multiple point of order

(to— 3) — (p— 1) — (q— 1) = n—p— q— 1

at G, and so for J. and B.

Thus the transforms of the curve and an adjoined curve of

degree lower by three are also a curve and an adjoined curve

of degree lower by three; from which the equality of the

deficiencies of the TO-ic and its transform follows immediately.

We have assumed p, q, k all greater than zero. Now
suppose k = 0. The transform of the (to— 3)-ic is now only of

degree In—p—q— 4 (not 2to—p— q— 3, as required for the

* To complete the definition add ' and B = 0, if » = 1 or 2 ; while D =
or 1 when n = 3, according as the cubic has or has not a double point '.
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proof) and has a multiple point of order n—p— 2 (not n—p— 1)
at A ; and so for B. But if, as is lawful, we take as the
transform of the (n — 3)-ic the (2n—p— q— 4)-ic together with
the line AB, we obtain a curve of degree 2n—p—q—3 ad-
joined to the transform of the 7i-ic.

In fact, since the transform of the n-ic is of degree
2n—p— q with (n—p)-p\e and in — ?)-ple points at A and
B, an adjoined (2n—p— q— 3)-ic has (n—p— l)-ple and
(w— j — l)-ple points at A and 5. The line AB therefore
meets the adjoined curve in points whose number is greater
than the degree of the curve, showing that the curve degener-
ates into AB and a (2n—p— q— 4)-ic.

Similarly, if p = 0. CA is part of the transformed adjoined
curve ; and, if q = 0, CB is part of the curve.

In practice, however, the case p, q, Jc all greater than zero is

the only one we need consider. In the following we shall

require to transform any curve by successive quadratic trans-

formations into one having only ordinary multiple points with
distinct tangents. To do this we can take A and B as ordinary
points on the curve and G as any multiple point which is not
' ordinary '. The process of transformation is repeated till

only oidinary multiple points are left.*

§ 9. Deficiency for Higher Singularities.

The definition of deficiency can be applied to curves with
higher singularities when we have defined what we mean by
a curve adjoined to an n-ic with such singularities.

Suppose that in § 6 a curve has a (j— l)-ple point at H, then
its transform would be considered as adjoined to the given
curve at the /c-ple point C. If the ./-pie point H is not an
ordinary one, it could be still further analysed by taking C at

H in §6. In this way we can find what is intended by a

curve adjoined to the transformed curve at H, and then the

transform of this adjoined curve will be adjoined at G to the

given curve. __
According to this definition we shall still have deficiency

unaltered by quadratic transformation.

For instance, if the given curve has k linear branches touch-

ing CH at C, the transformed curve has an ordinary &-ple

point at H. A curve adjoined to the transformed curve has

therefore a (k— l)-ple point at H. Hence a curve adjoined to

* It is fairly evident that this is possible. We do not give here the

formal proof.
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the given curve has k— 1 linear branches touching GH at C.

Also the fc-ple point C lowers the deficiency by k(lc— 1), since

the /c-ple point at H lowers the deficiency of the transformed-

curve by %k(k— l).

§10. Intersections of a Curve with Adjoined Curves.

To state that an i^-ic is adjoined to an n-ic at an ordinary

k-ple point G is equivalent to assigning \k (k— 1) linear rela-

tions between the coefficients of the equation of the i^-ic. The
number of intersections of the n-ic and iV-ic at is k(k— 1),

which is twice the number of linear relations just referred to.

Now suppose, as in § 6, that C has a latent ^'-ple point. The
transform of the i^-ic has an equation whose coefficients are

subjected to %j (j— 1) linear relations, since it has a (j— l)-ple

point at H. Hence the coefficients of the equation of the JV-ic

are subjected to \j (j— 1) linear relations in addition to the

£k(k— 1) relations which state that C is a (k— l)-ple point of

the iV-ic.

Also, since the transforms of n-ic and JV-ic meet j (j— 1)

times at H, the n-ic and N-ic meet k (k— 1) +j (j — 1) times at

C by § 8, which is again twice the number of relations between
the coefficients of the i\T-ic due to the fact that it is adjoined to

the n-ic at G.

If H is not an ordinary /-pie point, it may be analysed in

its turn till the n-ic is finally resolved into a curve with
ordinary multiple points only.* Hence

:

The number of intersections of an n-ic and adjoined N-ic

at the multiple points of the n-ic is twice the number of rela-

tions to which the coefficients of the equation of the N-ic are

subjected owing to the fact that the N-ic is adjoined to the n-ic.

The number of relations in question is

i(n-l)(n-2)-D;
for an adjoined (n— 3)-ic has D— 1 arbitrary coefficients in its

equation.

We deduce that

If a pencil of N-ics is adjoined to an n-ic and the base-

points of the pencil other than the multiple points of the n-ic

are also on the n-ic, any N-ic of the pencil meets the n-ic in
%(n—N)(N—n+ 3) + D variable points (n > N).

* This statement assumes that a curve and an adjoined curve are trans-
formed into a curve and an adjoined curve ; i. e. N = n— 3. But the number
of intersections and of relations between the coefficients due to the adjoining
at C is evidently independent of the value of N.
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Of the fixed intersections of the n-ic with a variable A~-ic of
the pencil (to— 1) (to— 2) — 2D lie at the multiple points and

-JA(iV+3)-l-i(«-l) (to-2) +D *

at the remaining base-points of the pencil.

There remain

nN-{(n-\) (to— 2)-2jD}
-{fy(jy+8)-l-£(»-l)(»-2)+.D}

'

= i(n-W)(]r-n + 3) + D
variable intersections.

If N = to— 3, the number is D. If JV = to — 1 or to— 2, the
number is D + l.

Ex. 1. A pencil of JV-ics has as its base-points points of an n-ic, being
adjoined to it at all its singularities with the exception of k cusps and
certain of its ordinary multiple points. If any JV-ic of the pencil meets
the n-ic at p points other than base-points, while q N-ics of the pencil
touch the n-ic at a point other than the base-points, show that

q = 2p + 2(D-l)-K'.

[The n-ic may be transformed by successive quadratic transformations
into a curve with ordinary multiple points ; and p, q, k, D are unaltered
by this process. Now use Ch. VII, § 10, Ex. 12.]

Ex. 2. A pencil of iV-ics has as its base-points points of an »-ic and is

adjoined to it. Show that

(n-N)(N-n + 3)+4:D-2
of the JV-ics touch the n-ic at points other than a base-point.

§11. Another Transformation.

A form of transformation alternative to that in § 1 is

obtained by taking as our base-conic a pair of lines through

B harmonically conjugate to BA and BC. As before, we take

any transversal through G cutting these lines in Q and R and
take points P and P' on the transversal so that (PP\ QR) is

harmonic (Fig. 4).

In Fig. 5, if P lies in any pprtion of the plane, P' lies in the

other portion labelled with the same letter, the hyperbola

in the figure being the locus of the middle point of the

chord QR.
' Choosing homogeneous coordinates so that ABC is the

triangle of reference and the two fixed lines are a? = s2
, we

find that, if P' is (X, Y, Z)„P is (X, Y, X*/Z), since CPP' is

a straight line and the pencil B(PP', QR) is harmonic.

Hence if the locus of P is f(x, y, z) = 0, the locus of P' is

f(x, y,x2/z) = 0.

* N must be such that this quantity is positive or zero. We may always

have N = n— 1 orm — 2, when «>2. For N to be n-S, we must have D>1.
K2



132 ANOTHER TRANSFORMATION IX 11

It is at once shown that this transformation may be obtained
by taking in succession three transformations of the type of

§ 1, the base-conics being respectively

' x2— xy + z 2 = 0, x2— y
2 + z2 = 0, x2 + xy— s2 =

and the pole of the transformations being (0, 0, 1).

The properties of the transformation are somewhat similar

to those of the transformation of § 1.

The reader will have no difficulty in verifying the following
statements, in which c and c' are the loci of P and P' respec-

tively :

If e is a line through C, so is c'.

If c is a line through B, so is c'.

Pig- 4.

*

If c is any other line, c' is a conic through G touching AB
at B.

If c meets AB at P, c' touches CP at G. To the tangent at
P to c corresponds the conic osculating c' at G and touching
AB at B.

&

To each intersection of c with BC corresponds a linear
branch of c' touching AB at B.

To each linear branch of c through B (not touching AB)
corresponds a linear branch of c' through B, the tangents to
the two branches being harmonic conjugates with respect
to the two given lines.

If c is an m-ic with a &-ple point at G and a ^-ple point at
B, c' is a (2n— k-q)-ic with an (n— g)-ple point at G and
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n-k linear branches through B, n,-k-q of which touch AB

^The theorems in italics in §§ 3, 4, 5 relating to the number

of intersections of two curves, tangents from a singular point

and class still hold for the transformation of this.sect on

The proofs are very similar, and the necessary modifications

may le left to the /eader. He w_ill require the apphcatmn^o

the theorems to the case of a point at which linear WcheB

touch. This has been given at the end of each of these sections

by way of illustration.

Fig. 5.

ThP transformation of this section does not alter the de-

« • !, nf a curve For it is equivalent to three transforma-

SH the type of § 1, none of which alters the deficiency

(§8).

§ 12. Applications of this Transformation.

The main advantage of the method of § 11 i. that the posi-

i- „t +>,p line GA is still at our disposal. *or instance,

turn of the^lin j»
thro h C- We may

PSci Is a tangentA without loss of generality which

wS notthe case In § 1. Much simplification in arithmetic may

be thus secured.

, «. rt „f 5 S read ' other than B ' for ' other tlia 11 A or B '. In

JeKeerfTf-d^LTn
d
ot at ,' fo, .** not at A o, B,
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If GA is a tangent at -C, the transformed curve passes

through A. It is convenient to take GBA instead of ABC as

triangle of reference for the transformed curve. This is

equivalent to interchanging x and z in the equation of this

transformed curve, which now becomes / (z, y, z2/x) = 0, the

original curve being / (x, y, z) = 0.

Writing it in the form f(x/z, xy/z2
, 1) = 0, we see that, if

the Cartesian equation of the original curve is f(x, y) = 0, the

transformed curve is f(x, xy) = 0.

Points oif{x, y) — near the origin correspond to points of

/ (x, xy) = near the axis of y, and points of one curve near

the axis of x correspond to points of the other curve also

near the axis of x.

If the nature of any singularity H of the transformed

curve is not immediately obvious, we may take H as origin

and repeat the transformation.

Ex. 1. If CA is the tangent at the cusp C of a curve, AB is an ordinary

tangent to the transformed curve at A.

More generally, if CA is a tangent at C to a superlinear branch of

order r, AB is a tangent of r-point contact to a linear branch at A.

[y
r =axr+ ' + bx,'y + cx''-'

i y*+ ... +kyr+1 + ... becomes, on putting
icy for y and dividing by xr

,

y
r = ax + bxy+ ... + kxy''+1 + ....]

Ex. 2. If CA is a.tangent of r-point contact at C to a curve, CA is

a tangent of (»•— l)-point contact at A to the transformed curve.

Ex. 3. A quadruple point of a curve consists of two cusps with a

common tangent. Find the effect of this point on class, deficiency, &c.

[Taking C as multiple point and CA as tangent, the transformed
curve has two linear branches touching AB at A (Ex. 1). We have
shown that the effect of such a ' tacnode ' as A is to lower the class by 4,

and also the two tangents from B to the transformed curve touch &^A.
Therefore the effect of the quadruple point on the class is to lower it by
4 + 2 + 4.3 = 18. Again, the tacnode lowers the deficiency by 2, so

that the quadruple point lowers the deficiency by 2 + 4-4.3 = 8. A
curve adjoined to the transformed curve at A has a linear branch
touching AB at A, so that a curve adjoined at C to the given curve has
a, cusp at C with CA as tangent. The tacnode is latent in the quadruple
point C, which may be considered (Ch. VIII, § 5) as equivalent to 8

nodes and k cusps where 8 + <c = 8, 2 8 + 3 k = 18, or 8 = 6, k = 2.

The tangents from C which touch at C are 2.4 + — 2 = 6 in number.]

Ex. 4. Discuss similarly the case of the rhamphoid cusp.

[Taking C as cusp and CA as tangent at C the curve is

= (y + a#2
)
2 + y

a (bx + cy) + y (dx, + exiy+fxyi + gy
a
) + hxb + ... ;

and the transformed curve is

0=(y + axf + hx3 + ...

which has a cusp at A.
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Hence C is a double point with a latent cusp. The existence of a
rhamphoid cusp lowers the deficiency by 2 and the class by 2 + 3 = 5.

An adjoined curve has a linear branch touching CA at C. The rham-
phoid cusp may be considered as formed by uniting an ordinary node
and cusp. Since the reciprocal of a rhamphoid cusp is also a rhamphoid
cusp (Ch. VI, § 5, Ex. 1), it may be considered as formed by the union
of a bitangent and inflexion. The number of tangents from C whose
points of contact lie at C is 4.]

Ex. 5. Discuss the nature of the origin for y
1 = x2n+1 -

[Put yx for y and use induction.
There is a latent cusp and n - 1 latent nodes. The origin lowers the

class by 2.n + 1 and the deficiency by n. An adjoined curve has a linear
branch with y = as a tangent of n -point contact.]

Ex. 6. Discuss the origin for the curves

(i) y^ + ixVy + x 1^ = 0.

(ii) yv = x"til
.

(iii) (y-xv)v = xPf1
.

[Put yx for y and use induction.]

Ex. 7. Show that the effect on Plflcker's numbers of a double point at
which two linear branches have r-pomt contact is the same as that of
r nodes and r bitangents in general.

[Use induction.]

Ex. 8. Find any latent double points of the following curves at the
origin; where u^x+y1

.

{i) u* = y*(px* + qy*).

(ii) it? = xy3
.

(iii) (u-OCy*) {n-Py 1

)
(u-yy2

) = k(xu-y3

)

2
-

[(i) Two latent nodes.

(ii) A latent node and cusp. As another example find the double
points latent in its Hessian at the origin.

(iii) Put in turn yx for y, x-y for x, xy for x, &c. Consider separately
the cases k — 1, k = — Oifiy, and also

7 = 0, a = ft /3 = y = 0, a = /3 = y = 0.

To trace the curve, find its intersections with u = ty*.]

Ex. 9. JTbe order of a superlinear branch at C (§ 11) is equal to the
order of the transformed branch plus the number of tangents from B to

this transformed branch which coincide with BA.

[Put yx for x in the expansion (i) of Ch. VI, § 3. If 2 a >/3 > a.,

apply ' reversion of series ' (Ch. VI, § 1) and the theorem at the end of
Ch. VI, § 5 to the transformed expansion.]

Ex. 10. If I is the order of any superlinear branch of a curve,

2(D-1) = m-2n + 2(l-l),

the summation being taken over all the superlinear branches of the
curve.

[Repetitions of the transformation of § 11 will transform the curve
eventually into a curve with no superlinear branch, for which the result
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is readily seen to be true. But Ex. 9 proves m-ln + 'S. (I — 1) unaltered
by such a transformation.
We may define the deficiency as

£{m-2w + 2(/-l)} + l,

if we choose. This is an alternative definition to that given in § 7.]

Ex. 11. Prove Ch. VI, § 2, Ex. 7 by quadratic transformation.

[Use Ex. 2, § 3, and induction.]

Ex. 12. Two curves having at C superlinear branches of orders k and
K(K > k) with a common tangent meet k (K+ 1) times at C.

[Use Ex. 1 and 11.]

Ex. 13. Two curves have a common tacnode C with a common tangent
at C. How many of their intersections coincide with C? Discuss the
case in which two or more of the branches at C osculate.

Ex. 14. Discuss similarly the case in which C is a rhamphoid cusp of
both curves.



CHAPTEK X

THE PARAMETER

§1. Point-coordinates in terms of a Parameter.

_
Suppose the coordinates of any point (x, y, z) of a curve

given as functions of a quantity" t, which we will call the
'parameter of the point, by the equations

The equation of the line joining the points with parameters
t, £j is evidently

t
t
-t

y z

f(t) = (i)-

Making ^ approach £, we have the equation

£C
2/

/(<) 4>{t) +(t) = o .... (ii)

/(*) <t>'{t) *'(*)

for the tangent at the point with parameter t.

The condition that^the points with parameters t, tlt t
2
should

be collinear is

f(t) *(<) ^(0
/(t,) <t>(tj f(h) = o . (iii).

f(t2 )
4>(t

2 ) f(t2 )

To find the real nodes, we suppose that the parameter of a

point considered as lying on one branch of the curve at a node
is t, and that the parameter of the point considered as lying

on the other branch is t
y

. The equation (iii) must be satisfied

for all values of t
2 , since the points with parameters t and t

x

coincide.

This will give us equations in t and t
x
which are equivalent

to two equations to solve for t and £,.*

fc-fg) (*,-<)(*-<!)

* We assume throughout that in general to each point on the curve corre-

sponds a single value of "t. See § i, Ex. 13.
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A similar method is to equate to zero the coefficients of
x, y, z in (i) ; for the line joining two coincident points is in-

determinate.

If the values of t and t
x
thus obtained are real,* the node is

a crunode ; for on giving a small increment to the value of
t or 11 we obtain a real point on the curve close to the node.

If the values of t and t
t
are conjugate complex quantities,

the node is a real acnode.

The cusps are given by the equations

f'Wf(t) = 4>W<l>® = M)/W) • • (
iv)-

For if the values of the parameter at a double point are
iandij,

fihVM = 0(*i)/*(«) = f(Wf(t) = lc (say).

Therefore

(k-iy^-t) = {/&)-/(*)}/&-«)/<*) =f(t+o[t1 -t])/f(t),

where 1 > 6 > 0, by the mean-value theorem.
Now make t

x
approach t, i. e. suppose the tangents at the

double point approach coincidence. Then

f(t)/f{t) and similarly *'(*)/*(*), *'(*)/*(*)
all become equal to the limiting value of (k— l)/(*i— <)•

The inflexions are given by the equation

1/ * *
F(t) = \f </,' V'

\r +" r
where /,/', ... denote f(t),f(t)
For suppose the tangent (ii) meets the curve again in the

point with parameter T. Then

/(*) *(<) *(*)

f(t) «/>'(*) *'(*)

f(T) 0(D +(T)

We may replace the elements in the third row of the deter-
minant by 2{f{T)~f{t)-{T-t).f{t)}/(T-t)\ &c, without
altering its value.

Now if the point of contact approaches an inflexion, one
value of T approaches t. But

L^, 2 {f(T)-f(t)-(T-t).f(t)}/(T-t)> =f\t) ;

which proves the result.

* It is supposed that/, (/>, i// are real, if 2 is real.

= . . . . (v);

0.
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The cusps, for which f'/f= 0'/0 = yjr'/yfr, are also given by
F(t) = 0. The cusps are given by the values of t satisfying
both F(t) = and

*

/ * +
F'(t)= f & y =0;

/'" $'" xj,'"

while the parameters of the inflexions satisfy F(t) = 0, but
not F'(t) = in general.

If/> 0> ^ are polynomials in t, the cusps are given by the
repeated roots of F(t) — 0, and the inflexions by the single
roots.

The degree of the curve (if it is algebraic) is obtained by
noting that the line

\x + jiy + vz =
meets the curve where

\f(t) + ^(t) + „ylr(t) = 0.

If this equation gives values of t corresponding to exactly
n distinct points on the curve, the curve is of degree n.

• 2. Line-coordinates in terms of a Parameter.

If

Xx + fiy + vz =
is a tangent to the curve in § 1, we may take

a = W-0>, ^ = ff-ff, v=w-f'<i>
by equation (ii) of § 1.

Hence the line-coordinates A, fi, v of any tangent to the
curve are expressed in terms of the parameter t.

Just as we obtained the parameters of the nodes and cusps
and the degree of the curve, so by using the line-coordinates

we may obtain the parafneters of the bitangents and inflexional

tangents and the class of the curve.

For instance, the inflexional tangents will be given by
A'/A = (J-'/fi = v'/v ; which correspond to equation (iv)

of § 1.

An alternative method of finding the nodes and bitangents

is as follows. Suppose that the tangent (ii) of § 1 meets the

curve again at a point whose parameter is T. Then

f(T) 4>(T) +(!)
f(t) *(<) *(*) =0 . (i).

f{t) tf{t) +'(t)
{T-tf

Write down the condition that this equation in T has equal
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roots. We obtain an equation in t whose solutions are the

parameters of the points of contact of the bitangents and the

points of contact of the tangents from the cusps.

Fig. l.

If we write down the condition that (i) considered as an

equation in t has equal roots, we get an equation giving the

parameter T (^ t) of a point P on the curve from which two

coincident tangents can be drawn not coinciding with the

tangent at F.
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It is clear that P is either an intersection of the curve with
an inflexional tangent, or is a node. In the latter case the

coincident tangents from P are the tangent to the other
branch of the curve through the node.

If the curve is referred to Cartesian axes, the coordinates of
any point being

the results of §§ 1, 2 evidently still hold with slight modifica-
tions ; for instance, the tangent at any point is obtained by
putting 1 for z in equation (ii) of § 1.

Ex. 1. Find the double points, inflexions, bitangent, degree, and class

of x = (2t-l)a/t1
, y = -6(t1 + t)a.

[The curve meets ~Kx + py + a = where

{2i-l)\-6(ti + f)^ + t
2 =0.

This equation is of the fourth degree in t, so that the curve is a quartic.

Any tangent to the curve is

Sts
(2t + l)x-{t-l)y-9t(2t2 -l)a=0.

This equation is of the fourth degree in t, so that the curve is of the
fourth class.

The equation (v) of § 1 giving cusps and inflexions is

f(2P-2t-l) = 0.

Since the factor t occurs twice on the left-hand side, t = gives

a cusp. If in the original values of x and y we replace t by \/T and
repeat the process, we see that T = 0, i. e. t = <x> , also gives a cusp.

The inflexions are given by

2t2 -2i-l = or * = l(l±v/3).
The equation of the line joining the points with parameters t and T is

6PT! (t+T+l)x+{t+T-2tT)y
+ 6a{(l-2tT)(fi + tT+Ti

) + (t+T)(t-T)i
} = 0.

The coefficients all vanish if t+T=-l, 2tT = -l. This gives

t = \ ( — 1 + >/%) as the parameters of the node.

The tangents at the points with parameters *, T meet at the point

3a; y

-2u2 + 2uv + 2v + l •»(2w2 -4d2 + m-2»)
9a

-2us + 2u'v-u1 + 5uv-2vl + v

where u = t+T, v = tT.

If the tangents coincide in a bitangent, the denominators of these

fractions vanish. Eliminating v we get

m(2m + 1)(m 2 -2m-2) = 0,

and obtain « = -|, v = -\ as the values of u and v required. Hence

t = - 1 and ^ give the parameters of the points of contact of the

bitangent.

As an alternative method notice that the tangent at the point with

parameter t meets the curve again at a point with parameter T where

2{t-l)Ti + 2(t-l)(2t + l)T-t[2t+l) = . . . (ii).
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This gives coincident values of T if t = 1, -J, - 1, \ ; the correspond-

ing values of T being oo , 0, \, - 1. Hence 1, -\ are the parameters of

the points of contact of tangents from the cusps ;. and — 1, \ are the

parameters of the points of contact of the bitangent, as before obtained.

Again, the equation (ii) considered as an equation in t has equal roots

if 2T2 +2T-1 = 0, which gives the parameters of the node; or

22,2+10T-l = 0, which gives the parameters of the intersections of

the curve with the two inflexional tangents.
The curve is (see Fig. 1)

xi y
2 + 12 as

(3x + 2 y) +108 a* = 0.]

Ex. 2, Find the double point and inflexions of

x = t* + t+l, y = i
s + fi+ t + l.

[Acnode is (0, 1) given by t
2 + t+ 1 = 0. I-nflexions are (1, 1), (1, 0),

(0, co
) given by t — 0, — 1, oo .]

Ex. 3. Find the double point and inflexions of

x = {t-\f, y=t\ y=(t+\f.
[Acnode is (8, -1,8) given by 3* 2 + l =0. Inflexions are (0, 1, 8),

(1, 0, -
1), (8, 1, 0) given by t = 1, 0, - 1.]

Ex. 4. Find the double point and inflexions of

x = P + l, y=t3 + St + ±, z=t*-t.

[Crunode is (1, 4, 0) given by t = 0, 1. Inflexions given by

(2t-1)*+1 = 0, &c]

Ex. 5. Find the double point and inflexions of

x = t
2 + l, y = <

s + 3i + 4, z = fi + t.

[Acnode is (3, 8, 4) given by i
2 -3*+4 = 0. Inflexions given by

«
s -3«ii -3* + 7 = 0.]

Ex. 6. Find the double point and inflexions of

a; = cos 3$, ^ = sin3<£, z = cos<£.

[Crunode is (2,0, -1) given by # = +£71-. Inflexions are (0, 1,0)
and (1, +i, 0).]

Ex. 7. Find the double points, inflexions, and bitangents of

x = t
1

,
y=\ + t\ z = t. »

[Acnodes are (
— 1, 1, 1) given by fi — t+1 =0 and (1, —1, 1) given

byi! + *+l = 0. Cusp is (1,0, 0) given by t = 00.

Inflexions are given by t = 0, 0, + */2 ; the coincident values of t

implying that t = gives the point of undulation (0, 1, 0).

The bitangents are x = and x + 4y = given by fi = and
2*2 + l=0.]

Ex. 8. Find the inflexions of

x = t»-131, y = t* + 255, z = *-9.

[t= oo,0, -1, -3,5, 17.]

Ex. 9. Find the double points, inflexions, and bitangents of

x = a(ti -2t"), y = a(f-Zt).

[Cusps where t* = 1, crunode where t* = 3, point of undulation with
infinitely distant tangent where t = 00

.]
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Ex. 10. Find the double points and inflexions of

[Triple point where f + 8 = 0, inflexions where t(t3 -i) = 0, un-
dulation where t = oo

.]

Ex. 11. Find the double pdints and inflexions of

x :y:z= (i
4 + at

s
) : (t + h) : t\

[There are cusps at (1, 0, 0) and (0, 1, 0) given by t = oo and t = 0.
The third double point is also a cusp if a = 4 6, given by t= -2b]

Ex. 12. Find the double points and bitangent of

x:y :z=(«2 -l) : 2ts
: (*

2 +l)2
.

[Cusps where t = + ./3, oo . Bitangent s = 0, the points of contact
given by t = + i. Any tangent is

t(t* + l)x-(t* + l)y + tz=0.]

Ex. 13. Find the double points and inflexions of

x:y :s = (l + *
2
); -1 : (1 + t + 2f + t

i
).

[Double point at t = oo , inflexions at t = J, J a, £<o2
.]

Ex. 14. If x : y : z =f{t) : <j> (t) : ty{t) is a curve and

/(a + V) =A (a, /3
8
) + ipf, (a, p), &a,

the acnodes are given by solving for a and (3
2 from

tf'iV'a = <t>2^t, V'l/a = Wi. /i<£2 =/20i-
Apply the method to Ex. 7.

Ex. 15. The equation of the conic of closest contact at any point of

x:y:z=f(t):<t>(t):^(t)

is obtained by equating to zero the determinant whose first row has the
elements x2

, y*, z2
, yz, zx, xy, whose second row has the elements

Z2
, <f>

2
, ip, #!//, yjff, f(f>, and whose other four rows have as elements the

first, second, third, and fourth derivatives of these with respect to t.

Find similarly the cubic, quartic, ... of closest contact.

[The reader may apply the same method to find the osculating sphere
at any point of a twisted curve, &c.
The evaluation of the determinant when /, <p, \jr are polynomials is

easily carried out by noticing that the determinant, whose first row is

*0tl +U2 t IXn

and whose other rows are the 1st, 2nd, ..., {n— l)-th derivatives of these

with respect to t, is Eta where

-R= (a„-a„-i) K-an-j) - (a»-afi) (a»_i-a«-») - (a>-ai).

a= a
1 +<x% + ... +an-J»(»-l).

If/, cj>, ifr are trigonometric or hyperbolic functions,'we may express

them in terms of exponentials, using the fact that if the first row of the

determinant is

t/ , o , . . . , o
,

its value is Beb
, where

6 = (a, + a,+ ... + afl)«+(01 +j3,+ ... +&,).]
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Ex. 16. Find the conic of closest contact at any point of

(i) x : y : s = t" : n : 1.

(ii) x : y : z = t : f : 1 + I
s

.

[(i) (p+.q)(p~2q)qHi ix1 + (p + q)(q-2p)pH'"'yi

+ (p-q) 2 (p-2q)(q-2p)t*P+1 <tzl + 4(p + q)(p-q}(p-2q)pt 2*>+<iyz

+ 4(p + q)(q-p)(q-2p) qtp+i izx + 4t(p-2q)(q-2p) pqt»+" xy = 0.

(ii) (5t* + 5t*+l0t? + l)x* + t(t!> + 10t' + 5ts + 5)i,* + tW
-(5te + 1) yz-t* (f + 5) zx-2? (5te + i

s + 5) xy = 0.]

Ex. 17. The parameters of the sextactic points (at which a conic has
six-point contact) of the curve of Ex. 15 are given by equating to zero
the determinant whose first row is

p, <j>\ *», W. M f<t>

and whose other rows are the first, second, third, fourth, and fifth

derivatives of these.

Ex. 18; There is no non-degenerate conic having six-point contact
with yPz* = xP+ <>.

Ex. 19. The non-degenerate conies of closest contact with aq
~r
yp = a#

are all ellipses if (p — 2q) (q — 2p) >0, and all hyperbolas if

(p-2q)(q-2p)<0.
[Use Ex. 16 (i).]

Ex. 20. The non-degenerate conies of closest contact with y
pzt = x?+i,

where p and q are positive integers, meet x = in real points. Their
intersections with z = are real if q ^ p, otherwise unreal.

[Replace q by p + q in Ex. 16 (i).]

§3. Deficiency not Negative.

Suppose now that a curve of degree n has deficiency D, so

that

a+K = $(n-l)(»-2)-2>;

and suppose that the curve does not degenerate into two or

more curves of lower degree.

A curve of degree n— 2 can be drawn through the

-|(to-1)(w-2)-Z)

double points and through any

l(«-2)(»+l)-i(»-l)(m-2) + 2) = »-2 + i)

other fixed points of the given n-ic, since the (n— 2)-ic is

determined by ^(n—2)(n + l) points. (Ch. II, §6).
The (n— 2)-ic and 7i-ic meet twice at each double point of

the n- ic and once at each of the n—2 +D other fixed points.

They therefore meet at

n{n-2)-2{\(n-\){n-2)-D}-{n-2 + D} = D
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other points, since the n-ic and (n— 2)-ic meet in' n(n— 2)
points.*

It follows that

:

The deficiency of a non-degenerate curve cannot be negative.

We have so far supposed that the w-ic has only ordinary
nodes and cusps. Now let it have ordinary multiple points.

An (n— 2)-ic can be drawn with a (k— l)-ple point at each
/c-ple point of the w-ic, and also passing through n— 2 + D
other fixed points of the n-w. For by Ch. VIII, § 3

D = i(n-lH»-8)-2**(*-l).t
and by Ch. II, § 6 we have subjected the (n— 2)-ic to

2^k(k-l) + (n-2) +D = |(m-2)(%+l)
conditions. But the 7i-ic and (n— 2)-ic meet in

n(n-2)-2k(k-l)-(n-2 + D) = D
other points, so that the previous argument still applies.

It should be noticed, however, that there may be other

restrictions on the nature of the multiple points of a non-
degenerate curve in addition to D>0 (see Ex. 1, 2, 3 and
Ch. IV, § 7, Ex. 5 to 7 ; Ch. XVII, § 6, Ex. 1 ; &<?.).

If the curve has higher singularities, it may be transformed
as in Ch. IX into a curve with ordinary multiple points

without altering the deficiency. Hence in this case

also D>0.

Ex. 1. An n-ic cannot have two multiple points of orders k
l
and &2 ,

if &! + k2 > n.

[For otherwise the line joining the points would meet the curve in

more than n points.]

Ex. 2. An n-ic cannot have multiple points of orders k1; ki; k3
,ki ,k !i ,

if k
l
+ k

1 + ks + ki + k5 >2n.
[Consider the intersections of the n-ic with the conic through the

points.]

Ex. 3. If a non-degenerate n-ic has \p (p + 3) triple points,

[Consider the intersections of the w-ic with a p-ic through the triple

points.]

Ex. 4. If an «-ic degenerates into r curves of deficiencies

D1} D2 , ..., D,.,

ithas in(n-l)-(n-r)-(D1 +Dl + ... +£>,.)

double points.

[Each intersection of two constituents of the «-ic counts as a node

of the n-ic]

* If the n-ic was degenerate, the (n— 2)-ic might be part of the m-ic, and
this statement would not be correct.

t The summation is extended over all the multiple points of the n-ic.

2216 L
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Ex. 5. If a degenerate ra-ic has \n (n - 1) nodes, it consists of n straight

lines. If it has \n(n-l)-l nodes, it consists of n-2 straight lines

and a conic. If it has \n{n-\)-2 nodes, it consists of «-4 straight

lines and two conies.

[See Ex. 4.]

§4. Unicursal Curves.

Consider now an n-ic f = with zero deficiency. Suppose

that a variable iV-ic is subjected to certain conditions, such as

passing through fixed points of the n-ic or having assigned

singularities at fixed points of the n-ic ; which conditions are

in all equivalent to |iV"(iV"+3) — 1 independent linear relations

between the coefficients of the equation of the iV-ic. Suppose also

that the i^-ic meets the n-ic nN— 1 times at these fixed points.

We assume for the present that such a variable iV-ic exists.

Since the %N(N+ 3) ratios of the coefficients in the equation of

the i\T-ic are subjected to %N~(N+3) — l linear relations, the

coefficients can be expressed linearly in terms of a single

quantity t. Thus the equation of the iV-ic is of the form

u + tv = 0, where u = and v = are two such iV-ics ; i. e.

the jV-ics form a pencil.

If Cartesian coordinates are used (a similar process holds

good for homogeneous coordinates), we may eliminate y
between/ = and u + tv = 0, obtaining an equation of degree

nN in x with coefficients rational in t. Of the roots of this

equation nN— 1 are abscissae of fixed points, and the remain-

ing root is the abscissa of the other intersection P of the w-ic

and i\T-ic.

Dividing the equation by the factors corresponding to the

abscissae of the fixed points, we have an equation of the first

degree in x with coefficients rational in t, giving the abscissa

of P.
In a similar manner the ordinate of P is expressed rationally

in terms of t. But, by choosing t properly, P may be made
any point of the n-ic. Hence

:

The coordinates of any point on a curve of zero deficiency

can be expressed as rational algebraicfunctions of aparameter.

This implies that, if the curve of § 1 is of zero deficiency,

f(t), <p(t), and \jr(t) may be taken as polynomials in t.

A curve of zero deficiency is often called a rational or

unicursal curve. The former . name comes from the fact

that the coordinates are expressed rationally in terms of a
parameter.

The latter name comes from the fact that the curve can be
drawn by a pen which never leaves the plane of the paper
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except to pass from one end of an asymptote to the other, or

to insert the acnodes ; in other words, the curve consists of a
single circuit.* In fact, the coordinates of a point P on the
curve being continuous functions of t, the point P moves con-
tinuously as t varies (provided P is finite). This would not
hold if t were complex ; but, if a real point P on the curve is

given by t — a. + pi, where a and /3 are real, P is also given
by t = a — /3i, i. e. P is a double point. Since any value of t

close to tx .+ (Hi gives evidently an unreal point of the curve,

there is no real part of the curve in the neighbourhood of P
;

i. e. P is an acnode.

We now show that there always exists an i^-ic with the

properties stated at the beginning of this section.

First suppose the n-ic has no multiple points other than
ordinary nodes and cusps. We take N = n— 2, and subject

the i^-ic to the conditions that it shall pass through each of

the %(n — l)(n— 2) nodes and cusps of the n-ic and also pass

through to— 3 other fixed points f of the n-ic. Then the

coefficients in the equation of the iV-ic are connected by

i(»-l)(m-2) + (n-8), i.e. $N~(tf+8)-l

linear relations ; and the N~-ic meets the n-ic

2 x %(n-l) {n-2) + (n-3), i.e. «,JV-1

times at the fixed points ; as required.

Next suppose the «-ic has ordinary multiple points as well

as ordinary nodes and cusps. We take ZV = n— 2, and subject

the JT-ic to the conditions that it shall have a (/c— l)-ple point

at each /c-ple point of the n-ic, and also pass through n— 3

other fixed points of, the n-ic. Then the coefficients in the

equation of the JV-io by Ch. II, § 6 are connected by

2JJb(A-l) + »-3, i.e. §i\T(i\T+3)-l

linear relations, and the if-ic meets the n-ic

2k(k-\)+n-3, i.e. nF-l
times at the fixed points ; as required.

For by Ch. VIII, §3
2)=$(n-l)(i»-2).-2£&(*-l) = 0.

Lastly suppose that the n-ic has higher singularities. We
take the iV-ic as an adjoined (n— 2)-ic passing through n— 3

fixed ordinary points of the n-ic, and use the result of Ch. IX,

§ 10. Or as an alternative we may transform the n-ic by

* See Ch. XX, §§ 1, 9. Of course, curves of deficiency other than zero may
consist of a single circuit ; e.g. y

ix+ (x— 1) (x2 + 2x + 2) = 0.

f It is often convenient to take them as points on the n-ic consecutive to

double points.

l2
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Ex. 2. Express rationally in terms of a parameter the coordinates of
any point on the curves

(i) x3 + y
3 = Saxy.

(ii) (2x
li + 2y* + l)(y-x) = x*--6xy + y\

v (iii) xs + y
s + 4xz(x + y) = 0.

.
(iv) (x + y) (x - yf = ixyz.

Ex. 3. Express the coordinates of any point on the curve

(x'*-y2
y
i -(x'i -y*)(x + 3y)-Sx2 + 6xy + y* =

rationally in terms of a parameter.

[A variable conic through the double points

(0,0), x = —y = co , x = y = oo

and one other fixed point E on the curve meets this quartic in one
more point. Choose B as the point on the curve consecutive to the
cusp x = y = oo . The conic is then

(x + y-t)(x-y-l) = *

meeting the quartic where

_ (
fl + 2t-2){ti + t-l) _ (tf + 2t-2)(? + t-3)

X ~
2{t*+ t-2) ' y ~

2(t* + t-2)

See § 6, Ex. 1 and Ch. Ill, Fig. 3.]

Ex. 4. Express rationally in terms of a parameter the coordinates of

any point on the curves

(i) a:V + 2x*y + xy2 -3x'i + 2xy-2y* = 0.

(ii) 2y*(2x
,

*-5x + 4:)-xy(x-2)(x-g) + 2x'i (x-2y = 0.

(iii) »y + 12 a3 (Sx + 2y) + 108a4 = 0.

(iv) xy(2xy-hx-10y) + 50(x-yf = 0.

(v) (»
2 -

?/

2
)
2 + {x1 - y"-) {hy - x) - 3 x1 - 2 xy + 9 y

1 = 0.

(vi) y
izi + zixi + x'iy

i = 2xyz{x + y + z).

(vii) 2 ay
s -3

a

2^ = ^"-2

a

2
a;

2
,

(viii) r = o (1 + cos #).

(ix) r^ a2 cos 20.

(x) (y +x^^ix^x + k).

[(i) Meets y(l — x) = tx where

(*+l)(3-*)a: = 2*2 -2*+3 = (4-3i)^

(ii) Meets y(2 + tx) Jrxi -2x = where

a; = 8-r(2i2 + i + 4), y = it{2t+l)^-{2fi + t + i) (2*
2 + 5i + 4).

(iii) Meets a; («/ + 6o<) + 6a2 (2*- 1) = where

x~=l2t-l)a + t\ y = -6(P + t)a.

(iv) Meets txy = 5 (a; - y) where

a:=15-=-(2-* + 2«2
), y = 15-7-2(1 +t + t*).

* <v) Meets (x-y+l)(x + y + t) = t where

2; = -(<2 -6< + 2)(<
2 -3< + 5)-r6(<-l)(<-2),

2,
= -(i2 -6« + 2)(<

2 -3*-l)-r6(*-l)(<-2).

(vi) Meets z(x-y) = txy where

x(t-l) i = y{t + l) ,i = 4:z.
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(vii) Meets x2 -ay = tx(y — a) where

x=(2-Zt2)a-¥t\ y = (2-3t2)(2-t1)a + 2t\

(viii) Meets ay = t(x2 + y
2
) where

x = 2(1 -t2
) st(1 + t

2
)

2
, y = 4ta+ (l + t

2
)
2

.

(ix) Meets x2 + y
2 = at (x — y) where

x = t(t
2 + l)a+ (t

l + l), y = t(t2 -l)a+ (t* + l).

(x) Meets y + x2 = 2 to where

x = t
2 -h, y=(t2 -k-){Jc + 2t-t2

).]

Ex. 5. Express the coordinates of any point on

(x + yfz2 = x?(y + zf
rationally in terms of a parameter.

[This quintic has a triple point at (0, 0, 1), a node at (1, 0, 0), and
cusps at (0, 1, 0) and (1, —1, 1). ' In the case of a 5-ic with a triple

point and three double points the N-ic of § 4 may be taken as a conic
through these multiple points. In fact x(z+y) = tz(x + y) meets the
curve again where (t

2 — 1) x — y = (t
3 — l)z.

We may illustrate the general theory for which N= n — 2 by taking
the JV-ic as the cubic

xyz + y
2z + t(x2

y + 2x2z— y
2
z) = ;

which has a double point at (0, 0, 1), passes through (1, 0, 0), (0, 1, 0),

(1, — 1, 1) and through two more fixed points on the 5-ic consecutive to

(1, 0, 0) and (0, 1, 0) respectively. It meets the 5-ic again where

t(3t-2)(t-l)x = (t-l) sy=t(lt2 -9t + 3)z.

An alternative method is to transform the curve by quadratic trans-

formation, replacing x : y : z by 1/x : \/y : \/z, and to apply the method
of § 4 to the transformed curve, which is a cuspidal cubic. The reader
may apply this process to Ex. 4 (i), (iv), (vi).

Yet another method is given in § 6, Ex. 3.]

Ex. 6. Express rationally in terms of a parameter the coordinates of

any point on the curves

(i) x* + y* = ax (x2 — xy + y
2
).

(ii)*(* + 2)*=y*(l-y).
(iii) xs

(y + z)3 + y
s (x + z)

s = x2
y
2 (x + z) (y + z).

(iv) y
3z2 + y

2z3 + zsx2 + z2 x3 + x%

y
2 +x2

y
3

=2xyz(2x2 + 2y2 + 2z2 — //z-zx-xy).

(v) (x2 + y)(x2 -2y) = x3
y,

(vi) (y-x2
)
2 = x6 + x3

y.

(vii) (y + Xs

) (y + 2x3

) (y + 3a;
3
) = y

2xi
.

(viii) s«n_i + un = 0.

(ix) x (xy + az2
)

2 + y(xy + hz2
)
2 = 0.

(x) x (xy + az2
)

2 + y(xy + bz2

)
2 + z(xy + az2

)
{xy + bz2

) = 0.

(xi), (yz + x2
) = y

3 (x + y).

[Find the intersections of the curve with (i) y = tx, (ii) y = t (x + 2)

(iii) ty(x+ z) = x(y + z), (iv) ty (x— z) =.x(y-z), (\)y = tx2 (see

Ch. Ill, Fig. 10), (vi) y = tx2
,

(vii) y = tx3
,

(viii) y = tx,

(ix) xy = - t
2z2

,
(x) 4xy = (1 - 1

2
) z\ (xi) y = (t

2 - 1) x.]



X 4 UNICURSAL CURVES 151

Ex. 7. If in § 4 the »-ic has only ordinary cusps and nodes, N must be
u — 1 or n— 2.

[Suppose the fixed intersections of the «-ic and N-ia are « double
points and 6 other points of the w-ic. Then

a + 6=iJV(JV+3)-l, 2(i + & = raiV-l,

giving a = iN(2n-N-S), b = N(N+3-n)-l.
Hence 2V > »-3. See Clebsch, Oe«e, lxiv (1865), p. 44.]

Ex. 8i Three points on a curve have parameters tlt t
z , ts . Transform

the parameter so that the points have new parameters 0, 1, oo .

[The new parameter is (t-t-y) (t2 -t3
)/(t— t3 ) (£2

— tj).]

Ex. 9. In the «-ic x : y : z =f(t) : <b(t) : \|? (*), where /, 4>, i? are
polynomials of degree n with the coefficients of t

n"x zero, the sum of
the parameters of the intersections of the n-ic with any algebraic curve
is zero.

Ex. 10. The curve of Ex! 9 has a cusp. Conversely, any unicursal
curve with a cusp can be put in this form.

[The cusp is given by t = oo . Conversely, if the curve has a cusp given
by t — (X, take as a new parameter T=fi + l/(t — OC), where /3 is chosen
to make zero the coefficient of I7"-1 in a;.]

Ex. 11. Find the Plucker's numbers of x : y : z =/(<) :<f>(t):^ (t)

;

f, (f>,
yjr being polynomials in t.

[n and m are given by §§ l'and 2, while D = 0.]

Ex. 12. Find the Plucker's numbers of y»& = xv+z.

[The tangent at (P,tt>+i,l) is (p + q) Wx =py + qtP+iz. Hence

D = 0, n = m=p + q, b = r =>\{p +q-2)(p + q-2,),

K = i=p + q — 2.

See also Ch. VIII, § 5, Ex. 1.

For other examples find the Plucker's numbers of the examples in

Ch. Ill, § 9.]

Ex. 13. In the curve x : y : z = f(t) : <j> (t) : yjf (t), where /, <t>,
yjf are

polynomials, to each point on the curve corresponds in general a single

value of t ; but this is not universally the case. Suppose that to each

point on the curve corresponds r values of t, and that the highest

common factor of

/(*)*(«i) -/&)*(') and *W*(*i)-*(*i)*(0
is arranged in powers of tlt the coefficients being polynomials in t.

Then, if T is the ratio of the coefficients of any two powers of tx and is

not a constant, x:y:z can be expressed rationally in terms of the

parameter T, so that to each point on the curve corresponds a single

value of T.

[If to a point on the curve correspond the values tlt t2 , ..., t,. of t,

the highest common factor is (t - tj (t-

1

2) . . . (t - 1,.). The coefficients of

any two powers of t in this are symmetric functions of tlt t
2 , ..., tr ;

and therefore their ratio has a single value for each point on the curve.

But the expressions whose highest common factor was taken are only

changed in sign by interchange of t and t
t

. See Liiroth, Math. Annalen,

ix, p. 163.]
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Ex. 14. In the following curves express the coordinates in terms of

a parameter so that to each point of the curve corresponds only a single

value of the parameter.

(i) x : y : z = t* : 1 : i
6

.

(ii) x : y: z = (fi +lf : t{f + 1) : («
4 + 3<2 +l).

(iii) x : y : z = t(ti + l) : (f-1) : I
s

.

(iv) x:y : z = t (t-^^ + t-l) : (<
8 + l)s : t\

[The H.C.F. of Ex. 13 is

(i) P-t*. If T = t\ x:y;z=T:\:T-.
(ii) ***,-« fo" 4 1) + *,. If T=t + t~\ x:y:z=T>:T:(T< + l).

(iii) i^ + ^l-O-*!- If T^t-t-', x:y:z=(T 1 + 2):(T s + 3T):l.

(iv) <
s*,-*(l+*l

s)*4<,. If T=P + r\ x:y:z = (T-2):Tz :l.]

Ex. 15. The homogeneous equation of x : y : z =/(<) : <t>
(t) : \j/ (t) may

be derived by equating to zero the coefficients of 1, «, w2
, m

s
, ... in

x y z

f(t) 0(f) *(*) ,

/(«) 0(«) *(«) I

and eliminating 1, *, fi, t
3
, ... between the equations so obtained.

[We thus get the equation by equating to zero a determinant of order

n, if /, <t>,
ijr are polynomials of degree n. See Richmond, Bull. Amer.

Math. Soc, xxiii (1916), p. 90.]

Ex. 16. The line joining corresponding points (with the same para-

meter) of a unicursal w-ic and a unicursal -AT-ic envelops a curve of

class n + N.

Ex. 17. If more than n-^ + n^ + n^ trios of corresponding points on
given unicursal curves of degree nlt n 2 , n s are collinear, every trio of

corresponding points is collinear.

Ex. 18. If a, b are the parameters of a given node on a given »-ic

x:y:z=f(t):<t>{t):*(t),

where /, ty, \|f are polynomials, and F(t) = is the equation giving the
parameters of the nr intersections of any r-ic with the n-ic, tjjen

F(a)/F(b) is the same whatever »--ic is chosen.

[Ifther-icis 2Axa
y&z~> = 0, where a + j3 + y = »y then

F{t) = ?.Af*<tPTf<;

and F(a)/F(b) = {f(a)/f(b)}<- = {<*> («)/0 (ft)}-' = ft, («,)/* (b)}':]

Ex. 19. Apply § 1 (v) and the relation 2k 4 1 =S(n — 2) + 62) to' show
that, if the coordinates of any point on a curve can be expressed rationally

in terms of a parameter, D = 0.

[The degree of F(t) in * is 2 K + t.]

Ex. 20. A line AB of length c slides with its ends on the rectangular
axes OX, OY. Find the locus of the point of contact with AB of the
circle inscribed in the triangle ABO.

. [x/c = t{\-t){l+tf/(\+ti
f, y/c = 2t(l-t)/(l+fl

f, where t is

the tangent of half the angle between AB and OX. Hence the locus is

a unicursal quartic with a node at the origin.]



X 5 COORDINATES OF A POINT 153

Ex. 21. If A is an end of an axis and P any point on an ellipse, find
the loci of the intersection of the line through A perpendicular to AP
with the tangent and normal at P.

[A unicursal cubic and quartic]

Ex. 22. A triangle ABC of fixed size and shape turns about C. Show
that the^ locus of the intersection of HB and KC is a unicursal quartic,H and K being fixed points.

Ex. 23. The locus of the poles of any normal to a given conic is in
general a unicursal quartic. Consider the case in which the conic is

a parabola.

Ex. 24. A range of points on a conic is homographic with a pencil of
lines. Any line of the pencil meets the tangent at the corresponding
point of the conic on a fixed unicursal cubic.

[Its node is at the vertex of the pencil.]

Ex. 25. The locus of the intersection of the tangents at corresponding
points of homographic ranges on two given conies is a unicursal quartic.

[Th* tangents can be put in the form

Pl2 + 2Qt +B=0, pt? + 2qt + i-=Q,

where P, Q, B, p, q, r are linear in x, y, s.]

§ 5. Coordinates of a Point in terms of Trigonometric

or Hyperbolic Functions.

Instead of expressing the coordinates of any point on a uni-

cursal curve rationally in terms of the parameter t, it may be
more convenient to express them rationally in terms of cos <£

and sin </> or of cosh $ and sinh
(f>

; where
<f>

is a new para-

meter. The case of the ellipse is well known. Here the most
convenient parameter is the eccentric angle of any point.

Putting t = tan - , we can immediately change from the

rational expression of the coordinates in terms of t to the

rational' expression in terms of cos <£ and sin </> ; or conversely.

The following theorem is of interest

:

The coordinates of any point on a unicursal n-ic (n > 2)

with an acnode can be expressed rationally in terms of cos $
and sin <j), so that the parameters <j>lt <f>2 , ... , <£„,. of the inter-

sections of the n-ic with any r-ic satisfy the relation

<t>i + $2 + • • • + §nr — ° (wwd. "")•

For an n-ic with a crunode cos </> and sin (p are replaced by

cosh <j) and sinh 0, and it by iri.

Suppose that the triangle of reference is taken so that

(1, 0, 0) is the acnode. We may suppose the parameters of
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the acnode to be i and-— i (see end of §4). Then we have
equations of the form

x=(a t« + a
1
P-1 + ... +a„), y = (t

2 + 1) (b t
n~2 + ... +6„_2),

z = (t* + l)(c t
n-*+ ... + cn_ 2),

if (x, y, z) is any point of the -n,-ic.

First take r = 1. The n-ic meets any straight line

Xx + fiy + vz =
where

X(a <" + a,i'J- 1 + ... +an)

+ (t* + 1) ([6oAi + c 'i/] i»" 2 + [6l/t + c^] i»" 3 +...) = 0.

If sh is the sum of the products of the roots of this equation

1c at a time, we have at once

(Sl -s3 + s
5
- ...)-r(l-s2 + s4

- ...) = (-a
l + a

3
-a

li
+ ...)

-r(a -aa+ a4 -...).

Hence, if we put tan </> for t, x:y:z are expressed rationally

in terms of cos
<f>
and sin <j>, so that, if any straight line meets

the n-ic in the points for which <j> = o^, <j)2 , ... , <f>n ,

t&n(<l>1 + <l>i +...+<i)n) = (-a1 + a
3
-a6 +...)-i-(a -a2 + ai -...),

or

^ + (^2 ... +<f>n = a. (mod. tt),

where
tan a = (

— c^ + ftg— a6 + ...)-=-(«„— a2 + ai
— ...).

Replacing by <£ + a/n, we have the sum of the parameters

of any n collinear points = (mod. it).

Similarly the sum of the parameters of the intersections of

the n-ic with any r-ic is a constant (mod. n). That this

constant is zero is evident by taking the r-ic as r straight

lines.

If the point (1, 0, 0) is a crunode, we take its parameters as

1 and — 1, and put t — tanh <£.

For the corresponding result in the case of a cusp see

§4, Ex. 10.

§6.

If a variable N-ic (N<n) passes through |iV(iV+3) —

1

fixed points of a unicursal n-ic (as in § 4) and meets the n-ic

nN— 2 times at these fixed points, two of the family of i^-ics

touch the n-ic in general* For the n-ic and iV-ic meet at two
more points. Let

<f>1 , (f>2
be their parameters and let /3 be the

* At a point not coinciding with one of the fixed points. One (or both) of
the N-ics here obtained may meet the w-ic at a cusp instead of touching it.

For <pt
— </> 2 in this case also.
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sum of the parameters of the nN— 2 fixed intersections, the
parameter of any point on the n-ic being taken as in § 5. Then

</>i + <t>2 + P = ° (mod. it).

. If the JV-ic touches the n-ic, ^ =
<f>2

and

*!= -f/3 or = -f/3 + 4tt.

This result also follows from Ch. VII. § 10, Ex. 11 and 12,

Ch. IX, § 10, Ex. 1 and 2.

The coefficients in the equation of the i\T-ic may be expressed

linearly in terms of a parameter t . On eliminating y between
the equations of the n-ic and iV-ic we get an equation in x
(or in x : z, if homogeneous coordinates are used). Dividing

out by the factors corresponding to the nN— 2 given inter-

sections, we have a quadratic equation in x, whose coefficients

are rational in t, giving the two variable intersections of n-ic

and JV-ic. Solving it we have

x = M+LX?
where L, M are rational in t, and X is a polynomial in t.

Substituting either of these values of x in the equations of

n-ic and N-ic, we have two equations for y which have a

common solution of the form M' + L'X~z, where M' and L' are

rational in t.

Since X = gives the two N-ics which touch the n-ic, X is

of the second degree in t.

Hence the coordinates of any point on the n-ic may be

expressed rationally in terms of t and an expression of the

form (at2 + 2bt + c)k

But t and (ati + 2bt + c)^ can always be expressed rationally

in terms of a new parameter T ; for instance, by the sub-

stitution

at + b = 2((Xc-62)lr-r(T2 -l),

if a and ac— b2 are positive ; and similarly in other cases.

This process gives a method of expressing the coordinates of

a point on a unicursal curve rationally in terms of a para-

meter alternative to that given in § 4 ; which, if less simple

in theory, may be much easier in practice, since the value of

N may be lower than in the method of § 4.

If the multiple points of the n-io are all ordinary nodes or

cusps, the N-ic may be taken as an (n— 3)-ic through all the

double points of the n-ic but two ; since

i(n-3)n-l =i(n-l)(n-2)-2,
2{J(»-l)(»-2)-2} =n(w-3)-2.
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If the %-ic has a (n— 2)-ple point, the N-ic may be taken as

a straight line through the (n— 2)-ple point ; and so on.

Ex. 1. Express the coordinates of any point on the curve

(a;
2 -

y^f - {x* -y1
)
(x + Sy) - %a? + 6xy + y* =

rationally in terms of a parameter.

[A variable line x + y + \ = through a node at infinity meets the
curve where 2(X-2)(X + l)y = -XS + 3X + X (3-X)*.

Putting X = 3 — (t+ l)
a we get the coordinates given in § 4, Ex. 3.

The second ' N-ic ' of § 6 is the line at infinity ; for this line passes
through the infinite cusp.]

Ex. 2. Apply the method of § 6 to the examples in § 4, Ex. 4.

[As another example the reader may take the general conic or the
quartic with nodes at the vertices of the triangle of reference.]

Ex. 3. Express the coordinates of any point on

(x +yYz2 = x3
(y+ z)*

rationally in terms of a parameter.

[y = \x meets the curve where \x/z = — 1 + (X+ 1)^. Put \=t2 — 1,

and we have (t
1— 1) x = y = (t

s -l)z as in §4, Ex. 5.]

Ex. 4. In the argument of § 6 N must be n — 1, n— 2, or n—3 in the
case in which all the multiple points of the w-ic are ordinary nodes or

cusps.

[As in § 4, Ex. 7.]

§7. Curves with Unit Deficiency.

Consider now an n-ic with unit deficiency. Suppose that
just as in § 4 a variable ./V-ic u + tv = is subjected to certain

conditions which are in all equivalent to \ N(N~+ 3)— 1 linear

relations between the coefficients of the equation of the Ar-|c.
But suppose that the iV-ic meets the n-ic nN—2 times at the

fixed points (not nN— 1 times as in § 4). Then, when we
eliminate y between the equations of the w-ic and iV-ic, we get
an equation in x nN— 2 of whose roots are the abscissae of

fixed points, while the remaining two roots are the abscissae of
.the two variable intersections P. and' Q of n-ic and iV-ic.

Dividing the equation by the factors corresponding to the
abscissae of the fixed points we have an equation of the
second degree in x with coefficients rational in t whose roots

are the abscissae of P and Q. Suppose its solution is

x = M±LXi,
where M and L are rational in t and X is a polynomial in t.

If we substitute either of these values of x in the equations of
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n-ic and iVic, we get two equations in y whose common root
is also of the form

M' + L'Xh,,

where M' and L' are rational in t.

Now the values of t given by X = are the parameters of
the points of contact of those of the variable iV-ics which
touch the n.-ic at a point other than one of the fixed points,

and the parameters of the cusps of the n-ic which are not in-

cluded among the fixed points. But by Ch. VII, § 10, Ex. 11
and 12 (cf. Ch. IX, § 10, Ex. 1), putting p = 2 and D = 1, we
see that the number of such points of contact and cusps is four.

Hence X is a polynomial of degree four in t. If then we
assume the existence of the iV-ic, we have

:

The coordinates of any point on a curve of unit deficiency

may be expressed rationally in terms ofa parameter t and an
expression X of the form

{

a

t* + 4a
1£

3 + 6a2
i
2 + 4>as t +a4

}i

It is. well known that t and X can be simultaneously ex-

pressed as rational functions of the elliptic functions snu,
cnu, dnu ; or if preferred, in terms of Weierstrass's elliptic

function pu and its derivative p'u, defined by

(p'u) 2 = 4(pu)s-g2pu-g3 ; L w^ «2^= 1.

For instance, if we take a as a constant defined by

a 2
. pa = — (a a2

— a-f), a 3
. p'a = a 2a

3
— 3a a

1
a

2 + 2a
1

3
,

where

a
o
2
9* = a a

i
-4a

1
a3 + 3a 2

, a &
g3

we have, on putting

*0 a„

1 2 3

«„

a
i , i P'u-p'a

a p-u— pa
{a t

i + 4,a
I
t
3 + 6a

2
t
2 + 4'ast + ai

}i = a<? {pu-p(u + a)}*

Hence:

The coordinates of any point on a curve of uniUdeficiency

can be expressed rationally in terms of elliptic functions.

* If o is negative, put t = r_1 + fc where'ro fc* + 4<i1 fc
5 + 6o,ftB + 4osft + a1 is

positive, and proceed as above. ' See Halphen's Fonciions elliptiques','1, Ch. IV,

p. 120.

The reader may also consult Picard, Traite A'Analyse, II, Ch. XV, §§ 12

and 16, Ch. XVII, §§ 2 and 4, or Goursat, Corns d'Analyse, II, §§340 and 362.
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To prove the existence of the N-ia, we show that when the

w-ic has only ordinary multiple points and cusps, an (»— 2)-ic

with a (fc-l)-ple point at each /c-ple point of the 7i-ic and
passing through m— 2 other fixed points of the n-ic satisfies

the conditions imposed on the i\T-ic. In fact, if iV = n — 2 and

D=l,
i(»-l)(»-2)-42*(fc-l)= 1,

n-2 + 42*(*-l) =! ^iV(JV+8) — 1,

tc-2 + 2A(&-1) = «iV-2.

In general we may take for the iV-ic an adjoined (n— 2)-ic

passing through n— 2 other fixed points of the n-ic*
In practice, however, we may often take a lower value of JSf.

For instance, if the %-ic has only ordinary double points, we
may take for the i\T-ic an (n— 3)-ic through all the double

points but one.

Ex. 1. Express the coordinates of any point on a cubic rationally in

terms of elliptic functions.

[Consider the intersections of the cubic with a line through a fixed

point of the curve.]

Ex. 2. Express rationally in terms of elliptic functions the coordinates

of any point on

(i) xzI = y(y-x){y-k'2 x).
(ii) (at + bi) {y-x) = (y + x) (a'x^ + Vf).
(iii) y

iz = i»s-g
i
xzt-g

i
z%

.

(iv) x, + y
s + z3 + 6mxyz = 0.

(v) (x + y + zf + ^kxyz = 0.

(vi) ax (y
2 - z2) + by (z

2 - x1
) + cz (x* - if) = 0.

[Consider the intersections with

x=ty, x = ty, x = tz, z = t(x + y), z = t(x + y), y = tx.]

Ex. 3. Express the coordinates of any point on a quartic of unit
deficiency rationally in terms of elliptic functions.

[Consider its intersections with a line through a node ; and so for any
rc-ic with an (» — 2)-ple point.]

Ex. 4. Express rationally in terms of elliptic functions the coordinates
of any point on the quartics of Ch. XVIII, § 5 (i), § 7 (i), § 14 (ii),

§ 15, Ex. 1.

* This follows from the second theorem of Ch. IX, § 10. But we may
also argue as follows : Since the coordinates of any point of a curve with
unit deficiency having only ordinary multiple points can be expressed
rationally in terms of elliptic functions, and any curve with unit deficiency
can be transformed into such a curve by rational change of variables
(successive quadratic transformations), the coordinates of a point on any
curve with unit deficiency can be expressed rationally in terms of elliptic

functions.
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Ex. 5. Express rationally in terms of elliptic functions the coordinates
of any point on

(i) s?(a? + y
a)=xa

y>.

(ii) (u - Oty1
) (u - fy2

) (u - yif) =k(xu- iff, where u = yz + x*.

(iii) z2u
s + zxyu2 + x2

y
2
iii = 0, where %, «2 , m3 are of degrees 1, 2, 3

in x and y.

[Consider the intersections with

(i) yz = tx(y-z), (ii) u = ty*, (iii) y = tx.\

Ex. 6. The coordinates of any point of a curve are expressed rationally
in terms of Weierstrass's function. If gf < 27gr

s
2

, the curve has a single
circuit given by real values of the parameter u. If #2

3 >27p3
2

, the
curve has a second circuit given by values of « for which u — &>' is real,

where 2o>' is an unreal period of Weierstrass's function.

Ex. 7. When the coordinates of a point on a curve with unit
deficiency are expressed rationally in terms of Weierstrass's function of
a parameter «, we may suppose the sum of the parameters of the inter-

sections of the curve with any other curve to be zero.

[As in § 5, using Abel's theorem on the roots of an equation rational
in pu and p'u.]

Ex. 8. The coordinates' of any point on an w-ic of deficiency 2 can be
expressed rationally in terms of a parameter t and Xi, where X is a
polynomial in t of degree 5 or 6.

It is in general impossible to express the coordinates of a point on
a curve of deficiency greater than 2 in terms of t and Xi, where X is

a polynomial in t.

[(i) Consider the intersection of the w-ic with a (« — 3)-ic through the

nodes.

(ii) As in § 4, Ex. 7. But there are exceptions ; e.g. an n-ic with

a (n — 2)-ple point.]

We now prove the converse theorem :

If the coordinates of any point on a curve can be expressed

rationally in terms of pu and p'u, the curve is of unit

deficiency.

If (x, y, z) are homogeneous coordinates of any point on the

curve, we have
* = f(u), y = <)>(u), z = f(u) ;

where/, <j>, y\r are each of the form A + Bp'ii, A and B being

polynomials in pu.
Now differentiating repeatedly the relation

(p'uY = 4(pu) 3-g
2
pu-g3

we express pu, p2u, p3u, ... ,
p'u . pu, p'u.p2u, ... linearly

in terms of pu, p'u, p"u, .... For instance

pho = ^(2p"u-g2),
p'n.pu = -hp'"u, &c.



160 CURV.ES WITH UNIT DEFICIENCY X 8

Hence we may take

f(u) = a + a pu + a
1
p'u+...+ an_ 2

p^-2hi,

and so for </>(u) and ijr(u).

The curve meets Xx + /xy + vz = where

\f (u) + fi(j> (u) + vf(u) = 0.

The left-hand side of this equation has n poles, and has

therefore n zeros.* Hence the curve is of degree n.

The points of confact of any tangent through the point

(x, y, z) is given by
\x + /iy + vz = 0,

where A = *>-**', /*=*'/-*/*, v = f$-/<(>',

(see § 2).

In Q'yjr— <j)%lr' the terms ^n p^-^u p&'Vu cancel, so that

A when reduced to linear form becomes of the type

A + A pu +A
l
p'u + ... + A in _ i p^

n'^u,

and so for ji, v.

Hence the class of the curve is 2n at most.

The argument of § 4 (p. 148) will show that the deficiency

is zero or unity. But /, <j>, ^ will not usually be rational

functions of a single parameter. Hence in general D = 1.

Ex. Show by means of § 8 that any point on a cubic may be taken
as (pu, p'u, 1) by a suitable choice of triangle of reference.

[We proved that with any choice of triangle of reference x, y, z are

linear functions of pu and p'u. Hence three linear functions of x, y, z

can be chosen in the ratios pu : p'u : 1.]

* Forsyth, Theory of Functions, § 116.



CHAPTER XI

DERIVED CURVES

§ 1. Derived Curves.

Feom a given curve may be derived other curves by various

geometrical processes, for instance its polar reciprocals, in-

verses, evolute, pedals, orthoptic locus, &c.

The case of the polar reciprocals has been already sufficiently

discussed. In this chapter we shall consider some of the

other derived curves. In particular we shall concern ourselves

with determining the type of the derived curve (as denned by
its Plucker's numbers), when the type of the original curve is

given. We shall also determine the multiple points and any
other peculiarities of the derived curves which may be of

interest.

In determining the Pliicker's numbers of any derived

curve we shall make use of the principle that, if the derived

curve is algebraic, the number of its intersections with every

line is the same.
Hence, in order to determine its degree, it is sufficient to

find the number of its intersections with a single line.

Similarly to find its class, it is sufficient to find the number
of its tangents passing through a single point.

§ 2. Evolutes.

The evolute of a curve is the envelope of its normals, the

, locus of the intersection of each normal with the consecutiye

normal, and the locus of the centre of curvature at each point

of the curve.

Since the centre of curvature at any point of the curve

f{x, y) = is (£, rj), where

i = X+fl(fl
2
+f2

2
WflfJl2-f*

2
fn-fl

2
f22)>

r,=y+m 2
+f2

2
)/(W2fi2-f2

2
fn-A%2)- •

suffixes 1 and 2 denoting partial differentiation with respect to

x and y, the evolute of an algebraic curve is algebraic*

* Its equation is obtained by eliminating x and y from the three equations

just written, and then replacing f and rj by x and y.

2216 M
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We denote the Pliioker's numbers of the curve by n, m, S, k,

t, t, D, and of its evolute by n', m', S', k', t', i', D\
We now determine n', m', ... in terms of n, m, —
Suppose that o>, m' are the circular points at infinity and

that the tangent at P to the given curve meets toco' in Q,

while (o>o/, QR) is harmonic. Then PR is the normal at P,

i. e. touches the evolute.

If P is on oxb' it coincides with Q, and QR coincides with
o)o)', which is therefore a tangent to the evolute.

In this case let Q' be a point on mm' near P, and let Q'Pj,

Q'P2 be the tangents from Q' to the curve which touch at P
1

and P
2 adjacent to P (Fig. 1).

Fig. 1.

Let (mm', Q'R') be harmonic. Then P
1
R' and P

2
R' are the

normals at P
x
and P2 , so that through R' three consecutive

tangents R'Plt R'P, P'P2 can be drawn to the evolute^ all

ultimately coinciding with mm'. Hence R is a cusp of the

evolute, at which mm' is a tangent, and mm' meets the evolute

in three points at R.
We see then that the evolute has n cusps at infinity at

which mm' is the tangent, one for each of the n intersections

of 0)0)' with the given curve, and meets mm' 3n times at these

cusps.

The only other infinite points of the evolute are those due
to the t inflexions of the given curve. Hence

n' = Sn + i.

The tangents to the evolute from a point Q on mm' are the
m normals corresponding to the m tangents to the given curve
from R, where (mm', QR) is harmonic, and the line o>o>' which
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counts for n tangents, since it has n points of contact, namely
the cusps of the evolute on a>a>'. Hence

m' = m + n.

Again, it is evident that in general no two consecutive

normals coincide ; hence the evolute has not coincident

tangents at consecutive points, i. e. has no inflexional tangent.

Therefore

i' = 0.

Pliicker's equations now give 8', k, t.

Ex. 1. Find the evolute of y
1 — 4ax.

[The normal at (at?, 2at) is tx +y= a (t" + 2t), meeting the consecutive

normal at x = a (St* + 2). These two equations give

x = a(St* + 2), y = -2ats

as the centre of curvature at (as*
2
, 2 at). Hence the evolute is

2Tay* = 4(x-2a)\]
'

Ex. 2. Find the evolute of

(i) x = a cos 0, y = b sin <p.

(ii) x = ct, y — e/'t.

(iii) x = at2
, y = at3

.

(iv) x = a cos3
<j6, y — a sin3 (p.

[The centre of curvature is

(i) x = (a i - V) cos3 (t>/a, y = (W-a*) sin3
0/6.

(ii) x^c(Bti + l)/2f, y=e(t^V)l2t.

(in)x = -%at*, 2/ = |(2< + 6<3
).

(iv) x = a (cos
3

cji + 3 cos
(f>

sin2
<p), y = a(S cos2

<f>
sin <j> - sin3

$).]

Ex. 3. Find the Pliicker's numbers of the evolute of a*yp = xp+ i,

p and q being positive integers prime to one another.

[m'=p + 2q, D' — O; n' = p + 2q if p > q,
»' = Sq if p < q.

For other examples take the curves of Ex. 2.]

Ex.4. The number of normals which can be drawn from any point to

a curve is m + n.

[The number is m'. Verify the result by consideration of the fact

that the normals from to a curve are lines joining to the intersections

of the curve with the curve obtained by rotating it through a very small

angle about 0. See also Ch. XII, § 5, Ex. 12.]

Ex. 5. How many circles of curvature of a given curve have four-point

contact ?

[Each such^circle is given by a cusp of the evolute not lying on ma>'

Hence the number is

K ' -n = 3 (ri — m') + i-n = hn—Sm + Si.~\

Ex. 6. How many lines are normal to a curve at two points ?

[r'-\n(n-l) =%(m2 + 2mn-4m-ic).]
M 2
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Ex. 7. How many pairs of concentric circles exist, each of which
osculates a given curve ?

Ex. 8. The deficiency of a curve and of its evolute are equal.

Ex. 9. The evolute has the same foci and directrices as its involute.

[A tangent passing through a> or a' coincides with its normal. The
curve and evolute touch at the point of contact of such a tangent.]

Ex.10. There are »»(»» +»— 4) normals to a curve which are also

tangents.

[The common tangents of curve and evolute which do not pass through
o) or a. See Ex. 9.]

Ex. 11. Find Pliicker's numbers for the locus of the extremity of the
polar subtangent of a given curve, being the pole.

[The locus is the polar reciprocal of the evolute of the reciprocal with
respect to O. Consider the case of a conic with as focus.]

Ex. 12. Find the Pliicker's numbers of the locus of the harmonic
conjugate of a variable point P on a given curve with respect to the
intersections of the tangent at P with two fixed lines.

[Reciprocate and project the reciprocals of the fixed lines into a> and a'.]

Ex. 13. If a curve touches aa' at P, the evolute has an inflexion at R,
where (toco', PR) is harmonic, a>a>' being the tangent at the inflexion.

Ex. 14. If a curve passes through a (or a), the evolute has the tangent
at <o as inflexional tangent.

Ex. 15. If a curve touches aa>' in g points and passes / times through
each circular point,

«"= 3» + i-3(2/+£), m' = m + n-{2f+g), i' =2f+g.
What modification must be made in the results of Ex. 4 to 7 in this case ?

[Use Ex. 13 and 14.]

Ex. 16. If the curve has aa>' as inflexional tangent, the evolute has
a>a>' as a tangent at a point of undulation, and so on.

Ex. 17. The number of normals common to two curves of degree n. w,

and class m, m
1
is mm1 + mn l

+m
J
n.

[The normals are the finite common tangents of their evolutes. Putting
n

t
= 0, mt

= 1 we have the result of Ex. !.]

§3. Inverse Curve.

The curve inverse to f(x, y) = with respect to the circle

whose centre is the origin and radius k is

f(k2x/(x2 + y
2
), Vy/(x* + y*)) = 0.

If f— u + u1 + u2 + ...+un , where iir is homogeneous of

degree r in x and y, the inverse curve is

u (x2 +y2
)

n + k!iu
1
(x2 + y

2
)

n~1 + •• +k2nun = 0.

It is at once verified that this inverse curve has a multiple
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point of order n at each of the circular points co, co' * and has
also an w-ple point at the origin 0.

(See also Ch. IX, §§ 1, 2.)

To find the Plucker's numbers n', m', 8', k', t', i', D1
of the

curve inverse to a curve with Pliicker's numbers n, m, 8, k, t,

i, D, we proceed as follows.

First of all, it is obvious from the above that n' = 2 n.

Secondly, a cusp of. the given curve inverts into a cusp of

the inverse curve, and vice versa, so that k' = k.

Again, a node of the given curve (not at or on <oa>')

inverts into a node of the inverse curve. Also the TO-ple points

of the inverse curve at 0, co, and co' are each equivalent to

\n(n— 1) nodes, so far as their effect on Pliicker's numbers
are concerned (Ch. VIII, § 3). Hence

V = 8 + %n(n-l).
We can now deduce m', t, l, IX. We find

n' = 2n, m' = m + 2n; 8' = §«(«— I) + 8, k' = k, 1

/ = 2n(2n-7) + 4,mn + 2r, i' = 3n+i, D' = D ]'

As a verification we shall determine mf independently.

The tangents from to the inverse curve are the n tangents

at each counted twice (Ch. VII, § 5) and the tangents from

to the original curve. Hence m' = m + 2n.

The same result follows from consideration of the tangents

from a) (or a/), remembering that a line through co inverts into

a line through co'.

The result If = D is a particular case of the theorem that

two curves with a 1:1 correspondence have the same defi-

ciency (Ch. XXI, § 3).

We have proved earlier (Ch. V, § 4) that the inverses of the

foci of a curve are the foci of the inverse curve ; and that, if

is a focus of the curve, the inverse curve has cusps at

a> and co'.

Ex. 1. If the original curve has a fc-ple point at and a #-ple point

at each of a> and ta', we have

n' = 2n-2p-k, 6' = $(«-2p) (n-2p-l) + (n-p-k) (n-p-k-\) + h,

k = k
;

and the inverse curve has a (m-2p)-ple point at and (n-p-k)-j>\e

points at each of <» and <»'.

Ex. 2. What modification is required in the result of § 3, if the curve

touches (bo)' ?

* In fact any line x±iy = c meets the inverse curve at n finite points

only ; whereas the curve i9 of degree 2«.
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Ex. 3. A curve of degree 2N with .ZV-ple points at <u and a' inverts

into a curve of the same type.

Ex. 4. Find the number of circles of curvature of a given curve which
pass through a given point 0. Discuss the case in which lies on the
curve.

[Invert with respect to 0.]

Ex. 5. Find the number of circles passing through a given point and
having double contact with a given curve.

Ex. 6. Find the number of circles passing through two given points

and touching a given curve.

[Invert with respect to either point.]

Ex. 7. An »-ic is self-inverse with respect to a circle j. Show that n
is even, and that the curve has a Jw-ple point at each circular point.

Show also that the curve has \n(n — 2) foci lying onj in general, which
are the intersections of j with the locus of the centres of a family of
circles having double contact with the ra-ic.

*

Ex. 8. A 2 w-ic has n-ple points at <» and <a'. Any transversal through
P meets it in Qlt Qa , ... , Qtn . Show that the product

Pp =PQl
.PQ

t
:...PQ, u

is independent of the direction of the transversal ; and that on inversion

with respect to we have
p'P,=kin .pP/p . OP"1

.

[(i) Use polar coordinates, (ii) Take OP as the transversal.]

§4. Pedal Curve.

If OY is the perpendicular from a fixed point on the

tangent at any point P of a given curve, the locus of Y is the

pedal (first pedal) of the given curve with respect to 0. The
pedal of the pedal is called the second pedal, the pedal of the

second pedal is called the third pedal, and so on.

The angles between the radius vector and the tangent «orf

corresponding points of a curve and its pedal are equal.

For let the tangents at consecutive points P, J" of the curve
meet at T, and let OY, OY' be the perpendiculars from on
these tangents (Fig. 2).

Then since 0, Y' , Y, T are concyclic, the angles OTY', OYY'
are equal.

But in the limit these angles are the angle OPY and the

angle between OY and the tangent to the pedal at Y.

The pedal is the envelope of the circles described on the radii
vectores as diameters.

For by the last theorem the circle OPY touches the pedal

at Y.
* We now proceed to find the Pliicker's numbers n', m', 6

V
, k,
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t, t', D' of the pedal, the Pliicker's numbers n, m, S, k, t, i, D
of the curve being supposed given.
The pedal is the inverse of the polar reciprocal of the curve

with respect to a circle whose centre is 0. For if Q is the pole
of PY in Fig. 2 with respect to this circle, OYQ is a straight
line and OY . OQ is constant. We have then only to inter-

change m and n, 8 and r, k and i in .the expressions for

n', m', . . . obtained in § 3. We have

n' = 2m, m' — n + 2m, (Y = |m(m- l) + r, k' = l, i

r' = 2m(2m-7) + 4mw+ 2cS
(

i' = 3m + /c, D' = D \

'

Also. the pedal has multiple points of order m at 0, a>,

and at'.

As a verification, we note that it is evident geometrically
that there is a branch of the pedal through corresponding

Pig. 2.

to each tangent from to the given curve. Hence is an
m-ple point of the pedal.

Again, any line through meets the pedal m times at

and m times where it intersects the' m perpendicular tangents

of the given curve, so that n' = 2m,
Also the tangents from to the pedal are the m tangents at

each counted twice and the perpendiculars from to the

n asymptotes of the given curve, as will be evident from the

first theorem of this section.

Hence m' = n + 2m.
The same theorem will show that to each bitangent of the

given curve corresponds a node of the pedal and to each
inflexional tangent corresponds a cusp ; so that k' = i.

The reader will readily prove that to each of the m tangents

from co to the given curve corresponds a tangent at co to the
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pedal, this tangent at «o and <oa> being harmonic conjugates

with respect to Om and the tangent from co to the given curve.*

Hence a> and a/ are m-ple points of the pedal ; so that

S' = |m(m-l) + r.

Ex. 1. If the polar equation of the pedal of a curve is r=f(6), the

polar equation of the pedal with respect to (c, oc) as pole is

. r+ccos(6-OC)=f(8).

Ex. 2. The pedal of a parabola with respect to the vertex is a

cuspidal cubic.

[The pedal with respect to the focus is the tangent at the vertex

:

now use Ex. 1.

Otherwise: Any tangent to y
1 = 4asc is x — ty + at' = 0, and the

perpendicular from the origin is tx + y = 0. Now eliminate t.]

Ex. 3. The pedal of a circle is a limacon.

[Use Ex. 1.]

Ex. 4. The pedal of rm — am cos mS is obtained by changing m into

m/{m + Y).

Ex. 5. The pedal of a conic with respect to its centre is a unicursal

quartic.

Ex. 6. The line joining to a focus of a curve is bisected by a singular

focus of the pedal.

The ordinary foci of the pedal are the feet of the perpendiculars from
on the lines joining the intersections of the curve with the circular

lines through 0.

Ex. 7. Any tangent to the curve of Ex. 1 is

x cos a + y sin a> =/(<»).
The normal is

— xsinu> + y cos a =/' (<u),

and the corresponding normal to the evolute is

X cos a + y sin a = —/" (<a).

The coordinates of the point of contact of the tangent and of the centre
of curvature are

(cos o) ./ — sin <i> ./', sin o> ./ + cos to ./')

and ( - sin a ./' — cos a ./", cos to ./' — sin a ./").

The radius of curvature is /(<») +/" (a).

Ex. 8. Tangents are drawn in any direction to a given curve. Show
that the algebraic sum of the radii of curvature at the points of contact
is zero. Show also that the centroid of the points of eontact coincides
with the centroid of the corresponding centres of curvature, and is

independent of the direction of the tangents.

[If the polar equation of the pedal is

r
m+ rm-1ux + rm-<u

i + ... +«m = 0,

i where uk is homogeneous of degree k in cos 6 and sin 6, the sum of the
d2u

radii of curvature is by Ex. 7 — -^ —uu which is zero.]

* Draw a diagram in which the tangent to the given curve at P passes
close to at, construct Y, and proceed to the limit.
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Ex. 9. The sum of the perpendiculars from the point of Ex. 8 on
the tangents drawn in any direction is zero, and is the centroid
of the foci.

[We have u
x
= 0, if we take as pole.]

Ex. 10. The deficiencies of a curve and its pedal are the same.

Ex. 11. Show that, if a curve touches ona at H, its pedal with respect
to O has in general an asymptote perpendicular to OH, whose distance
from is the same for all positions of 0.

Discuss the Pliicker's numbers of the curve.

Ex. 12. Discuss the Pliicker's numbers of the pedal of a curve with
multiple points at O, w, and a>'.

Ex. 13. Find the Pliicker's numbers of the second, third, ... pedals of
a curve.

[See Messenger of Math., July 1904, p. 50.]

Ex. 14. If the curve a is the r-th pedal of the curve 6, 6 is called the
i'-th negative pedal of a.

.Find the Pliicker's numbers of the first negative pedal of a given curve.

[It is the polar reciprocal of the inverse curve with respect to 0.]

Ex. 15. Show that the inverse to the r-th positive pedal is the »"-th

negative pedal of the inverse curve.

Ex. 16. The locus of the intersection of any tangent to a curve with
the line through making a fixed angle with the tangent is similar to

the pedal.

Ex. 17. Find the Pliicker's numbers of the locus of the centre of
a circle passing through a given point and touching a given curve.

[Invert with respect to 0.]

Ex. 18. Find the Pliicker's numbers of the envelope of a circle which
passes through a given point and whose centre lies on a given curve.

[The envelope and the pedal with respect to have as centre of

similitude.]

§ 5. Orthoptic Locus.

The locus of the intersection of two perpendicular tangents

of a curve is called its orthoptic locus.'

If the coordinates used are rectangular Cartesian, we may
obtain the equation of the orthoptic locus as follows. Let

/(A, /j.) — be the tangential equation of the curve, and let

Xx + fiy + 1 = be the tangential equation of a point R on
the orthoptic locus, so that two of the tangents from R to the

curve are perpendicular. If we make /(A, /*) = homogeneous
in A, fi by means of Xx + y.y + 1 = 0, the resulting equation in

— X//jl gives the slope of the tangents from R to the given

curve. The product of two of the roots of this equation in

— X/fi must therefore be —1. If we write down (Ch. I, § 11)

the condition that this should be the case, we obtain a relation
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between a) and y which is the point-equation of the orthoptic

locus.

We see at once that the orthoptic locus of an algebraic

curve is algebraic.

If the equation of the curve is given in parametral form, we
can express the equations of the tangents at the points with

parameters t and T in the form

*+/(% = <K0 and x+f{T)y = ^(T).

If these are perpendicular, /(£) .f(T) + 1=0; and from the

three equations just written we can express the coordinates

x, y of any point on the orthoptic locus in terms of a single

parameter.*

If RP, RQ are perpendicular tangents to a curve, the circle

PRQ touches the orthoptic locus at R.

Fig. 3.

For suppose R, R' are consecutive points on the orthoptic

locus (Fig. 3), while Rp, Rq and R'p, R'q are the perpendicular
tangents from R and Rf. Then p, q, R, R' are concyclic. If

we proceed now to the limit, p, q, R' approach P, Q, R re-

spectively ; and the theorem is proved.

Ex. 1. Find the orthoptic locus of the following curves :

(i) Parabola,

(ii) Central conic,

(iii) Circle,

(iv) if = x3
.

(v) 3 (x + y) = xK

(vi) x1

y
1 -4a(xr + f) + l8aixy-27a* = 0.

»* It is usually advisable to express t, T in terms of u *= t + T, v = tT.

three equations then give x, y conveniently in terms of u or v.

The



XI 6 PLUCKER'S NUMBERS OF ORTHOPTIC LOCUS 171

(vii) 21(x i + y*) = (2x+iy.
(viii) X4 + M* = A (\_ F) (2\-p).
(ix).X4 + 2M

4 = XV
(x) (X»-2M»)* + */« = 0.

(xi) X 4 + 2,u4 = X,u(A- F).

(xii) X6 + M
5 = XV.

(xiii) X5 +XV + h
5 = XM (X2 - ,.•).

[(i) Straight line.

(ii) Concentric circle.

(iii) Concentric circle.

(iv) 729^! = 108* -16.
(v) 81 y* (a:

2
+</2)- 36 (a;

2 -2 a*/ + 5^) + 128 = 0.

(vi) x + y + 2a = 0.

(vii) Uy*-16xy2 + 4:X2 + 4:y
2 -4:X-l =0.

(viii) 6a:(a:-y)(2a:-#) + 17a:2-18a^ + 92/
2 = 0.

(ix) 2a;2 +y+3 = 0.

, (x) (a? + y
2
) (4a:2 + y

2
) + 9 (2«y + 1) = 0.

(xi) 2a;2 -3a^ + y
2 -a; + y + 3 = 0.

(xii) (x-y) 2 + 2{x + y) + 4: = 0.

(xiii) (x-y-X)(2x-y-l)+\ =0.1

Ex. 2. Find the directrix of the parabola <

x = at2 + 2bt + c, y =At* + 2Bt+C.

Ex. 3. Show how to find the orthoptic locus when the polar equation
r =f(6) of a pedal is given.

[Two perpendicular tangents may be written

a: cos (X+j/sina = /(<x),

- x sin a + /cos a = (— l)*/{(2ifc + l)g + a};

from which we get a;, y in terms of OC.]

Ex. 4. Find the 'orthoptic locus of the curve rm = am cosm8.

[f (6) = a cos" 0/w, where n — (m + \)/m.]

Ex. 5. Find the orthoptic locus of the hypocycloid.

[/(0) = csin»re(^- s\ where c = o-26 and OT = a/(a-26);

a being the radius of the fixed, and b the radius of the rolling circle.]

Exi 6. The orthoptic locus of a cardioid is a circle and a limacon.

[In Ex. 5 a + b = 0.]

§ 6. Pliicker's Numbers of Orthoptic Locus.

We proceed now to determine the Pliicker's numbers

n', m', &, k', t', i', If of the orthoptic locus of a given curve

with Pliicker's numbers n, m, S, k, t, i, D.

If two points E and F divide harmonically the line joining



172 PLUCKER'S NUMBERS OF ORTHOPTIC LOCUS XI6

the circular points co and co', a tangent from E and a tangent

from F to the given curve are perpendicular and meet at R on

the orthoptic locus. Suppose now E,&n& therefore ^approaches

co. Then R also approaches co, while R(coco', EF) remains

harmonic ; unless the tangents from E and F become consecu-

tive, when R becomes the point of contact of either tangent.

Proceeding to the limit we see that to each pair of tangents

to the given curve from co corresponds a branch of the orthoptic

locus through co, while the tangent to this branch and the

line coco' are harmonic conjugates with respect to the pair of

tangents in question. Now there are |m(m- 1) such pahs

of tangents ; so that the orthoptic locus has a ^m(m— l)-ple

point at each of co and co'. It is readily seen that there is no

other point of the orthoptic locus on coco' in general, so that

n = m(m— 1).

Again, the theorem of § 5 shows that the intersections of

a bitangent of the given curve with the m perpendicular

tangents are nodes of the orthoptic locus, while the inter-

sections of an inflexional tangent with the m perpendicular

tangents are cusps of the locus. In general there are no

other cusps, so that k = mi.

We now proceed to the more difficult task of finding m'.

It suffices to find the number of tangents which can be drawn
to the locus from co'.

Of these tangents m(m— 1) coincide with the tangents at

co'. To find the remaining tangents from co', suppose that in

Fig. 3 RR' passes through co'. Then since R(pq, coco') and

R'ipq, coco') are harmonic, pq passes through co.

Proceeding to the limit, p, q become the points of contact

P, Q of the perpendicular tangents RP, RQ; while the

tangent at R to the orthoptic locus passes through co' and
PQ through co.

Now suppose any line whatever through co meets the given

curve in P and Q. Let the tangents at P and Q meet in T

;

and consider the envelope of the line TV where T(PQ, coV) is

harmonic. By what has just been said, every tangent from co'

to the envelope which does not coincide with coco' will be a

tangent to the orthoptic locus. Now in general the envelope
will not touch coco' ; and hence the number of tangents from
co' to the orthoptic locus, whose points of contact are not on
coco', is equal to the class of the envelope.

To find this class, we obtain the number of tangents from
co to the envelope. The line TV cannot pass through co unless

coPQ touches the given curve at P but not at Q, or vice

versa. If this is the case, however, coPQ will touch the
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envelope at a point U such that (all, PQ) is harmonic. Hence
each tangent from co to the curve is an (n— 2)-ple tangent to
the envelope ; so that the class of the envelope is m (n— 2).

We have then

m' = m(«— 2) + m(m— 1) = m (m+n— 3).

We now obtain tf, r\ i, D' from Ch. VIII, § 1 and see that

n' = m(m— 1), m' = m(m + n— 3),

5' = im{(m + l)(m-2)2 + 2T}
!

*' = m<,

t' = im{m(m + n) 2-(6m2 + 6mn + n2)~m + 22 + 2S},

i' = m(3m + /c-6), Z)' = |(m-l)(m-2) + mi)
In general the orthoptic locus of a curve is of relatively

high degree. For instance, the general cubic has an orthoptic
locus of degree 30. But as will be seen in the following
examples, the orthoptic locus simplifies materially, if tbe given
curve is specialized by touching the line mm, &c.

Ex. 1. The singular foci of the orthoptic locus are the \m(m-\)
middle points of the \m,(m — \) segments joining the m real foci of
the curve.

Ex. 2. There are m(m — 3) (n — 2) points of a curve from which two
perpendicular tangents can be drawn to the curve, neither of which
coincides with the tangent at the point.

[The curve meets the orthoptic locus at the points of contact of the
tangents to the curve from o> and <o', and touches it at the feet of the

m(m + n — 4:) normals which are also tangents. There remain

m(m — 3) (n — 2)

intersections of curve and locus.]

Ex. 3. There are \m (m + 1) (m — 2) (m — 3) points from which two
pairs of mutually perpendicular tangents can be drawn to a given

curve of class m.

[The nodes of the orthoptic locus other than a, &>', and the mr nodes
derived from bitangents of the given curve.]

Ex. 4. If a curve touches <b<o' at Y and (YZ, »»') is harmonic, the

orthoptic locus has a and to' as \ (m — \) (m — 2)-ple points and Z as an
(m — 1 J-ple point. If Y is a cusp at which <aa' is a tangent, the tangents

at Z to the locus are the tangents from Z to the curve other than ww.

Ex. 5. If cu<»' is a fc-ple tangent to the curve,

n' = (m — h) (m — 1), m! = (m — h) (m + n — 3 — k), «' = («» — &)i.

Ex. 6. If in Ex. 4 the curve has oxa' as inflexional tangent at Y, the

locus has (m — 2) linear branches touching wm at Z. We have

n = (m— 1) (m — 2), m'=(m —2)(m + n — l), k' = (m-2) (i — 1).

Ex. 7. If the curve touches ma' at Y and Z where (o>o>', YZ) is

harmonic, the locus has Y and Z as (m — 3)-ple points, a> and o>' as

J-
(m— 2) (m-3)-ple points. It also cuts o)a>' at one other point.

Discuss the cases in which Y, Z are cusps, inflexions, &c.
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Ex. 8. If the curve passes through w and a>', the orthoptic locus has
a branch through to touching the curve at to, and m — 2 superlinear
branches of order 2 at to. We have

n' = m{m-\), m = m (m + » — 5) + 4, k = 2 (m - 2) + mi.

Ex. 9. If bitangents of the curve pass through to and to',

11' = (m + 1) (m — 2), ni' = m (m + n — 3) — 4, k — mi.

Ex. 10. If inflexional tangents of the curve pass through to and to',

m' = (m + 1) (m — 2), m' = m(m + n — 4), ic' = mi — 4.

Ex. 11. The degree and class of the locus of the intersection of two
perpendicular normals are

(m — l)(m + n — 2) and (m — 1) (4m + K — 6).

The locus has no cusp.

[The locus is the orthoptic locus of the evolute.j

Ex. 12. Verify the results of Ex. 1 to 11 on the curves of § 5, Ex. 1.

Ex. 13. The orthoptic locus is a straight line when the curve (i) is a
parabola; (ii) touches wto' in two points dividing toto' harmonically,
while n = 4, m = 3.

Ex. 14. The orthoptic locus is a circle when the curve (i) is a circle,

(ii) is a central conic, (iii) touches toto' at to and to', while n = 4, m — 3.

Ex. 15. The orthoptic locus is a parabola when the curve (i) has to<o'

as inflexional tangent, while n = m = 3 ; (ii) has toto' as ordinary and
inflexional tangent, the points of contact dividing toto' harmonically,
while n = 5, m = 4 ;

(iii) has toto' as inflexional tangent at two points
dividing toto' harmonically, while n = 6, m — 5.

Ex. 16. The orthoptic locus is a central conic when the curve (i) has
toto' as bitangent, while n — 4, m = 3 ;

(ii) has o>to' as triple tangent, two
of the points of contact dividing a>a' harmonically, while n = 6, m — 4

;

(iii) has t»a>' as quadruple tangent, two pairs of points of contact dividing
oxo' harmonically, while n = 8, m = 5.*

§ 7. Isoptie Locus.

The locus of the intersection of two tangents to a curve
which are inclined at a fixed angle a is called an isoptie locus.

The investigation of its properties is similar to that of §§ 5

and 6. The construction for the tangent to the isoptie locus
implied in Fig. 3 still holds. The locus is an algebraic curve
if we consider tangents cutting at an angle n— a as included
among those which cut at an angle a.f

* The orthoptic locus is a cubic in fourteen cases, and a quartic in thirty-
eight cases.

f For the circle the loci of the intersection of two tangents cutting at
angles <X or ir-a. are distinct and both algebraic (being in fact concentric
circles). But this is not usually the case. For the parabola the two loci are
the two branches of the same hyperbola.
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For the Pliicker's numbers n\ m!, ... of an isoptic locus we
find

n' = 2m(m-l), m' = m(2tt + 2m-4),
5
/ = m(2m-3)(m2—m-l) + 2mr, /=2mi,

t' = m{2m(m+ TC)
2— (8m2+ 8mw + m2)-2m + 12 + 25},

t' = 2m(3m+ /f-3), D' = (m - 1)
2 + 2mD

An isoptic locus has m(m— l)-ple points at a> and «>'.

Ex. 1. Tangents EP, EQ to a curve are inclined at a constant angle,
and the normals at P and Q meet at S. Show that -RS is the normal at

R to the locus of R.
Deduce the orthoptic locus of a parabola or central conic.

[S is the instantaneous centre of rotation of the rigid body PQE.
The line RS is parallel to the axis or passes through the centre.

Therefore the orthoptic locus is a straght line or concentric circle.]

Ex. 2. The isoptic locus touches the curve at the 2m points of contact

of tangents from a and a (cuts if a = %ir), and at the 2»t(m + )i-4)
points P such that a line through P making an angle OC with the
tangent at P touches the curve elsewhere. It cuts the curve at the
2m(»-3)()i-2) points Q of the curve from which two tangents can be
drawn inclined at an angle OC, neither touching at Q.

Ex. 3. Find the locus of the intersection of two tangents inclined at

a constant angle, one drawn to each of two given curves.

[The isoptic locus of the two curves taken together, less the isoptic

loci of the two curves taken separately.]

Ex. 4. Find the isoptic loci of

y
1 — 4 ax and x'/a? + y'/b2 = 1.

[y
3 — 4 ax = tan2 OC (x + a)2 and

ta,n2
OC (x* + y

2 -

a

2 -b2
)
2 = 4 (b

2x2 + a2
y
2 -a2 b2

).]

Ex. 5. Find the Pliicker's numbers of the envelope of a chord of a

given curve subtending an angle of given magnitude at a given point 0.

[Reciprocate with respect to 0.]

Ex. 6. A curve has fc-fold symmetry about 0. Show that the tangents

at the ends of the radii through inclined at an angle OL, which is a

multiple of 2ir/k, meet on a curve which is part of an isoptic locus and
which is similar to tthe pedal with respect to 0.

m

§ 8. Cissoid.

Suppose that from a fixed point any line is drawn cutting

two fixed curves 2j and 2
2
respectively in P1

and P2 . Take
a point P on the line such that OP = 0P

1
—0P

i . The locus

of P is called the cissoid of 2j and 2
2
for the pole 0.

Suppose the Pliicker's numbers of 2
X
and 2

2
are %, mx , ...

and n2 , m2 , ... , while the Pliicker's numbers of the cissoid are

n, m, On any line through there are n
1
points such as
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P
x
and n2 such as P

2
. Hence the line meets the cissoid at

n
1
n2

points other than 0.

Moreover, the line joining to an intersection of 2j and 2
2

is evidently a tangent at to the cissoid ; so that is a

-n^-ple point of the cissoid. Therefore any line through

meets the cissoid in 2%«2
points.

Hence
n = 2%-n.

2
.

Again, each of the »ij tangents from to 2j is evidently

a w2
-ple tangent to the cissoid, and so for the m2 tangents

to 2
2 .

Also the Uj^n^ tangents,to the cissoid at count aa 2TOjTO
g

tangents from 0. Hence n
l
m2 + n2

im
1 + 2n1

n
2
tangents -can

be drawn from to the cissoid, or

m = n
1m!+ ti2m1 + 2)i

1
n

2
.

Also it is evident from a diagram that a line joining to

a cusp of Sj passes through n
2
cusps of the cissoid, and so

for 2
2

. Hence
k = n

1
K
2 + n2 K1

.

It has been assumed that neither curve passes through the

circular points, that all the intersections of the curves are

finite, &c.

Ex. 1. Prove that the'cissoid of algebraic curves is algebraic.

[This was assumed in § 8.] ,

Ex. 2. The cissoid has ra2 linear branches touching 2
X
at each of its

infinite points.

Ex. 3. Find the Plucker's numbers of the locus of P if in §8
OP = k

1
OP

1 + k1 OP2 ,

where k
x
and k2 are constants.

[Consider the cissoid of the two curves obtained by increasing the
radii vectores of 2

X and 2
2 in the ratio l/&j and — 1/&, respectively.

Note the case k
x
= k2

= £.]

Ex. 4. If a radius vector meets three given curves in P,, P
2 , P3 and

OP = k
l
OP

1 + k2 OPi + k
3 OPs ,

where PPj.PjP,, is a line and K, k
2 , k, are constants, find the

Plucker's numbers of the locus of P. Extend to the case of N given
curves. ^

[First apply Ex. 3 to the locus of Q, where

OQ = k1 OP1
+ k2 OP„

and then apply Ex. 3 to the loci of Q and Ps .]

Ex. 5. What modification is necessary in the results of § 8, if either
of the given curves passes through Q, or if the curves meet at infinity ?
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Ex. 6. Any transversal OPP
1
P2 through meets a given curve in

P, and P
2 . Find the Pliicker's numbers of the locus of P, if

OP=k
1
OP1 + k„OP2 .

[See Ex. 3.]

Ex. 7. How many chords of a given curve through are divided in
a given ratio at O ?

Ex. 8. How many chords of a given curve through are divided in
a given ratio by a given line ?

Ex. 9. The cissoid of two circles, one of which passes through 0, is

a bicircular quartic with a node at 0.

Ex. 10. If 0, A are two points, find the cissoid of the line through
A perpendicular to OA and the circle on OA as diameter.

[If O is (0, 0) and A is (a, 0), the curve is y
1 (a—x) = s?.

The area between the circle and cissoid is something like an ivy leaf.

Hence the name ' cissoid ', from the Greek kio-o-os.]

Ex. 11. The normals at P,, P2 , and P to 2^ S2 and the cissoid meet
the perpendicular to OP through in Glt G2 , and G. Prove that

OG=OG
l
-OG2 .

[The polar subnormal is -^ m polar coordinates.]
' uu

Ex. 12. If the tangents at Pj , P2
to' 2

X , 22 meet at T and Pj bisects

QT, the tangent at P to the cissoid passes through Q.

[Take OP and OG in Ex. 11 as axes of reference.]

§ 9. Conchoid.

If on the radius vector OP of a curve we measure off PQ
equal to +h, where k is constant, the locus of Q is called a
conchoid of the curve. It is the cissoid of the curve and the

circle with centre and radius k.

If we are given the Cartesian equation of a curve, we may
obtain the equation of any conchoid as follows. Turn the

given equation into polars. Replace r by r + k. Expand the

powers of r+ k which occur by the binomial theorem, and
collect terms involving an odd power of k on one side of the

equation and the terms involving an even power of k on the

other. Now square both sides, and turn the equation back
into Cartesian coordinates. We have the required equation of

the conchoid.

For instance, consider the case of a curve of degree 2n and
class m with multiple points of order n at and at the

circular points co and a>\
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Taking m = 3 (the method is general) the equation of the

curve is

(x2 + y
2f + 81*! (x2 +ff + 3u2

(x2 + y
2
) + «s = °.

or in polar coordinates

r3 + 3v
1
r2 + 3vi

r + vs = 0;

where vp is a homogeneous function of degree #> in cob and

sin 6, and %(= r^%) is the same function of x and y.

The conchoid is

(r + k) 3 + 3v
1
(r + lc)

2 + 3v2
(r + k) + v3

=
or

{(r3 + 3^-r2 + Sv
2
r-+ v3) + 3k2 (r + vj} 2

= k2 {3(r2 + 2v
1
r + v

2 ) + k2
}
2
.

Turning hack into Cartesians we have

{[(x2 + y
2f + 3Ul (x2 + y

2
)
2 + 3u2

(x2 + y2
) + us]

+ 3k2 (x2 + y
2)(x2 + y

2 + u1)}
2

= k2 (x2 + y
2){3 [(x2 + y

2
)

2 + 2u
l
(x2 + y

2
) + u2 ]

4- k2 (x
2 + y

2
)}

2
.

We see tjjat the conchoid is of degree 4n with 2n-j>\e points

at 0, m, <o'. On finding the unreal asymptotes in the usual

manner we see that the conchoid has n cusps at eo whose
taDgents are the tangents at a> to the given 2-Ji-ic, and so

for a>'.

The tangents from to the conchoid are the m— 2 n tangents

from to the 2n-ic not touching at 0, each reckoned twice

(as is obvious from a diagram), and the 2n tangents at to

the conchoid each reckoned twice. Hence the class of the

conchoid is 2m.
Each of the k cusps of the 2n-ic gives two cusps of conchoid,

which with the cusps of the conchoid at co and eo' make up
2k + 2u cusps in all.

Since the conchoid is of degree 4m, is of class 2m, and has

2k + 2n cusps, it has

|{4n(4»-l)-2m-3(2/c + 2»)}
nodes.

These are accounted for as follows : by Ch. VIII, § 4
counts for n (2m— 1) nodes, while <o counts for 2m (n— 1) nodes
(and m cusps), and so for co.

Moreover, each of the 8— fm (m— 1) nodes of the 2m-ic other

than 0, co, eo' gives rise to two nodes of the conchoid. There
remain m(m— 1) nodes of the conchoid which lie at the middle
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points of the n(n — 1) chords of the 2n-ic which pass through
and are of length 2 k.*

Ex. 1. Find the conchoid of a straight line.

[If the line is x = a, the conchoid is

(x — a) 2 (x2 + y
2
) = k2 x2

.

It is called the ' conchoid of Nicomedes '. It has a node at and a
tacnode at infinity with the given line as tangent.]

Ex. 2. Find the conchoid of a circle through 0.

[A limacon r = k + b cos <?.]

Ex. 3. Find the conchoid of the conic
' ' ax2 + 2hxy + by2 + 2gx + 2fy + c = 0.

[{(x2 + y
2)(ax2 + 2hxy + by2 + 2gx + 2fy + c) + k2 (ax2 + 2hxy + by 2

)}
2

= ik2 (x2 + y
2

)
(ax2 + 2 hxy + by2 + gx +fy

)

2
.

Consider the case a = b = 1, h = 0.]

Ex. 4. An ra-ic does not pass through 0, a>, or a. Find the nature of

its conchoid at and at infinity.

[The conchoid is a 4«-ic with a 2 «-ple point at 0, an »-ple point at

each of o> and <»', and a tacnode at each infinite point of the n-ic. What
are the asymptotes ?]

' Ex. 5. How many lines can be drawn through a given point on which
,

two given curves intercept a segment of given length ?

[Consider the intersections of one curve with a conchoid of the other.]

Ex. 6. The centres of curvature at corresponding points of all possible

conchoids of a given curve lie on a conic.

[Use Savary's theorem on the centre of curvature of a roulette.]

§ 10. Parallel Curves.

If along the normal at P to a given curve we measure

PQ — +h, the locus of Q is said to be parallel to the given

curve. All parallel curves have the same normals and the

same evolute. The loci of the two possible positions of Q are

in general parts of the same algebraic curve.f The tangents

at P and Q are parallel and at a distance k apart. Hence the

pedal of the parallel curve is the conchoid of the pedal of the

given curve for any pole 0.

We proceed to find Plucker's numbers for any curve

parallel to a curve of given type. Suppose that the given

* The 2re-ic meets the conchoid obtained by changing ft into 2ft in 8n2

points. By the above reasoning 2w2 lie at 0, n(2n + l) at a, and ra(2n + l)

at a'. The 2«(m-1) remaining intersections are the ends of the chords of

the 2»-ic through with length 2ft.

f But they may each be distinct algebraic curves ; for instance, in the case

of a circle.

n2
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curve does not pass through 0, co, or co', and that its Pliicker's

numbers are n, m, 8, k, t, i. We shall denote the Pliicker's

numbers of any other curve, which we are for the moment

considering, by ti', on', (Y, k, t, l.

By § 4 for the pedal with respect to

n' = 2m, m' = n + 2m, 8' = {|m (m- 1)} + {t},

*' = {0} +R
0. »> a> being m-ple points of this pedal.

Here in the expressions for S'and k' the term in the first

brackets { } refers to the multiple points at 0, co, co' and the

term in the second brackets { } refers to multiple points else-

where ; and so in what follows.

For the conchoid of the first pedal we have by § 9

m' = 4m, m' = 2in-4m,
8' = {m(6m-5)} + {m(m-l) + 2r}, k = {2m} + {2i}.

For this conchoid 0, co, &>' are 2m-ple points, the tangents

at co, co' coinciding in pairs.
' For the inverse of this conchoid we have by § 3

n' = 2m, m' = 2n + 2m, cY = {0} + {m(m-l)-2T}, '

k' = {0} + {2c}.

For this inverse Oco and Oco' are m-ple tangents.

The polar reciprocal with respect to of the inverse is the

first negative pedal of the conchoid, i. e. the curve parallel to

the given curve.

For the parallel curve we have fiually

n' = 2<n, + 2m, m' = 2m, r = m(m— 1)— 2r, i = 2i,

co and a/ being m-ple points of the parallel curve. *

That the class of the parallel curve is twice that of the

original curve is also evident from the fact that to each

tangent to the given curve in a given direction correspond two
parallel tangents of the parallel curve at a distance k from it.

Similarly, to each inflexion of the given curve correspond two
inflexions on the parallel curve.

If Xx + fiy + l — is a tangent to a curve with tangential

equation /(A, \l) = 0, then

\x + fiy + 'l+k{\* +^ =
is a tangent to the parallel curve, whose tangential equation
is therefore

'Ki+k^+n2^' i + k(\*+n*)y
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This equation is rationalized by a process similar to that
used to obtain the polar equation of a conchoid in § 9. We
leave to the reader the investigation of the properties of
parallel curves by this means.
The parallel curve can readily be shown to be the envelope

of a circle of radius k whose centre lies on the given curve.
This gives in practice a convenient method of drawing curves
parallel to a given curve.

Ex. 1. Show that the foci of a curve are singular foci of all parallel
curves.

[Use the tangential equation.]

Ex. 2. Find the tangential equation of curves parallel to the ellipse

x*/a* + y*/b2 = 1.

Draw the parallel curves distinguishing the cases

h<b}/a, k = b*/a, b>k>Wfa, k = b, a>k>b, h=a,
a?/b >k>a, h = a*/b, ' k > a2/b.

[{(«
I -4!)\1+(b,-i>,-lf = 4i;!

(\
i'+/.!).]

Ex. 3. Find the tangential and parametral equations of curves
parallel to the parabola y* = 4 ax, and draw them.

[(aM
2 -X)2 = i 1! \l!

(\
2 + A.

!
). Also, if 2 tan-1

* is the angle which a
tangent to the parabola makes with the tangent at the vertex,

4 at2 kjl-t1

) _4a^ 2U_
x

(l-«2
)

2+
\ + fi,

' y~\-p~ l+t*'

Changing the sign of k is equivalent to changing t into — 1/t.

The curve is the reciprocal of the quartic of Ch. XVII, § 8 (IV). It has
degree 6 and class, 4. It has two linear branches osculating each other
at (oo, 0), the conies of closest contact being (y±k) 2 = 4 ax. It has also

a node where (k + 2 a) t* = k — la, and six cusps where

2a(l+?) s = k(l-t2
)
s
.

It has no inflexion. It' passes through the circular points, its singular
focus being the focus of the parabola.

Distinguish the cases k>2a, k = 2 a, k < 2 a.

Discuss similarly ay1 — Xs and a'y = xs
.]

Ex. 4. The radii of a singly infinite family of circles are all increased

by a constant. Show that their new envelope is parallel to their old one.

Ex. 5. Find the envelope of a family of circles whose centres lie on
a given curve and which touch a given circle.

[Combine § 4, Ex. 18 and § 10, Ex. 4.]

Ex. 6. A rhombus ABCD with centre moves in its own plane so that

the lines through parallel to the sides both touch a fixed curve. Show
that traces out an isoptic locus of the curve while A, B, C, D trace

out the isoptic locus of a parallel curve ; and that the normals at

0, A, B, C, D to the two isoptic loci are concurrent.
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§ 11. Other derived Curves.

Many other cases of derived curves might be given. But
those already discussed must suffice. Further illustrations of

the principle at the end of, § 1 will be found in the following

examples. The attention of the reader is especially called to

Ex. 1 to 4, which will be found useful later on. The Plucker's

numbers of the given curve are denoted in the examples by
n, m, 8, k, t, i, and those of the derived curve under considera-

tion by n', m', &, k, r, i

.

Ex. 1. Find the Plucker's numbers of the locus of the centre of a
circle touching a given curve and orthogonal to a given circle with
centre O.

[We consider the case in which the given curve is of even degree n,

having a |»-ple point at w and a. The reader may consider other
cases.* >

To each of the n points in which a given line through meets the
given curve corresponds a tangent to the locus perpendicular to the
line. Hence mf = ».

To each tangent from to the given curve corresponds an intersection

of the locus with am. Hence «' = m.
To each cusp of the given curve corresponds an inflexion of the locus.

Hence i = k.

We see that the locus has the same Plucker's numbers as the reciprocal

of the given curve.]

Ex. 2. How many circles can be drawn orthogonal to a given circle

and bitangent to or osculating a given curve ?

[Such a circle is given by each node or cusp of the locus of Ex. 1.]

Ex. 3. Find the Plucker's numbers of the envelope of a circle with its

centre on a given curve s and cutting orthogonally a given circle j
whose centre is 0.

[n' = 2m, m' = 2(n + m), 8' = m(m — l) + 2i-, k' = 2i',

t' = n> + 4:mn +2m?-l0m + 28, i' = 2(3ot + k), D' = (m-l) + 2X>.

The envelope is the locus of the points Qlt Q2 on the perpendicular
OY from to the tangent at any point P of s, which are equidistant
from r"and inverse forj. The envelope is self-inverse with respect toj,
and has an m-ple point at a and a>'. The tangents from to the envelope
are n bitangents given by takingP at infinity and the 2 m perpendiculars
from to the 2 m common tangents of j and s. Each bitangent of s

gives two nodes of the envelope and each inflexion gives two cusps.
The foci of s are the singular foci of the envelope, and the 2 n inter-

sections of ^ and s are ordinary foci of the envelope.
The circle with centre Y and radius equal to the tangents YL and YL'

from Ytoj passes through Q1 and Qt , while PQX andPQ, are the normals
at Qx

and Q2 to the envelope. If OR is perpendicular to LL', Pand Bare

* If the curve has a *>ple point at each of a and <u', n' = m + 2n-4k,
m' = 2» — 2 ft, i' = k.
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corresponding points on s and its polar reciprocal with respect to j.
These facts enable us to construct any number of points on the envelope,
when either s or its polar reciprocal with respect to,? are drawn.

Ifj is x* + y
2 = k and s has the tangential equation

= a+A (X, M) +/, (X, /*) +/3 (X, f.) + ...

,

where /,. (X, /*) is homogeneous of degree > in X and /i, the equation of
the envelope is

0=0-2/! (*, y)/(a? +f + h) + 4/s (or, *)/(*• + i/
2 + fc)

2

-8/
3
(^y)/(a!

2 + 2/
2 + ^)

3 + -a.]

Ex. 4. What modification must be made in the results of Ex. 3 if the
curve s (i) touches aa>' at H

;
(ii) goes through a> and ra'; (iii) touches

the tangents from a focus S at two points on j ?

[(i) The envelope cuts OH orthogonally at and has an asymptote
perpendicular to OH twice as far from O as the corresponding asymptote
of the pedal of s with respect to 0. See § 4, Ex. 11.

(ii) The tangents at <o and a to s are cuspidal tangents of the

envelope.

(iii) So> and Sa' are inflexional tangents of the envelope.]

Ex. 5. Find the locus of the middle point of a chord of a given curve

drawn in a fixed direction.

[n' = \n(n — 1), m' = (» — 2) m, k' = (n — 2) k. Consider the infinite

points on the locus and the tangents in the fixed direction.]

Ex. 6. How many lines can be drawn in a given direction on which
a given n-ic intercepts \n (n — 1) segments two of which have the same
middle point ?

[In Ex. 5 8' = | n (» - 1) (n - 2) (» - 3) + (n - 2) 8. Of these nodes of

the locus (n — 2)8 are given by the nodes of the given M-ic, and the

others by the segments in question.]

Ex. 7. Find the Pliicker's numbers of the locus of the middle point of

the segment intercepted by two fixed lines on any tangent to a given curve.

[»' = 2«i, m' = 2 m + n, «' = t.]

Ex. 8. Find the degree of the locus of the end of the polar subnormal

of a given curve.

[2n + m. Consider the intersections of the locus with the line at

infinity.] •

Ex. 9. Find the degree of the radial of a given curve ; i. e. the locus of

the end of the line through a fixed point O parallel and equal to the

radius of curvature at each point of the curve.

[3m + k. The cusps and points of contact of tangents from a> and <u'

give branches of the radial through 0. Any line through meets the

radial in m more points. Prove also m' = 7m — 3 n + 3 k, k = n, D' = D,]

Ex. 10. Find the degree of the locus of the centre of a circle touching

a given curve and a given straight line.

[2(m + n). The locus meets the given line at its intersections with

the tangents to the curve from a and a, and has a node at each inter-

section of the given line with the curve.]
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Ex. 11. The tangent at P to a curve meets it again in Q, R, Find
the degree of the locus ofX if (i) X divides PQ in a given ratio, (ii) X
divides QR in a given ratio.

[It is easy to find the intersections of the loci with the line at infinity.

Their degrees are

«.(»» + 2n-6) and 2 («-2) ii (»-3).]

Ex. 12. Find the degree of the locus of X, if the tangent at P is

replaced by the normal at P in Ex. 11.

• Ex. 13. Find the degree of the locus of the intersection of two equal
tangents to a curve.

[The circular points are \m(m — l)-ple points of the locus, and for

the other points at infinity see § 2, Ex. 6.

Discuss the locus of a point from which equal tangents can be drawn
to two different curves.]

Ex. 14. If P is any variable point on the first polar curve of a fixed

point with respect to a given curve, the locus of intersection of the
polar line of P and the polar of P with respect to a fixed conic is a
curve of degree m + 8 + «.

[The polar line of P passes through which is a (» — l)-ple point of

the locus. Find where the polar line meets the locus again.]



CHAPTER XII

INTERSECTIONS OF CURVES

§ 1. Conditions determining a Curve.

The equation f(x, y, z) = of a curve of degree n contains
one term of zero degree in x and y, two terms of the first

degree, ... , n+l terms of the n-th degree. Hence f(x, y, z)

contains %(n + 1) (n + 2) coefficients.

Suppose we are given r points

(*1» Vl> Z
l)> (

XV 2/2. Z2)> •• . (®r» Vr> z >)-

The curve will pass through them if

f{xv yv gj = 0, fix.,, y2, z2)
= 0, ... , f(xr , yr , zr)

= 0. . (i)

These are linear equations in the ^(n + 1) (n + 2) coefficients

of f(x, y, z). They will determine the

J(«, + l)(«,+2)-l = %n(n + 3)

independent ratios of the coefficients, if

r = \ n (n + 3).

Hence in general one and only one curve of degree n passes

through ^n(n + 3) given points (see Ch. II, §6).
It may happen, however, that the equations (i) are not

independent. In this case an infinite number of Ji-ics will

pass through the ^ n (n+ 3) given points.

Let us consider two special cases.

First take n = 1. In this case \ n (n + 3) = 2. Equa-
tions (i) have one and only one solution ; for one and only
one straight line passes through two given points.

Next take n = 2. Here %n(n+ 3) = 5.

If no four of the five assigned points are collinear, one and
only one conic goes through them.

If three of the five points are collinear, the conic through
the points is degenerate, being the line through these three

points and the line joining the other two points.

If four of the given points' are collinear, there are a singly

infinite number of conies through the five points, namely the

line through the four points and any line through the fifth

point.
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Lastly, if all five given points are collinear, there are a
doubly infinite number of conies through the five points,

namely the line through the points and any other line

whatever.

If r<%n(n + 3), equations (i) express the ratios of the

coefficients otf(x,y, z) linearly in terms of %n(n + 3)— r arbi-

trary independent quantities; so that an {%n(n + 3)— r}-ply

infinite number of n-ics pass through the given r points in

general. If only s of equations (i) are independent, the ratios

of the coefficients can be expressed linearly in terms of

J to (« + 3)— s quantities. The equation of the n-ic is then
of the form

k
1
w

1
+.A;

2
ai;

2
+ ... + k

s
w

s
= ;

where kv k
2 , . .

.
, kt are arbitrary constants, and

w1
= 0, w%

= 0, . .
.

, w
s
=

are s fixed n-ics through the given points.

Ex. If p and q are positive integers such that a p-ic and a q-io can
be described through any pq arbitrary points, we must have p = q «= 1,

p = 1 and q = 2, p = 2 and 2=1, or p = q = 2.

[These are the only values of p and q such that

\p(p + S)>pq and iq(q+ 3)2s_P2-]

§ 2. Cubics through Eight Points.

We now take the case n = 3. Here \ n (n+ 3) = 9.

Suppose eight points on the cubic are given. The coeffi-

cients of its equation can in general be expressed linearly in

terms of a single quantity. Hence the equation is of the form
u+kv = 0, where u = and v = are fixed cubics, and k is

a parameter not involving x, y, z. Therefore the cubic passes
through the nine fixed intersections of u = and v = ;

eight of them being the eight given points. Hence

:

All cubics through eight fixed points pass through a ninth
fixed point.

In general one and only one cubic passes through nine
given points. But if the nine points are the intersections of

two cubics, an infinite number of cubics pass through the nine
given points.*

§3.

It is necessary now to consider whether there is any excep-
tion to the statement that all cubics through eight points pass
through a ninth. The argument which established this result

* In this case any two of the nine points are said to be conjugate to one
another with respect to the other seven.
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will not be valid if the. eight points are such that all cubics
through any seven of them necessarily pass through the eighth

;

which implies that the equations (i) of § 1 (n = 3, r = 8) are
not independent. The equation of the cubics will involve not
one, but two or more parameters in this case ; and the pre-

ceding proof breaks down in consequence.
Let the eight points then be A, B, G, D, E, F, G, H, which

are such that any cubic through seven of them passes through
the eighth.

First suppose no three of the eight points collinear. The
cubic consisting of , the conic ABODE and the line GH passes

through seven of the points and therefore through the eighth

point F. But F does not lie on GH. Hence the conic

ABODE goes through F, and similarly through G and H.
The eight given points lie on a conic, and any cubic through
them consists of this eonic and some straight line ; for a non-
degenerate cubic cannot meet a conic in-more than six points.

The case in which three or more of the given points are

collinear is dealt with in a similar manner. It will be found
that the eight points lie on one or other of two straight lines,

one (or both) of which is part of every cubic through the eight

points.

Hence all cubics through eight given points always pass

through a ninth fixed point, and may under special circum-

stances pass through an infinite number of other fixed points.

Let us now consider some applications of the theorem of § 2.

If two straight lines meet a cubic in A
1 , A 2 , A 3 and

B-i, B2 , B3 , while the lines A^^, A2
B

2 , A 3
BS meet the cubic

again in Glt C2 , C3 , then Clt G2 , C3 are collinear.

For the three cubics

(1) the given cubic,

(2) the line-trio A X
A

2
A

3 , B^B^, C&,
(3) the line-trio A^G^ A

2
B2C2 , A 3

B3C3 ,

pass through the eight points A lt A 2 , A3 , Blt B2 , B3 , C^, G
2

.

They therefore pass through a ninth point. But cubics (1)

and (3) pass through C3
. Hence C3 lies on cubic (2). But C

3

cannot lie on the lines A
1
A

2
A

3
or B

1
B2
B3 , since neither of

them meets the cubic in four points. Therefore G
3

lies on

G
X
C

2
(Fig. 1).

Taking the lines A
x
A

2
A 3 , B1

B
2
B3

very close to one another,
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and defining the tangential of a point 1 on a cubic as the

point in which the tangent at A meets the curve again,

we have

:

The tangentials of three collinear points of a cubic are

collinear.

Suppose now A
y
and A

2
are inflexions of the cubic, while

A
l
A

2
A

3
and B

1
B

2
B

3
are close to one another. Then G

X
G

2
is

close to them, and we have in the limit

:

The line joining two inflexions of a cubic passes through
another inflexion.*

Fig. l.

Ex. 1. The finite intersections of a cubic with its asymptotes are
collinear.

[They are the tangentials of its intersections with the line at infinity.

See Ch. II, § 5, Ex. 3.]

Ex. 2. The points of contact of the tangents from an inflexion of

a cubic are collinear.

[This is a particular case of the collinearity of tangentials of collinear

points. The points of contact lie, of course, on the harmonic polar of
the inflexion.]

Ex. 3. If A, B, C, D, E, F are points on a conic, while AB and DE
meet at L, BC and EF at M, CD and FA at N, then L, M, N are
collinear.

[Consider (1) conic and line LM, (2) line-trio AB, CD, EF, (3) line-

trio BC, DE, FA. This is Pascal's well-known theorem.]

* See also § 5, Ex. 9 ; Ch. II, § 3, Ex. 7 ; Cli. VH, § 4.
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Ex. 4. If six of the intersections of two cubics lie on a conic, the other
three are collinear.

[Consider the two given cubics and the cubic consisting of the conic
and the line joining two of the remaining intersections. The theorems
in § 4 and many of these examples are particular cases of this result.]

Ex. 5. If two cubics have the same asymptotes, their finite intersections
are collinear.

[The conic of Ex. 4 is the line at infinity twice over. Ex. 1 is a
particular case.]

Ex. 6. A conic meets a cubic at A, B, C, D, E, F. Show that AB, CD,
EF meet the cubic again at three collinear points L, M", N.

[The second cubic of Ex. 4 is the line-trio ABL, CDM, EFN.]

Ex. 7. A conic touches a cubic at P, Q, R. Show that the tangentials
of P, Q, B are collinear.

Show that there are three families of conies, each doubly infinite in
number, having triple contact with a given non-singular cubic.

Discuss the case of a unicursal cubic.

[See Ex. 6. P and Q may be chosen arbitrarily. When they are
chosen, the tangentials of P, Q, R are known. Then there are three
possible positions for R, excluding the case in which P, Q, R are
collinear.]

Ex. 8. A conic osculates a cubic at P and Q. Show that PQ passes
through an inflexion.

[See Ex. 6.]

Ex. 9. The sextactic points of a cubic (points at which a conic Has
six-point contact) are the points of contact of the tangents from the
inflexions. Discuss the number of such sextactic points m the cases of

a non-singular, nodal, or ousgidal cubic.

[A particular case of Ex. 8. The number of points is 27, 3, 0.]

Ex. 10. A circle meets a ch-cular cubic in the finite points A, B, C, D.
If AB and CD meet the cubic again in L and M, LM is parallel to the

real asymptote of the cubic.

[In Ex. 6 take E and F at the circular points.]

Ex. 11. A conic has four-point contact with a cubic at A and meets
the curve again at E and F. If EF meets the cubic again in N, N is

the tangential of the tangential of A.

[Take A, B, C, D consecutive in Ex. 6.]

Ex. 12. Enunciate the theorem obtained by making A and B, C and D
respectively consecutive in Ex. 6.

Ex. 13. The tangents from a point P of a cubic are PA, PB, PC, PD.
Show that AB and CD meet at Q on the curve.

[Consider (1) the given cubic, (2) polar conic of P and line AB,

(3) line-trio PA, PB, CD.]

Ex. 14. Show that the tangents at P and Q in Ex. 13 meet on the

curve.
'

[The tangentials of A, Q, B are collinear.]
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4

Ex. 15. Two cubics go through the vertices A, B, C, D of a quadrangle
and through the diagonal points E, F, G. Show that, if they touch at

A, they osculate there ; while, if they touch at E, they meet again
on FG.

[Consider (i) two cubics and line-trio ABE, ACG, ADF; (ii) two
cubics and line-trio EBA, ECD, FG.]

Ex. 16. Chords PQ, BS of a cubic meet at T on the curve. Show that a

quadrilateral can be inscribed in the cubic with the sides AB, BC, CD, DA
going through P, B, Q, S and any given point A of the curve as vertex.

[Consider (1) given cubic, (2) line-trio SET, APB, CQD, (3) line-trio

PQT, BBC, DSA.]

Ex. 17. A conic passes through four fixed points A, B, C, D of a cubic.

Show that the line joining the other two intersections of the conic and
cubic meets the cubic again at a fixed point.

[Let conies S, S' through A, B, C, D meet the cubic again in E, F and
E', F'. Consider the cubics (1) given cubic, (2) conic ABCDEF and line

E'F', (3) conic ABCDE'F' and line EF.]

Ex. 18. Through four given points of a cubic four conies can be
drawn touching the cubic at some other point. The tangents at the
four points of contact all meet on the cubic.

[See Ex. 17.]

Ex. 19. The circle of curvature at A to a circular cubic passes through
B, and the circle of curvature at B passes through A. Show that the
tangents at A and B meet on the cubic.

• [Take C, D in Ex. 17 at the circular points.]

Ex. 20. Two points P, P' on a cubic are joined to points A, B on the
curve ; and PA, PB, P'A, P'B meet the curve again at Q, B, Q', B'.

Prove that Q'B and QR' meet on the cubic.

[See Ex. 17.]

Ex. 21. A variable point Pon a cubic is joined to two fixed points of
the curve, and the joining lines meet the curve again in Q and JR. Prove
that QB is divided harmonically by the cubic and its point of contact
with its envelope.

[Make P' consecutive to P in Ex. 20.]

Ex. 22. Any cubic is the locus of the intersections of a pencil of conies
with a homographic pencil of lines whose vertex is any given point
of the cubic.

[Let ABC be any three fixed points of the cubic. If any line through
meets the 3-ic in 0, P, Q, the conic ABCPQ meets the 3-ic again in a

fixed point D (Ex. 17) and the line OPQ and the conic ABCDPQ have
a one-to-one correspondence. The point is called the point opposite to

A, B, C, D with respect to the cubic]

Ex. 23. Prove the accuracy of the following ruler construction for the
point opposite to A, B, C, D with respect to the cubic through
A, B, C, D, E, F, G, H, I. ' Let the conies through A, B, C, D be put
into homographic correspondence with the lines through H so that
the lines HE, EF, HG correspond respectively to the conies ABCDE,
ABCDF, ABCDG. Let the line through H corresponding in the
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homography to the conic ABCDI meet in I' the conic 2 through
E, F, G, H touching at H the line corresponding to the conic ABCDH.
Then IT meets 2 again at 0.'

Ex. 24. Show that if and Q. are the points opposite to A, B, C, D
and to E, F, G, H, the conies ABCDa and EFGHO meet OS at the
ninth common point of all cubics thvough A, B, C, D, E, F, G, H.
Deduce a ruler construction for the ninth intersection of all cubics

through eight given points.

Ex. 25. Given nine points, construct by ruler the intersection of the
cubic through them with the line through two of the points or the conic
through five.

§ 5. Intersections of Two n-ioa.

The theorem that all cubics through eight given points pass

through a ninth fixed point can be extended to curves of

higher degree in the form

:

In general all curves of the n-th degree through

\ n (n + 3) — 1 fixed points pass through \ (n— 1) (n— 2) other

fixed points.

For in general by § 1 any such curve has an equation of

the form u + kv = 0, where k is a parameter ; and the curve

passes through all the n2 intersections of u = and v = 0.

Noting that

•§*l (% + 3) - 1 + 1 (w- 1) («- 2) = TO
2

,

we have the required result.

The theorem is only true 'in general' if ti>3; i.e. only

if the given points are such that not all n-ics through

\n (n + 3)— 2 of them pass through the remaining point. We
shall assume that the theorems of §§ 5, 6, 7 hold good in the

examples given in these sections ; but it must be admitted

that this assumption is hardly rigorous without further inves-

tigation.

Ex. 1. A conic meets a quartic at A
1 , A 2 , B1 , JB

?
, Clt C2 , Dlt X>2 , and

the lines A1
A2 , B1B2 , C^C2 , Dl

D2 meet the quartic again at A3
and A

t ,

B3 and Bt , Cs and C
4 , Ds and Dt . Show that As , At , B3 , Bt , Cs , Ct ,

Z)„ Dt
lie on a conic.

[(1) The given quartic, (2) the lines A
X
A2 , B t

B2 , CY
C2 , DjD2 . (3) the

given conic and the conic A & Bs Cs DSAA , are three quartics through the

same thirteen points. Therefore they have three more points in common.
Ex. 2, 3, 4 are special cases of this result.]

Ex. 2. The tangents at four collinear points of a quartic meet the curve

again in eight points on a conic.

Ex. 3. Deduce Ch. II,-§3, Ex. 8, 9, 10 from Ex. 1.

Ex. 4. Four normals are drawn to a conic from a point, and from the

centres of curvature at the feet of the normals two more normals are

drawn. Show that these eight normals touch a conic.

[Reciprocate and use Ex. 2.]
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Ex. 5. A straight line meets a quartic at A, B, C, D. Show that the
twelve points in which a conic through A, B and a conic through C, D
meet the quartic again lie on a cubic.

[Consider the quartics (1) given quartic, (2) pair of conies, (3) given

line and cubic through nine of the twelve points.]

Ex. 6. If a conic passes through the points of contact of a bitangent of

a quartic, a cubic will touch the quartic at its six other intersections

with the quartic.

[Limiting case of Ex. 5.]

Ex. 7. Through each of n collinear points of an n-ic a straight line is

drawn. Show that they meet the n-ic again in n(n — 1) points on an
(n — l)-ic.

[Consider the m-ics (1) given n-ic, (2) n lines, (3) line of collinear points

and (n — l)-ic through l(n-l)(n + 2) of the n(n — 1) points.]

Ex. 8. A conic meets an n-ic in 2 m points. These are divided into

pairs. Show that the n lines joining each pair meet the n-ic again in

n(n — 2) points on an (« — 2)-ic.

[Consider the n-ics (1) given n-ic, (2) n lines, (3) conic and (n — 2)-ic.

This includes Ex. 1 as a special case. Generalize Ex. 2.]

Ex. 9. A line through n — 1 inflexions of an n-ic passes through an
n-th inflexion.

[Take the conic of Ex. 8 as, the line twice over and the n lines as the

tangents at its intersections with the n-ic. The result also follows from
Ch. I, § 6, Ex. 9. The case n = 3 is well known.]

Ex. 10. All ^-circular 2«-ics through n'' + 2m — 1 finite points pass
through (n — l)'

2 other fixed finite points.

Ex. 11. Show that the theorem of § 5 is not always true when n > 3.

[If two quartettes of lines meet in sixteen points of which three lie on
another line, the theorem is readily seen to be not true for 4-ics through
the other thirteen points. More generally, it may be shown to be untrue
for the thirteen other intersections of any two 4-ics through three
collinear points.]

Ex. 12. The feet of the normals to a curve f{x, y) = of degree n
and class m from a point (£, rf) lie on an n-ic through O and the pples
of the line at infinity, the directions of whose asymptotes are the axial

directions of / = 0. The number of such normals is m + n.

[On (#-£)_£ = (y-ij) _Z , which meets/= twice at each node and
dy ox

thrice at each cusp. See Ch. VII, § 2, Ex. 13]

Ex. 13. Any n-ic through the feet of \n (n + 3)-l normals from to

a given n-ic passes through the foot of every normal from (n > 2).

§6.

In general, if np of the riL intersections of two n-ics lie on
a p-ic, the remaining n (n —p) lie on an (n—p)-ic.

For the p-ic and an (n— p)-ic through ^(n—p)(n—p + S)

of the remaining points form an n-ic (degenerate) through

np + %(n-p)(n-p + 3) = %n(n + 3)-l+l(p-l)(p— 2)
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of the n2 intersections of the two given n-ics. Hence by § 5

all the remaining points lie on this degenerate n-ic. But none
of them can lie on the p-ic, for the p-ic cannot meet the n-ic

in more than np points unless the n-ic degenerates, which we
suppose not to be the case. Hence they must all lie on the

(n —p)-ic.

Ex. 1. A polygon of 2ra sides is inscribed in a conic. The intersections

of the sides, other than the vertices of the polygon, lie on an (» — 2)-ic.

[Consider the two ra-ics formed by taking every alternate side of the

polygon : 2ra of their intersections lie on a conic.

Note the cases n = 3 or 4.]

Ex. 2. Any quartic through the intersections of a cubic and quartic

meets the quartic again in four collinear points.

Ex. 3. Any quartic through the intersections of a conic and quartic

meets the quartic again in eight points on a conic.

Ex. 4. A conic meets a quartic in P, Q, R, S, P', Q', R', S'. Any conic

through P, Q, R, S and any conic through P', Q', R', S' meet the quartic

again in eight points on a conic.

[This and the following examples are particular cases of Ex. 3.

Obtain other theorems as special cases.]

Ex. 5. Two conies are drawn through the points of contact of two
bitangents of a quartic. Show that their eight other intersections with

the quartic lie on a conic.

[See also Ch. XIX, § 2, Ex. 2.]

Ex. 6. A conic through- the points of contact of two bitangents of

a quartic meets the curve again in A, B, C, D. Show that a conic can

be drawn touching the quartic at A, B, C, D.

Ex. 7. If a conic meets a quartic in eight points and a conic touches

the quartic at four of the points, a conic touches the quartic at the

other four.

§ 7. Intersections of any Two Curves.

An extension of the theorem of § 5 is the following

:

In general any r-ic through all but

i{n + N-r-l)(n + N-r-2)
of the nN intersections ofan n-ic and N-ic will pass through the

remaining intersections, provided r^n, r>JV, r^n +N— 3.*

If n = N= r, we have the theorem of § 5.

Take %(r—n)(r—n + 3) arbitrary points on the JV-ic and
i (r— iV")(r— iV+3) arbitrary points on the n-ic.

Take also

nN-%(n + N-r-I)(n + F-r-2)

of the intersections of n-ic and JV-ic.

* For a discussion of limitations to which this result is subjected, see

Bacharach, Math. Annalen xxvi (1886), pp. 275-299.

2216
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The total number of points taken will be found to be

|r(r + 3)-l.

The n-ic together with the (r— n)-io through the

J(r— n)(r—n + 3)

points form a degenerate r-ic through the \ r (r + 3)— 1 points
;

and so for the N-'ic together with the (r-N)-ia through the

| (r— N~) (r— iV+3) points. Therefore every ?'-ic through the

fr(r + 3) — 1 points passes through every intersection of this

pair of degenerate r-ics ; which proves the result.

Ex. 1. If a quartic meets a cubic in A, B, C, D, E, F, A', B', C, D\ E', F',

the lines AA', BB', CC, DD', EE', FF' meet the cubic again in six

points on a conic.

[w-ic is given cubic, JV-ic is the quartic and the conic through five of

the points, r-ic is the six lines.]

Ex. 2. The tangents at the six intersections of a conic and cubic meet
the cubic again in six points on a conic.

[Take the quartic in Ex. 1 as a pair of adjacent conies.]

Ex. 3. The tangents from a point to a cubic meet the curve again in

six points on a conic.

[Take the conic of Ex. 2 as the polar conic of 0. See Ch. I, § 9, Ex. 6.]

Ex. 4. A quartic through the intersections of two cubics meets either
cubic again in three collinear points.

[«-ic is cubic, JV-ic is quartic, r-ic is other cubic and the line through
two of the three, points.]

§ 8. Theory of Residuals.

Suppose that Gr denotes a homogeneous expression of
degree r in x, y, z. The curve Gr = is a curve of degree r,

which we shall call ' the curve r ', when there can be no
confusion with the number r.

. ,

Suppose Cj, CA , Gm , G^, Gn , Gv to be such that

CiCx + Cm% + OnCr = (i),

where l + \ = m + fj,
= n + v.

Suppose that the curves I, m, n all pass through points
which we call collectively ' the points 0'. Let the complete
intersection of the curves m and n be the points together
with other points which we call collectively ' the points L '.

Then (i) shows that the curve X passes through L.
Suppose that

the curves I and m meet in the points and N~,

the curves I and n meet in the points and M,
the curves A and m meet in the points L and M',
the curves A and n meet in the points L and N'.
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By (i) the curves /j, and v meet in points each of which lies

on one of the curves I or \. Suppose they meet in points U
on I and 0' on X. Now by (i) the curves I and m. meet in

points each of which lies on one of the curves n or v. But
the only points common to the curves I, m, n are ; so that

the curve v passes through the points N.
Proceeding thus, we obtain relations between the curves

and their .intersections which will be clear from Fig. 2. In
this diagram is shown a cube with unit edge whose laces

x — 0, x = 1, y = 0, y = 1, z = 0, z = 1

represent the curves I, \,m, fi, n, v respectively.

*-x

Each curve passes through the points whose symbols lie at

the corners of the face representing that curve. Thus the

curve I passes through the points OL'MN, the curve X passes

through the points O'LM'N', and so on. Moreover, the com-

plete intersection of any two curves represented by faces of

the cube (not opposite) is the points whose symbols lie at the

ends of the edge common to those faces. Thus OL is the

complete intersection of the curves m and n, MN' of /x and n,

O'L' of u and v, &c.

o2
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Ex. 1. The »-ics through any .given point and the intersections of

three given n-ics taken in pairs form a pencil.

[Let /= 0, oi — 0, yjf — be the given w-ics ; /„, <£„, yjr what /, </>, ^
become when we substitute in them the coordinates of 0. Then use

M<tA-^A) +0oW'o/-/o<M +^o(fA-i>of) = o-]

Ex. 2. Through the nN intersections of an n-ic and an .AT-ic three ra-ics

are drawn. Through the remaining intersections of each pair of n-ics is

drawn an (n-N)-ic. Show that these three (n-N)-ica form a pencil.

[Tf CN = and Cn = are the JV-ic and re-ic, the three «-ics are

Cn+CN A = 0, Cn +CNB = 0, Cn+CNT = Q,

and the(w-JV)-ics are B = r, r = A, A = B.]

Let us now consider Gn = as a given w-ic with any
points taken on it. We assume that, subject to certain

limitations as to the positions of the points 0,* &c, it is

always possible to find polynomials C>, Gv such that

CjCa + ®mPn+On Cv = 0;

where Cp Gm , GK are given polynomials such that l + \ is not
less than m and n, while the curves (7j = 0, Gm = meet at

each of the points 0, but at no other point of the given n,-ic,

and GK = passes through the intersections of Gn = and
Gm = other than 0.

For the proof of this important theorem see § 10.

We assume its truth and deduce some consequences.
As in § 8 we may consider and M as the complete inter-

section of Ci = and Cn = 0, and O and L as the complete
intersection of Cm = and Gn = 0. Suppose any curve GK =
through L meets Cn = in the points L and N'. Then the
points M and N' are the complete intersection of Gn = -with
some curve, namely C^ = 0. *

The points O and M are said to be residual groups of points
for the curve Cn = 0, meaning that, taken together, they are
the complete intersection of Gn = with some curve (G

l
= 0).

This will be expressed by the notation

+M= O.f

Similarly O and L are residual, i. e.

O + L = 0,

since O and L form the complete intersection of G„ = with
cm = o.

* For instance, care is necessary if some of the points are multiple
points of the M-ic.

t And in general, if groups of points P, Q, B, ... form taken all together the
complete intersection of Cn with a given curve, we write P+ Q+ R + ... =z o.
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The points L and M are said to be coresidual groups of
points for the curve Cn , meaning that they are both residual
to the same points 0. We denote this by the notation

L = M.
The result above obtained may then be worded

:

If L and M are coresidual groups of points for an n-ic,

any points residual to L are residual to M.
In fact, we proved that, since L and M were both residual

to 0, any points N' residual to L were residual to M. In
other words, if OL, OM, LN' are all complete intersections of

the n-\c with some other curve, so are MN'.
Symbolically, we deduce from

+ L = 0, O +M = 0, L + N'=0, that M+N'=0.
Remembering the notation L = M, we see that symbolical

relations such as +1 = 0, &c, can be added or subtracted

just as if they were ordinary identities. It is only necessary
to consider such a relation as L—M=0 to be equivalent to

L = M, and 2P + Q = to mean P + P + Q = 0* &c.

Such a treatment of the symbolism is a great economy of

labour. It enables us to some extent to replace geometrical

reasoning by elementary algebraical work ; though, of course,

at some stage or other the algebraic result must be interpreted

geometrically, if it is to be of any value.

We must be careful to confine our algebraic processes to

addition and subtraction. Multiplication by an integer will

be lawful, for that is only equivalent to repeated addition

;

but division is not allowed.

Ex. 1. Two single non-coincident points P, Q cannot be coresidual

(»>2).
[Any line through P other than PQ meets the n-ic in n — 1 points

which cannot form with Q the complete intersection of the
4
re-ic with any

curve.]

Ex. 2. Through points P on a given n-ic any curve is drawn meeting
the n-ic again in points P1( through Pt is drawn any curve meeting the

«-ic again in P
2 , through P2 is drawn any curve meeting the »-ic again

in P3 , and so on. If P2I . consists of a single point, show that this point

is the same whatever the curves used and whatever the value of r.

[P+P! = 0, P! + P2
= 0, P, +PS = Q, ..., P^-i +P^O give

P=P2r . Suppose other curves used; then we have P=Pis (say).

Hence P2 ,. =P2S - % Ex - * if ptr and ^as are single points, they

coincide.

If the points P are p in number, and the curves are of degrees

%, «j, ..., nlr , we have m (»j

-

m, + n, — ... — na ,.)—jp + 1 = 0.]

* 'The points Q and the points P taken twice from the complete inter-

section of the »-ic with some curve.'
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Ex. 3. Through four points of a given 3-ic draw a conic meeting the

given 3-ic in two more poinds, through these points draw a 3-ic meeting
the given 3-ic in seven more points, through them draw a 4-ic meeting
the 3-ic in five more points, through them draw a conic meeting the 3-ic

in one more point R. Show that any conic through the four points

initially taken meets the 3-ic again in two points collinear with R.

[See Ex. 2. The reader may enunciate similar theorems.]

Ex. 4. Two pairs of points on an «-ic (n > 3) cannot be coresidual, if

no three of the four points are collinear.

[As in Ex. 1.]

Ex. 5. Two trios of points on a quartic cannot be coresidual (unless

they coincide).

[One trio is residual to the remaining five intersections of the 4-ic with
any conic through the other trio. Therefore the trios coincide.]

Ex. 6. Through seven points P of a quartic a cubic is drawn meeting the
quartic in five more points Q. Through P is drawn a quartic meeting
the given quartic in nine more points R. Show that the conic through
Q and the cubic through R meet in three points on the quartic.

[Use Ex. 5.]

Ex. 7. The tangents at n collinear points of an ?j-ic meet the curve
again in n[n — 2) points on an (w-2)-ic.

[Denoting the n points by P and the n(n — 2) points by Q,

P=0 and 2P+Q = 0.

Hence Q=0. For the case n = 3, see § 4. See also § 5, Ex. 8.]

Ex. 8. From any point n (n — 1) tangents are drawn to a non-singular
»-ic. Show that they meet the curve again in n (n — 1)(«— 2) points
lying on an (»— 1) (m — 2)-ic. '

[Denoting the points of contact, which lie on the first polar of 0, by
P, and the n{n-l)(n-2) points by Q, P= and 2P+Q=0. Hence
Q = 0. For the case » = 3 see § 7, Ex. 3.]

Ex. 9. If six intersections of a 3-ic and 4-ic lie on a conic, so do the
remaining six. The four other intersections of the 4-ic and the two
conies are collinear.

[Denote the six intersections of the 4-ic and the first conic by i*and
the other two intersections by R. Let the line joining R meet the 4-ic
again in two points S. Let the 3-ic and 4-ic meet in six other points Q.
Then P+Q= 0, P+R = 0, R +S=0 give Q + S=Q.]

Ex. 10. Three cubics go through seven points. Show that the lines
joining the remaining intersections of the cubics taken in pairs form
a triangle whose vertices lie one on each of the three given cubics.

[Denote the seven points by P, and the intersections of cubics 2 and 3,

1 and 3 by A, B respectively. Let the lines joining the points A, B
meet cubic 3 in H, K. Then on cubic 3 we have

P+A = 0, P+B = 0, A + H=Q, B +K=Q.
These give H=K, so that by Ex. 1 H and K coincide.]

Ex. 11. An w-ic has h nodes and no cusp. Show that the remaining
intersections with the w-ic of a p-ic through the inflexions lie on a
(p-Sn + 2 S + 6)-ic which passes through the intersections of the n-ic
with its nodal tangents other than the nodes.
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[Suppose the re-ic and p-ic meet at the inflexions / and other points P,
while the nodal tangents meet the w-ic at points Q and R, of which
R coincide with the nodes. Then P+I=0, Q +R= 0, I+R= Q (since
the points I and R lie on the Hessian), so that P+ Q = 0.]

Ex. 12. An »-ic has a single node 0. Show that the remaining inter-
sections with the w-ic of a p-ic through the points of contact of the
tangents from and the intersections of the m-ic with the tangents at
(other than 0) lie on a {p-n + %)-ic.

[As in Ex. 11, letting I be the points of contact of tangents from 0,
and replacing the Hessian by the first polar of 0.]

Ex. 13. The sixteen inflexions of a quartic with a biflecnode lie on
another quartic, and the eight inflexions of a quartic with two biflecnodes
lie on a conic.

[Denote by I the inflexions and by R the intersections of the 4-ic with
the nodal tangents. Then from the Hessian 1 +R = 0, and from the
nodal tangents R= 0, so that 1=0. See Ch. XVIII, S 1, Ex. 6;
§ 9, Ex. 6.j

§10.

In § 9 we made use of the theorem that, if the curve

/ (x, y) = passes through the intersections of <j> (x, y) =
and \jf(x,y) = 0, then we can put/ in the form Afy + B-f,
where A and B are polynomials in x and y.

We are here using Cartesian coordinates, and taking/, <$>, ty

as the -C
X
CK , Gm , Gn of § 9.

We shall suppose that the intersections of $ = 0, v/r =
are ordinary distinct points of/= 0, <p — 0, \jr = 0, and give

a proof of the result with this limitation. We may suppose
the axes of reference taken perfectly generally.

Let (a, b) be an intersection of <p = and \jr = 0. To
eliminate y between (j> = and \jr = we may carry out the

process of finding the highest common factor of $ and \j/, con-

sidered as polynomials arranged in descending powers of y,
till we reach a remainder R involving x but not y. Equating
this remainder to zero we get the result of elimination required,

which is an equation giving the abscissae of the intersections

of (j> = and \j/ = 0. The remainder R must have therefore

x— a, but not (x— af, as a factor. Moreover, it follows at

once from the process of finding the highest common factor

that each remainder found in the process, and in particular

the last remainder R, is of the form A</> + fx\jf, where A. and /* are

polynomials id x and y.

Suppose that, when A/ is divided by ^, the quotient is v

and the remainder 6, so that

v and being polynomials in x and y.
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It only remains to show that 6 has R as a factor. For, if

that is proved, we have 6 = AR or 6 = A (\cj> + fj.\jr), A being

a polynomial.

We should then have

A/ = v\jf +A (A</> + nir)

or A (/- A <f>)
= (v + A n) \lt.

Now, since R = A<£ + jxt/t and R is independent of y, any
common factor of A and \jr would be independent of y. But,

if we have chosen the axes of reference generally, i/f has not

a function of x as factor. Hence A and \jr have no common
factor, and therefore (v + A ^)/A must be a polynomial B ; or

f=A<f> + B^r , as required.

To show that has R as a factor, we prove that 6 has x— a
as a factor. A similar argument will then apply to each

factor of R, and the result follows.

Suppose \jr of degree n in x and y'smd therefore 6 of degree

n— 1. The relation R = \<j> + /j.\jr shows that every one of the

n intersections of i/r = with x = a lies on A = or <j> = 0,

since R has x— a as a factor. But (the axes of reference

being general) the only intersection of <£ = and i/r = with
abscissa a is (a, b). Hence the n— 1 intersections of i/r =
and x = a other than (a, b) lie on A = 0.

Then 6 = A/— v\jr shows that all the n intersections of

\|f = and x = a lie on = 0, for (a, 6) lies on /= and
\j[f = 0, while the other %— 1 lie on i//- = and A = 0. But
= 0, being of degree n— 1, cannot meet a; = a in more than

%— 1 points unless a;— a is a factor of 8.

For the case in which the intersections of / = 0, $ = 0,

i^= are multiple points of any of these curves the reader

may refer to Noether's paper in the Mathematische Annalen
xl (1892), p. 140,* from which the above proof has be'fen

adapted. We have applied the residuation theorem in the

examples of § 9 to such cases, which was not strictly lawful

without a more careful investigation. But the results there

given can also be established in most cases by other methods.

* The reader may consultthe bibliography in the Mathematical Encyclopaedia.



CHAPTER XIII

UNICURSAL CUBIGS

§ 1. Types of Cubic.

Since a line joining two double points of a curve meets it

in at least four points, a cubic cannot have more than one
double point. Hence there are only three types of cubic,*

whose Pliicker's numbers are given by the table

Type
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infinity. Then, if the origin is taken at the double point of

the cubic, the curve is now a circular cubic with an equation

of the form

ax2 + 2hxy + by2 + 2 (gx +fy) (x2 + y
2
) = 0.

Inverting with respect to a circle with centre and unit

radius, we obtain the conic through

ax2 + 2hxy +*by2 + 2gx + 2fy = 0.

This conic is a parabola, ellipse, or hyperbola, according as

the cubic has a cusp, acnode, or crunode ; i. e. according as

h2 = , < , or > ab.

The real asymptote of the cubic inverts into the circle of

curvature of the conic at 0, and the inflexional tangents of

the cubic invert into the other osculating circles of the cubic

which pass through 0.

Fig. l.

Ex. 1. A cubic with an acnode has three real inflexions, and a cubic

with a crunode has one real and two unreal inflexions.

[Take the case of the acnodal cubic. By a real projection it may be
transformed into a circular acnodal cubic, and then inverting with
respect to the acnode we get :

' Through any point of an ellipse three
leal circles of curvature pass other that the circle of curvature at 0.'

In fact, if the eccentric angle of is
(f>,

the eccentric angles of the
three points of contact of the circles of curvature are

-*<#>, iV"-<t>), 1(4*-*).
Since the sum of these is 2tt —

<f>,
the three points of contact are con-

cyclic with 0, and therefore the three inflexions are collinear (cf.

Ch. VII, § 4). Similarly for the crunodal cubic]

Ex. 2. The real asymptote of a cuspidal circular cubic is equally

inclined to the tangent at the cusp and to the line joining the cusp and
the focus.

[Inverting with respect to the cusp and remembering that the focus

inverts into a focus (Ch. V, § 4) we have :
' Any tangent to a parabola is .

equally inclined to the axis and to the focal distances of the point of
contact.']



XIII 2 GEOMETRICAL METHODS 203

Ex. 3. The lines joining the node of a nodal circular cubic to the real
foci are equally inclined to the real asymptote.

Ex. 4. A chord of a circular cubic with a node subtends 90° at 0.
Show that the middle point of the chord lies on a fixed straight line,
and that the circles on such chords as diameter are coaxial.

Ex. 5. If is the node of a circular cubic with real foci S, S' and the
circle OSS' meets the curve again at A and A',

- — AA '

=
SO ±

S'O * AO . A'O

Ex. 6. If O is the centre of a fixed circle touching two given circles
externally, find the locus of the inverse of with respect to any other
circle touching the given circles externally.

[Part of a circular cubic with a crunode at 0.]

Ex. 7. Obtain properties of a nodal circular cubic by inverting other
properties of the conic.

Ex. 8. Any line meets the cissoid x(xi + y'i
) = ay1 with cusp in

Pi, P2 , Ps ; and any circle meets it in Qlt Q2 , Qs , Qt . Show that the
sum of the cotangents of the angles which

OPlt 0P2 , 0PS or 0Qn OQi, 0QS , 0Qt

make with the tangent at the cusp is zero.

[Invert with respect to 0. The cissoid becomes a parabola with
vertex 0.]

Ex. 9. A cubic has three asymptotes and a node 0. If a line through
meets the cubic in Q and the asymptotes in P, , P

2 , P3 , show that

0P1 + 0Pi + 0P3
= oq.

' Ex. 10. The chord of a circular cubic with a node subtending 90° at

O envelops a conic.

[Expressing the condition that two of the lines joining the. inter-

sections of

\x + fiy + 1 = and x [a? + y
1

) + ax2 + 2 hxy + by* =
to the origin are perpendicular, we get the tangential equation of the

envelope.]

Ex. 11. The locus of the. point of contact of a tangent from O to

a family of confocal conies is a circular cubic through the foci with

a node at O.

Consider the case in which O is on an axis or at infinity.

Consider the case of confocal parabolas.

Generalize by projection.

Ex. 12. The locus of the centre of a circle whose circumference passes

through two given points and meets a given line not coplanar with the

points is a nodal circular cubic.

Ex. 13. A ray of light proceeds from a fixed point A, is reflected at P
from any sphere with a given centre O, and after reflexion passes through

a fixed point B. Find the locus of P.

[(x' + y
1
) {2/ (6 + a) cos a + a: (6 -o) sin a} =2abxy, z = 0; if O, A, B

are the origin, (a cos Oi, a sin Oi, 0), (6 cos a, -6 sin a, 0).]
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§ 3. Cuspidal Cubics.
»

A real cuspidal cubic has one cusp and one inflexion, and
these must be real. Take the triangle of reference A HG so

that B is the inflexion and G the cusp, while AB and AG are

the tangents at B and C (Fig. 2).* Then there is no term in

the equation of the cubic involving z 3 or z2
; and the only

term involving z is zy2
, since y

2 = are the tangents at G.
.

Fig. 2.

Also, when we put z = 0, the equation must reduce to Xs = 0,

since z = meets the curve three times at B. Hence the

equation of the cubic is zy2 = axs
. Putting az for z, we see

that

A cwpidal cubic can be put into the form zy2 = x3 by a real

choice of homogeneous coordinates.

* The curves shown in Pigs. 2, 3, i have the Cartesian equations

2y*(x-l)-2y(xi -2x)+x*(x-2) = 0, 64y*(x-i) + 16x'y + xi (5x-12) = 0,

and x(x2— xy + iy*) + iy (2x — y) — respectively.
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It follows from Ch. I, § 3 that any cuspidal cubic can be
projected into the semicubical parabola ay2 — x3

.

Any point on the curve zy% = x3 may be taken as (t, 1, t
3
),

t being the parameter of the point.

If the points with parameters t
x , t2 , t6 lie on the line

\x + /j.y + vz = 0,

tlt t
2 , ts are the roots of the equation in t

Xt + /i + vt3 — 0,

so that t
1 + t2 + t

s
= 0.

Hence

:

If three points of zy2 = x3 are collinear, the sum of their

parameters is zero, and conversely.

If the tangent to any cubic (unicursal or otherwise) at P
meets the curve again at Q, Q is called the first tangential, or

simply ' the tangential ' of P. The tangential of the first

tangential is called the second tangential, the tangential of

the second tangential is called the third tangential, and so on.

If the parameter of P is t, the parameter of the first

tangential Q is — 2t, for the tangent at P meets the curve in

the points P, P, Q whose parameters have a zero sum.
The parameter of the n-th tangential of P is evidently

(-2)H.
If the points with parameters tlt t2 ,t3 , ti ,t5 , t

e
lie on the

conic

ax2 + by2 + cz2 + 2fyz + 2gzx + 2hxy = 0,

these quantities are the roots of

at2 + b + ct6 + 2ft
3 + 2gt* +2M = 0.

Since the coefficient of t
s in this equation is zero, we have

:

If six points of zy2 = xs
lie on a conic, the sum of their

parameters is zero, and conversely.

Similarly :

If nine points of zy2 = x3 are the intersections of this cubic

with another cubic, the sum of their parameters is zero, and
conversely.

Ex. 1. Any cuspidal cubic can be projected into

a2
y = xs

, or into yx* = as
.

Ex. 2. The successive tangentials of a given point approach the cusp as

their limiting position.

( ^-2)
M

t = oo , and the parameters of the inflexion and cusptLL •00

are zero and infinite.]
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Ex. 3. From a point P on a cuspidal cubic a tangent is drawn touching
at P, , from P, a tangent is drawn touching at P2 , and so on. Show that
P„ approaches the inflexion as its limiting position.

[The parameters of P and P„ are in the ratio 1 : (-£)".]

Ex. 4. The conic of closest contact at P to a cuspidal cubic meets it

again in P,, similarly P
2

is derived from P1; and so on. Find the
limiting position of P„.

[The parameters of P and P
1
are in the ratio 1 : —5.]

Ex. 5. Through a point P of a cuspidal cubic a conic is drawn having
5-point contact at P', similarly P" is derived from P, and so on. Find
the limiting position of P<n>.

Ex. 6. A conic passes through two given points of a cuspidal cubic,
osculates it at P, and cuts it again at P

t
. Similarly P2 is derived from

Pj, P3 from P2 , and so on. Find the limiting position of Pn .

Ex. 7. The conic of closest contact at any point of a cuspidal cubic
(other than the cusp or inflexion) meets the inflexional tangent in
unreal points and the cuspidal tangent in real points.

[The conic of closest contact at (t, 1, i
s
) with zy2 — x* is

4ht*xi + 5t?y*-z2 -40?yz + 15t*zx-24:t?xy = 0,

as is seen by putting 8, 1, 6* for x, y, z in the general equation of
a conic and comparing the resulting equation for 8 with

(6-tf(8-t') =0.
See also Ch. X, § 2, Ex. 16 (i).]

Ex. 8. The loci of the poles of the inflexional and cuspidal tangents
with respect to the conic of closest contact at any point of a cuspidal
cubic are cuspidal cubics with the same cusp, inflexion, cuspidal tangent,
and inflexional tangent.

Ex. 9. A conic osculates a cuspidal cubic at P and Q. Show that the
line PQ passes through the inflexion and is divided harmonically by the
inflexion and the tangent at the cusp.

, Ex. 10. Find the locus of the intersection of the tangent at P to a
cuspidal cubic with the tangent at the second tangential of P.

Ex. 11. The tangent at P to a cuspidal cubic meets the curve, the
inflexional tangent, the cuspidal tangent in Q, E, T respectively. SHbw
that the cross-ratio of the range {PQRT) is 9/8.

Ex. 12. If in Ex. 11 the cross-ratio of (PQES) is any constant other
than 9/8, find the locus of S.

[A cubic with the same cusp, inflexion, cuspidal tangent, and in-

flexional tangent.]

Ex. 13. The tangents from P to a cuspidal cubic meet the curve again
in three points. Show that the tangents at these points meet in a
point Q ; and that, if P moves along a straight line, so does Q.

Ex. 14. Obtain theorems from Ex. 7 to 13 by reciprocation.

Ex. 15. Find the locus of the intersection of tangents to the semi-
cubical parabola ay1 = xs at points subtending 90° at the cusp.

[A parabola having double contact with the given curve.]

Ex. 16. The locus of the intersection of two perpendicular normals to

a semicubical parabola is a nodal cubic.
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Ex. 17. The locus of a point P, which moves so that the Bum of the
angles made with a fixed line by the tangents from P to a semicubical
parabola is constant, is a straight line.

Ex. 18. The chord PQ of the cissoid x(x2 +yi
) = ay* subtends 90° at

the cusp. Show that

(i) The locus of the middle point of PQ is a straight line,

(ii) The locus .of the intersection of the tangents at Pand Qis a circle,

(iii) The locus of the intersection of the normals at P and Q is

a straight line.

[Any point on the curve is x = a/(l + fi), y = alt (1 + <
2
). See § 2,

Ex. 8, and Ch. XI, § 8, Ex. 10.]

Ex. 19. Find the envelope of the common chord of a cissoid and its

circle of curvature.

[If four points on the curve are concyclic, their parameters have zero

sum. The chord joining the points with parameters t, — 3< is

(l + lt*)x = 6t*y-¥a enveloping 35
y

2 (a-x) = Vz 3
.]

Ex 20. The locus of the focus of a parabola passing through fixed

points P and Q, and having PQ as normal at P, is the cissoid of Ex. 18.

[If the parabola is i/
2 = 4ax and P is (at1 , 2at), while SZ is the

perpendicular from the focus S on PQ,

SZ=at(l + t
i)i, PZ= a {! + ?)*, PQ . fi = 4a (1 + i

2)i

Now eliminate a and t.]

Ex. 21. The sum of the abscissae of the feet of concurrent normals of

a (x —yf = xd
is constant.

Ex. 22. The equation of any w-ic with a tangent of ra-point contact
and a superlinear branch of order re — 1 may be put in the form

zyn-' = xn .

§ 4. Nodal Cutaies.

The equation of any acnodal cubic can be put in the form
z (x2 + y

2
) =y (3x2— y

%
)

by a suitable choice of homogeneous coordinates.

A real nodal cubic has a real node and three inflexions, of

which one at least must be real. Take the triangle of refer-

ence ABC so that C is the node, A is a real inflexion, and CB
is the harmonic conjugate of CA with respect to the tangents

at C, i. e. CB is the harmonic polar of the inflexion A.
Since C is a node, and the tangents at G form a harmonic

pencil with xy = 0, the coefficients of z9
, xz2

,
yz2

, xyz in the

equation of the cubic are zero. Since A is an inflexion, the

coefficients of x3 and arc/
2 must be zero, remembering that the

tangent at A meets the curve thrice at A.
Moreover, since G is an acnode, the coefficients of x2z and

y
2z have the same sign. Choosing suitable homogeneous
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coordinates, we may make these coefficients the same, and the

equation takes the form

z (x2 + y
2
) + y (ax2 + by2

) = 0.

In this replace z by £ (b-a)z— \ (3b + a)y, which by
Ch. I, § 1 is equivalent to' choosing the line

z + ±(3b + a)y =
as the side AB of a new triangle of reference, and the equation

reduces to ' „
,

„. .„ , „. /;Nz{x2 + y
2
) = y(3x2-y2

)
(i).

Fig. 3.

The Hessian of (i) is

z(x2 + y
2)= -3y(3x*-y2

) .... (ii).

It meets the curve (i) where = 0. Hence the line z =
passes through the three inflexions (1, 0, 0), (1, ± -/3, 0) of

the cubic (i).

Any point on the cubic (i) is

(cos tj>, sin (j>, sin 3(/>).

The whole curve, except the acnode, is obtained by giviDg

<j> all.real values between and w (Fig. 3).
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If the points with parameters fa, fa, fa lie on the line

Xx + fiy + vz = 0,

tan fa, tan fa, tan fa are the roots of

(cos2
<f> + sin2 fa (A cos

<f> + u sin fa
+ v sin

<f> (3 cos
2 $— sin2

fa = 0,

considered as an equation in tan<Jb. Therefore

tan fa + tan fa + tan fa = tan fa tan
<f>2

tan fa .

Hence

:

i/ three points on the cubic (i) with parameters fa, $2 , <£3

are collinear, fa + (£2 + $3
= (mod. 77) ; owid conversely.

Putting fa, fa, fa all equal, we obtain the parameters of the

inflexions, namely 0, -| 77-, §7r. The sum of these is 77-. Hence:

An acnodal cubic has three real collinear inflexions ;
s . *

as found before by means of the Hessian.

Similarly we may show that

:

If six points on the cubic (i) with parameters fa, fa, fa, fa.,

fa,, fa,
lie on a conic, fa + fa + fa: + fa + fa. + fa = {mod. ir) ;

and conversely.

The equation of any crunodal cubic can be put in theform
z (x2— y

l
) = y (3a;2 + y

2
)

by a suitable choice of homogeneous coordinates.

The proof is almost exactly the same as that given for the

acnodal cubic, except that the coefficients of x2z and y
%z have

opposite signs.

The Hessian of

z(aP-lf)=y(aa? + y*) (iii)

is z(x2-y2)= -3y(3x2 + y
2
) .... (iv).

As before, z = is the line of inflexions.

The coordinates of any point on (iii) are

(cosh$, sinh fa sinh3^>).

The condition for three points on a line or six points on a
conic is the same as that given for the acnodal cubic, sub-

stituting (mod. iti) for (mod. -n).

The inflexions have parameters 0, \iti, %iri.

Hence

:

A crunodal cubic has three collinear inflexions of which

only one is real.

If we suppose that the points of (iii) at the two ends of an
asymptote are the same, we may say that the whole curve is

divided into two portions by the crunode. One contains the
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real inflexion, and is obtained by giving <j> all real values from
— oo to + oo . The other portion, which we shall call the

loop, is obtained by giving <\> the value 6 + ^-ni, where 6 takes

all real values between — oo and + oo (Fig. 4).

The coordinates of any point on a nodal cubic can be
expressed rationally in terms of a parameter t, by putting
cot

<f>
= t or coth <j> = t.

Many convenient standard forms of the equation of a nodal
cubic exist, other than (i) and (iii).

Fig. 4.

We may mention the form

x(z2 ±y2
) =y3

(v)

obtained by taking A as the node, G as an inflexion, AB as
the harmonic polar of G, and CB as the tangent at G. Any
point on the curve is

(sin3 <£, sin</>, cos <£) or (sinh3
<f>,

sinh#, cosh <\>).

The condition for three points on a line or six points on a
conic is the same as that given above. The line of inflexions
is 4x = ±Sy.
The form (v) is suggested by that given in Oh. XVI, § 1 for

the non-singular cubic.
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Ex. 1. A nodal cubic can be projected into

a (x2 + »/
2
) = xs or into y (x" ± a2

) = u,
3

.

Ex. 2. Show from the form y (x1 + a1
) = a3 that a nodal cubic has three

or one real inflexions according as it has an acnode or crunode.

d?V _[— = 2 a3 (3 a;
2 + «')/(*" + a2

)

3 vanishes at an inflexion.]

Ex. 3. Show^that the tangents at two inflexions of a nodal cubic meet
on the harmonic polar of the third inflexion.

[The tangents at the finite inflexions of y(xi + al
) = a? meet on x = 0,

which is the harmonic polar of the inflexion (oo , 0).]

Ex. 4. Show that the equation of any crunodal cubic can be put in
the form xs + y

s = Bxyz. '

Show that, if any point on the curve is taken as (3 1, 3

i

2
, 1 + f), the

product of the parameters of three collinear points is — 1 and the product
of the parameters of six points on a conic is + 1.

Show that any crunodal cubic can be projected into the folium of
Descartes x3 +y3 = Saxy.

Ex. 5. A. line meets a nodal cubic in P, Q, R, and the lines joining
these points to the node make angles 6

1
and 2 , fa and </>2 , fa and fa^

with the tangents at the node. Show that.

(sin 6X . sin fa . sin fa) 4- (sin #2 . sin
<f>2 . sin fa)

is constant.

[Use the fact that in Ex.' 4 the product of the parameters of three

collinear points is — 1.]

Ex. 6. Show that no real tangent can be drawn to a crunodal cubic

from a point on the loop ; and that from any other point of the curve

two real tangents can be drawn, one point of contact being on the loop

and the other not.

[If
<f>, ty are the parameters of a point and its tangential,

2^ +^= (mod. ttj).]

Ex. 7. Considering an acnodal cubic (supposed continuous at the two
ends of an asymptote) as divided into three parts by the three real

inflexions, prove that from any point on one part two real tangents can
be drawn to the curve, one point of contact lying on each of the other

two parts.

Ex. 8. The conic of closest contact at P with a crunodal cubic meets
the line of inflexions at unreal or real points according as P does or does

not lie on the loop.

[See Ex. 4.and Ch. X, § 2, Ex. 16 (ii).]

Ex. 9. The line of inflexions of

(a^x* + 2a
i
xy + a2y

2
) z + A^x3 + %A

l
x2

y + ZA^xy1 + A s y
s =

is 4 (n a2
- o^

2
) z + 3 (a A

2
+ «

2
A - 2 a

x
A ,) x + 3 (a A 3 + a %Ax

- 2 a, A
t ) y= 0.

[It is the (n - 1) auuz = -(n- 2) am of Ch. VII, § 7, Ex. 14 (v) in the

case n = 3. For another proof see Bromwich, Messenger Math., xxxii,

p. 113. Or again, we may use the theory of covariants, verifying the

result for any special form of the equation of the cubic]

f2
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Ex. 10. A family of nodal cubics has given inflexions and the tangents
at two of the inflexions are also given. Show that the locus of the node
is a straight line.

[The harmonic polar of the third inflexion by Ex. 3. Or put the
equation of the family in the form

/fc
333 = (x+ y + 3kz)xy.]

Ex. 11. The line joining two points of the cubic of § 4 (i) with
parameters a, (3 is

z = {sin 2 a + sin 2 - sin 2 (a + 0)} x + {cos 2a + cos 2 + cos 2 (a + 0)} y.

For the cubic of § 4 (iii) replace sin and cos by sinh and cosh.

Ex. 12. The other intersections with the curve of any line through
a fixed point of a nodal cubic subtend an involution at the node.

Ex. 13. The tangents at Q and R to a cubic with node meet on
the curve at P. The line QR meets the curve again at S, and OP meets
'QR at E and the line of inflexions at F. Show that

(i) OQ and OR are harmonically conjugate with respect to the tangents
at and also with respect to OP and OS.

(ii) (OF, EP) is harmonic.

(iii) As P varies QR envelops a conic touching the tangents at the
node, the line of inflexions being the chord of contact.

[Take the cubic of § 4 (i) ; the case of the cubic (iii) is similar. The
parameters of P, Q, R, S are respectively 0, — 10, \(ir — 4>), — £71-.

The line QR is z + sin 2 f x + cos 2 y = 0, whose envelope is s2 = a;
a + y*.]

Ex. 14. The tangents at Q and R to a cubic with a node meet on
the curve at P, and the tangents at Q' and R' meet on the curve at P'.

Show that

(i) The conic OQRQ'R' meets the line of inflexions on OP and OP'.

(ii) The conic through touching the cubic at Q and B touches the
line of inflexions at a point on OP.

(iii) If the tangents at P and P' meet on the curve, QR and Q'R'
meet on the line of inflexions. *

Ex. 15. A nodal cubic and its Hessian are in plane perspective, the
node being the vertex of perspective, and the line of inflexions the axis
of perspective.

Ex. 16. The points of contact of the four tangents from P to a nodal
cubic subtend a pencil of constant cross-ratio at the node. Find the
locus of P.

[Eliminating z between the equation of the cubic and the polar conic
of P, we get the rays of the pencil. Now use Ch. I, § 11.

If the pencil is equianharmonic, the locus is the line of inflexions. If
it is harmonic, the locus is a cubic]

Ex. 17. A conic touches the tangents at the node of a cubic. Prove
that the points of contact with the cubic of the six other common
tangents of conic and cubic lie on another conic.
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Ex. 18. A straight, line cuts a{xi + y
i
) = Xs

. in P, Q, R. Show that
the lines joining P, Q, It to the node make angles with any fixed line

whose sum is constant.

[Any point on the curve is (a(l + t
2
), at(l + fi)). If f

l , tit t3 are the
parameters of three colliriear points, t^ +t^ + t^ = 1, which shows
that the lines joining the points to the origin make angles with x —
whose sum is Jn-.]

Ex. 19. Prove a similar theorem for the six points in which the cubic
of Ex. 18 meets any conic.

Ex. 20. Show that the points of contact of tangents from any point on
3x = 2a to a{x2 — y

2
) = xs lie on a circle through the origin, and that

the centre of this circle lies on a fixed line.

Ex. 21. A circle through the node cuts a (x2 -y2
) = xs again in four

points, and the sum of the angles which the lines from the node to these
points makes with a fixed line is constant. Show that the locus of the
centre of the circle is a fixed line.

Ex. 22. If a chord of xs + y
3 == Baxy subtends 90° at the node, the

chord meets the cubic again at a fixed point.



CHAPTER XIV

NON-SINGULAR CUBICS

1. Cubics with Unit Deficiency.

A

Fig. 1.

9 (i + 4) y
1 + 2ixy + x (x2 + 2x- 16) = 0.

In this chapter and the two following we shall consider the

properties of non-singular cubics, i. e. cubics without a double
point and of unit deficiency.

As in Ch. XIII, § 2, we see that there are lines meeting the

curve in only one real .point. Project such a line to infinity,

and the curye will have one and only one real asymptote.
Place the asymptote vertical (Fig. 1), and suppose a line I

starts from coincidence with the asymptote and travels to the

right, remaining parallel to the asymptote.
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At first I meets the curve in two real finite points, for the
curve in general approaches the asymptote on opposite sides
at the two ends. As I travels, eventually these two points
coincide and I is a tangent. Similarly if I travels to the left.

Hence there is a continuous portion of the cubic called the odd
circuit * approaching the asymptote at its ends, meeting the
asymptote in a finite point, and contained between two lines

Zj , l
2
parallel to the asymptote.

It may happen that, when I travels still further to the right
(or left), it touches the cubic again. As I travels yet further
it must again become a tangent, since the curve has only one
asymptote. The curve will then have a portion called the
even circuit * or oval contained between two lines ls , Z4 parallel

to the asymptote. The curve can have no other portion ; for,

if two ovals existed, a straight line cutting both would meet
the curve in four points.

If a cubic has three real asymptotes, the term ' even circuit'

is applied to that part of the curve (if any) which can be pro-

jected into an ovaf, the rest of the curve being the ' odd
circuit '.

Hence cubics can be classified into two main divisions

:

one-circuited cubics having a single odd circuit, and two-
circuited cubics having an odd and an even circuit.f

From a point P on the even circuit of a cubic, no real

tangent can be drawn (other than the tangent at P). For any
line through P must evidently meet the odd circuit and must
meet the even circuit in a point other than P (see fig. 1). Of
the three points thus obtained no two can coincide, unless the
line is the tangent at P.
From a point P on the odd circuit two real tangents can

evidently be drawn to the even circuit (if any). Moreover,
two real tangents can be drawn from P to the odd circuit.

For this is true of one point of the circuit, namely the

distant point A ; and as a poirit travels along the curve from
A to P, a real tangent from the point remains real and an
unreal tangent remains unreal.

The cubic has nine inflexions, namely the nine intersections

of the cubic with its Hessian (Ch. VII, § 7). Of these an odd
number must be real, since both cubic and Hessian are real.

We shall show that exactly three are real, that they are col-

linear, and that they lie on the odd circuit of the cubic.

* The names ' odd ' or ' even ' circuit emphasize the fact that the circuit is

met by any straight line respectively in an odd or even number of points.

t The names ' unipartite ' and ' bipartite ' are also used instead of ' one-
circuited ' and ' two-circuited '.



216 CUBICS WITH UNIT DEFICIENCY XIV 1

Firstly, no inflexion can lie on the even circuit. For the

tangent at such an inflexion would meet the cubic at three

points coinciding with the point of contact. But every straight

line must evidently meet the odd circuit in at.least one point,

and therefore no straight line can meet the even circuit in

more than two points.

Secondly, suppose A and B very distant points on opposite

ends of the odd circuit. It is evident from fig. 1 that, since

the odd circuit does not cross itself * between A and its inter-

section C with the asymptote, the circuit has at least one

Fig. 2.

inflexion between A and C. Similarly it has an inflexion

between B and G.

The circuit has then two real inflexions. The line joining

them meets the circuit again in a real point which is also an
inflexion (Ch. VII, § 4).

To show that the curve has no more than three real inflexions,

suppose that ij, I
2 , Iz

are the inflexions just found and that

I
i is a fourth real inflexion (Fig. 2). Then I-^I^, I2 ^4' ^z^-i

meet the curve again in real inflexions I
& , I6 , J7 ; while 7j/7

and ISI5 meet the curve again in real inflexions I
s
and J

fl
,

which we may suppose to be their intersections with 7
2
/
5
and

Zj/7 , since these latter lines also meet the curve again in

inflexions. Then 1^, I
e
I

3 , I6
I
S , !$!$, &c., meet the curve

* Contrast the case of the crunodal cubic in Ch. XIII, fig. 4.
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again in real inflexions ; contrary to the fact that the curve
has no more than nine inflexions real or unreal*

Ex. 1. Obtain the results of § 1 by proving that at least one line can
be drawn through an inflexion meeting the curve in only one real point
and projecting that line to infinity.

Ex. 2. Obtain the results of § 1 by projecting a real inflexional
tangent to infinity.

Ex. 3. Show that the locus of the centroid of the three intersections
with a given cubic of straight lines drawn in a fixed direction is a straight
line

; and that, as the direction varies, the locus envelops a conic.

Ex. 4. Through a point of a cubic any line is drawn meeting the
cubic in Pand Q. Show that the locus of the middle point of PQ is
a cubic with a node at and asymptotes parallel to those of the given
cubic.

[Use polar coordinates with as pole ; or see Ch. XI, § 8, Ex. 3.]

Ex. 5. The locus of a point P, such that the lines joining P to three
fixed points meet three fixed lines in collinear points, is a cubic through
the fixed points and the vertices of the triangle formed by the fixed
lines.

Ex. 6. If OA, OB, 00, OD are the tangents from a point of a cubic
to the curve, the cubic is the locus of the point of contact of a tangent
from to any conic through A, B, C, D.

i

§ 2. Circular Cubics.

We pointed out in § 1 that we can always find a line meeting
a real cubic in only one real point. We may project the unreal
intersections of the line and cubic by a real projection into the

circular points co, ca. Hence we can always project a cubic

into a circular cubic, i. e. a cubic passing through the circular

points to, a/.

From the real point at infinity on a circular cubic two or

four real tangents can be drawn according as the 'cubic has

one or two circuits (§ 1). They are parallel to the real

asymptote.
Take tbe point of contact of one of these tangents as the

origin, and the tangent as the axis of y. Then the cubic takes

the form
x(x2 + y

2
) + ax2 +2hxy + by2 + kx = . . . (i).

The inverse of this with respect to the circle with centre the

* We may apply the above proof to show that an acnodal cubic has exactly

three inflexions which are real and collinear.
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origin and radius It* is obtained by writing Tcx/(x2 + y
2
) for x,

ky/(x2 + y
2
) for y, and is found to be the cubic itself. Hence

:

A circular cubic is self-inverse* with respect to four circles.

This system of circles is obviously self-inverse with respect

to any one of the circles, since the cubic is. Therefore the

Pig. 3 (i).

circles are all mutually orthogonal. It follows that the radical

axis of any pair of the circles must pass through the centres

of the other two, and thence that any one centre is the ortho-

centre of the triangle formed by the other three.

If the circular cubic has two circuits, three of the circles

with respect to which it is self-inverse are real. The remaining

* The word anallagmatic is sometimes used in the sense of ' its own
inverse ' or ' self-inverse '.
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circle is unreal, but it has a real centre on the side of the oval

near to the odd circuit.

If the circular cubic has one circuit, two of the circles are

real, and the other two have unreal centres. This will be clear

from Fig. 3.

Pig. 3 (ii).

ix(xi + y
i
) + ix{x + 5y) + i0y-71x = 0.

Ex. 1. The two circles with respect to which a circular cubic is self-

inverse and which have their centres on the odd circuit meet the cubic

at two or four real points according as the cubic has one or two circuits.

The other two circles do not meet the cubic in real points.

[The points are the points of contact of tangents to the cubic from

the centres of the circles.]

Ex. 2. The tangents to a circular cubic from a point where the

tangent is parallel to the real asymptote are all equal.
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Ex. 3. The inverse of a circular cubic with respect to a point on it

is a circular cubic. Its inverse with respect to any other point is a

bicircular quartic.

Ex. 4. Any circular cubic can be inverted into a circular cubic sym-
metrical about a line, or into a bicircular quartic symmetrical about two
perpendicular lines.

[The pole of inversion is (i) the intersection of the cubic with a circle

for which it is self-inverse, (ii) the intersection of two such circles.]

Ex. 5. A nodal circular cubic is self-inverse with respect to two circles,

and a cuspidal circular cubic with respect to one circle.

§ 3. Foci of Circular Cubics.

Suppose j is one of the four circles with respect to which
a circular cubic is self-inverse. Let a tangent from the circular

point a) to the cubic meet j at 8. Then the inverses of the

cubic and the line coS with respect to j are the cubic and co'S

respectively. Hence m'S also touches the cubic, and 8 is a

focus; Now four tangents can be drawn from co to the cubic,

other than the tangent at co, for the cubic is of class 6. Hence

:

Any circular cubic is self-inverse with respect to each offour
mutually orthogonal circles, and the sixteen foci lie by fours
on these four circles.

If P, Q, R, S are the foci on j, the pencils co (PQRS) and
a/ (PQRS) have the same cross-ratio, since co, co', P, Q, R, S- are

all on the circle j. Therefore the pencil of tangents from co to

the cubic has the same cross-ratio as the pencil of tangents

from co'. If we allow the use of unreal projection, any two
points of. a cubic may be (projected into co and co', the cubic

being thus projected into a circular cubic. Hence we h%ve
the important theorem

:

The tangents to a cubic from any point of the curve (other

than the tangent at the point) form a pencil of constant cross-

ratio.

The cross-ratio is real, if the cubic has two circuits ; unreal

or equal to —1, if the cubic has only one circuit. This is

evident on considering the pencil of tangents from a real point
at infinity on the cubic (see Fig. 1). For the cross-ratio of

a pencil formed by two real and two conjugate unreal lines is

unreal, unless the pencil is harmonic ; while the cross-ratio ofa
pencil formed by four real lines is real.

It will be seen in § 5 that, if the cross-ratio is — 1, then
with the notation of that section, /c

2 + 6/c + 6 = 0. There
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exist both one-circuited (k = — 3 + </3) and two-circuited
(k= —3—V 3) cubics, for which the cross-ratio of tangents
is —1.

If a real focus S of a two-circuited circular cubic lies on
a circle j for which the cubic is self-inverse, the other real foci

are obtained by inverting S repeatedly with respect to the
other circles for which S is self-inverse. These inversions

leave,;' unaltered, and therefore all four real foci lie onj. The
cross-ratio of the pencil of tangents from any point of the

curve is the cross-ratio of the pencil subtended by the four real

foci at a> or at any point of the circle j.

Similarly we show that, if the cubic is one-circuited, two
real foci lie on each of the two real circles with respect to

which the cubic is self-inverse.*

Take now the origin at the singular focus of the circular

cubic and the axis of y parallel to the real asymptote. Then
the terms of the highest degree in the equation of the curve
are x (x2 + y

2
), and the lines x2 + y

2 = meet the curve in only
one finite point apiece. It follows at once that the equation

of the cubic is

(x+p)(x2 + y
2
) + ax + by + c = .... (i),

where x + p = is the real asymptote.

Consider the circle, whose centre (tm2 — t, 2m£) lies on the

parabola with focus at the origin

y
2 = 4t(x + t) ...... (ii),

and which cuts orthogonally the circle

x2 + y
2 + 2 (p-2t)x + by/2t-(St2 -4tp + a) = . (iii).

Its equation is

2tm2 (2t-x-p)-m(4ty + b) + x2 + y
T+a + 2t(x-p) + 4t2 =

. . . . (iv).

Its envelope is found by writing down the condition that

(iv) should have equal roots in m. It coincides with (i) pro-

vided
64ti -64pt 3 +16(p2 + a)t2 + 8(c-ap)t-b2 = . (v).

The circle (iv) is orthogonal to the circle (iii), and therefore

it is self-inverse with respect to (iii). Hence its envelope

(i) is self-inverse with respect to (iii). If t is any given root

4 of (v), (iii) is one of the circles with respect to which (i) is

self-inverse.

* As just pointed out, if all four real foci lie on j, the cross-ratio of tangents

is real, which is only possible for a one-circuited cubic, if the pencil is

harmonic. . This case requires further investigation ; see § 3, Ex. 1, and

§ i, Ex. 3.
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The centres of those four circles of the family (iv) which
degenerate into line-pairs (circles of zero radius) lie both on
(iii) and on the parabola obtained- by putting t = t

x
in (ii).

They are by definition foci of (i).

It will be noticed that the distance of the centre of (iii)

from the asymptote x+p.= is 2£. Summing up, we have:

A circular cubic may be considered in four ways as the

envelope of a circle which H orthogonal to one of the circles j
with respect to which the cubic is self-inverse, and whose centre

lies on a fixed parabola with its focus at the singular focus of

the cubic and with its axis perpendicular to the real asymptote

of the cubic. The intersections of the 'parabola with the circle j
are foci of the cubic, and the distance of the centre ofjfrom the

asymptote is equal to the semi-latus-rectum of the parabola. % "5

1

The parabolas are called ' focal parabolas ' or ' deferent para-

bolas ' of the cubic.

In Fig. 3 (i) the singular focus of the cubic is (0, 0) and the

real ordinary foci are

(0, --5), (75, 1), (2-31, 1-6), (4-16, -2-1).

The points at which the tangents are parallel to the real

asymptote 200a? = 361, i.e. the centres of the circles with
respect to which the cubic is self-inverse, are the centre

(2-305, —715) of the circle through the real foci, and the
harmonic points (ff , _V<r)> (-ft, tbV). (I. M) of the quad-
rangle whose vertices are the real foci.*

The focal parabola through the real foci is 4-y
2 = 4>x + l.

The other focal parabolas are at once obtained from the
fact that their latera recta are twice the distance from the
asymptote of the centres of the circles for which the cubic is

self-inverse.

In Fig. 3 (ii) the circles for which the cubic is self-inverse are

4x2 + 4:y
2 -40x + 2Sy-99 =

and 4x2 + 4y2 + 4>0x + l2y-59 = 0,

while the corresponding focal parabolas are

(2y + 5)
2 = 40(x + 3) and (2y + 5)

2 = -40 (a: -2).

The asymptote is x = 0, and the origin lies on the curve.
In Fig. 3 (i) and (ii) the foci are sh6wn by the small

circles o, the singular focus by a cross x , the points of con-
tact of tangents parallel to the asymptote by the dots . .

* This follows from the fact that foci invert into foci whon the cubic is

inverted into itself.
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Ex. 1. Let a, b, c, d be tangents from o> to a circular cubic, and let
a', V, c', d' be tangents from m, so that the foci aa', bb', cc', Ad' lie on the
circle j of § 3. Then the foci

(i) aa', bb', cc', da", (ii) ba', aV, dc', cd\

(iii) ca', db', ac', bd', (iv) da', cb', lc', ad'

are such that the,groups (i), (ii), (iii), (iv) each lie on one of the circles
for which the cubic is self-inverse. If aa' and bb' are real, the circle (i)

contains four real foci, or else the circles (i) and (ii) contain two real
foci apiece. No other circle passes through four foci, unless the pencil
of tangents from a point on the curve is harmonic.

[The pencil (a'b'c'd') has the same cross-ratio as (abed), (bade), (cdab)

,

(deba). If (abed) is harmonic, (a'b'c'd') and (chad) have the same cross-

ratio, so that ca', bb', ac', dd' are also concyclic]

Ex. 2. In Ex. 1 the centres of the circles with respect to which the
cubic is self-inverse are the centre of the circle (i) and the intersections
of the pairs of lines joining aa', bb', cc', dd'.

Ex. 3. The radius of curvature of a circular cubic is a maximum or
a minimum at its intersections with the circles for which it is self-

inverse.

Ex. 4. The equation of any circular cubic.can be put in the form

x(x* + y
2
) + ax* + 2hxy + 2gx + 2fy = 0.

[Take the intersection of the cubic with the real asymptote x = as

origin.]

Ex. 5. Through the intersection of a circular cubic with its real

asymptote any chord OPQ of the cubic is drawn. Show that P, Q are

equidistant from the singular focus.

[The singular focus of the cubic of Ex. 4 is (— \a, — h).]

Ex. 6. The normals to a circular cubic with singular focus at its

intersections with a circle for which it is self-inverse touch a parabola

with focus and axis perpendicular to the asymptote.

[The corresponding focal parabola; see Ch. XI, § 11, Ex. 3. Many
properties of these normals can be deduced ; for instance, the four

circles circumscribing the triangles formed by any three of them pass

through and their centres lie on a circle through 0, &c]

Ex. 7. Find the focal parabolas of

3x(x'i + f) + 2x*+6xy + 6y'> = 4x

and the circles with respect to which it is self-inverse.

[The circles have centres (—1, 1), (-§, -4), (1, -J), (0, 0) and radii

J./30, £V220, WW. iV(~m
Ex. 8. In a one-circuited circular cubic the two real focal parabolas

have concavities in opposite directions. In a two-circuited circular

cubic the focal parabola through the real foci has its concavity in a

direction opposite to that of the other focal parabolas.

Ex. 9. The centres of three circles for which a circular cubic is self-

inverse are the vertices of the common self-conjugate triangle of the

fourth circle and its focal parabola.
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Ex. 10. Two circular cubics can be found with four given concyclic

foci, and their real asymptotes are perpendicular.

[Parallel to the axes of the two parabolas through the foci.]

Ex. 11. The lines joining four concyclic foci of a circular cubic in

pairs are equally inclined to the real asymptote.

Ex. 12. The centroid of any four concyclic foci of a circular cubic is the

foot of the perpendicular from the singular focus on the real asymptote.

[Eliminating y or x from § 3 (ii) and (iii) we get the abscissae or

ordinates of the four foci on (iii).]

Ex. 13. The directrices corresponding to four concyclic foci of a

circular cubic form a pencil of the same cross-ratio as the pencil sub-

tended by the foci at any point of the focal parabola through them.

[The directrices are found by differentiating (iv) with respect to m\
and choosing m so as to make (iv) a line-pair.]

Ex. 14. The centres of the four circles for which a circular cubic is

self-inverse lie on a rectangular hyperbola whose asymptotes are the

real asymptote of the cubic and the perpendicular from the singular

focus.

[The locus of the centre of (iii) is 2(x+p)y + b =0, if t is taken as

a varying parameter.]

Ex. 15. Show that the cubic (i) of § 2 is self-inverse with respect to

x2 +y2 = h, and that the corresponding focal parabola is

(y + hf = b(2x + a).

Find an equation giving the other focal parabolas.

Ex. 16. Show that all circular cubics having the same real asymptote
and singular focus, and self-inverse with respect to the same point, have
a focal parabola in common.

[See Ex. 15.]

Ex. 17. Show that the circle through the real foci of a two-circuited
circular cubic meets it in four real points, and that the inverse of the
cubic with respect to any one of these points is a circular cubic with an
axis of symmetry on which the four real foci lie.

[The corresponding focal parabola meets the circle at the real foci,

and the required points are the points of contact with the circle ofHhe
common tangents to circle and parabola. The circle inverts into the
axis of symmetry.]

Ex. 18. Show that a real circle with respect to which a one-circuited
circular cubic is self-inverse meets it in two real points, and that the
inverse of the cubic with respect to either of these points is a circular
cubic with an axis of symmetry passing through two real foci and
bisecting at right angles the line joining the other two real foci.

Ex. 19. A two-circuited circular cubic has x = as asymptote and
three real foci A (a, 0), B (0, 0), C (y, 0). Show that its equation is

(j3 + y)(y + a)(OC+P) {8x(x* + y')
%

+ 4 (a* + 2 + y* + 0y + yOC + a/3) X - (0 + y) (y+ (X) (tX + 0)}
= 4 {(a2 + 0* + y

2 + 0y + ya. + a0) 2 + 4 a0y (a + + y)} x\
[Find the foci of x {x1 + y*) + ax + by + c = in the usual manner, and

identify them with (a, 0), (0, 0), (y, 0), (8, 0). We have

a + + -y + 8 = 0, &c]
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Ex. 20. A circular cubic has three real foci A, B, C on a line meeting
the asymptote in H. Prove that

(HB*-HC*) . PA + tfCP-HA 2
) . PB±(HA2-HB2

) . PC = 0,

where P is any point on the curve.

[(/3'
2 ->2

)
(x* + y*-2(Xx + (X')h + tf-a.1

)
(x2 + y

2
-2fix + ^)i

+ (a ! -02
) (x

i + y
2-2yx + y

i)i =
becomes the equation of Ex. 19 when rationalized.l

Ex. 21. Show that, if in Ex. 19 is the singular focus,

OA^-i-aP + P' + yi + Py + yOC + OLpy-i-liP + tiiy+ ^iCX + p), &c. ;

and that

(OBl - OCh) .PA±(OCi- OAi) . PB ± (OAi- OBi) . PC = 0.

Ex. 22. Show that, if in Ex. 20 ABC meets the cubic in U, V, W,
8HU.HV. HW = (EB + HC) (SC+HA) (HA + HB).

Ex. 23. A two-circuited circular cubic has real foci A, B, C and the
circle ABC meets the cubic in K. The circle of curvature at K meets
the circle ABC again at H. Prove that

(HB2
. KW-HC*. KB1

) KA .PA+ ... + ... = 0,

where P is any point of the curved

[Invert with respect to K, and we have Ex. 20. Similarly we may
invert the results of Ex. 21, 22.]

Ex. 24. A one-circuited circular cubic has x = as an asymptote and
three real foci E {£, i/), F(t-, -i;), C(y, 0). Show that its equation is

+ 2(Se- n
* + y* + 2iy)x-£(e + n

*+ y* + 2t,)}
= {(2e-r,> + y* + 2£yy +4y(e + r

l')(2Z + y)}x*.

[(! + *>?> 0) are foci. Therefore replace a, by £ + »"i/ in Ex. 19.]

Ex. 25. Show that the distances of any point P from the points

i(|+«,,J+in B(i-ir,,X-iY), E[£+Y
t X-n), F(£-Y,X+r,)

are connected by the relation

(p + i<r)PA+(p- ia) PB = p (PE2 +PF1-EF2 +2PE . PF)*

-<r(EF2-PE2-PF1 + 2PE.PF)h,
p and a- being any real constants.

Ex. 26. Obtain a relation connecting the distances of any point P on
the cubic of Ex. 24 from the foci E, F, C by substituting for PA ± PB,
&c, from Ex. 25 in Ex. 20 or 21.

By inversion obtain a property of any one-circuited cubic, as in Ex. 23.

Ex. 27. The locus of the foci of a conic through four given concyclic

points is a pair of circular cubics with the given points as foci.

[Write down the conditions that the pair of tangents from any point to

k (a;
2 + 2fy + a) = y

2 + 2gx + b

should be a circular line-pair, and eliminate k.

The asymptotes of the cubics are parallel to the axes of reference.]

2216 Q
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Ex. 28. Any circular cubic passing through its own singular focus
may be considered as the locus of the intersection of any member of
a given family of coaxial circles with its diameter through 0.

[Take as origin and the circles as

x' + y^+px+a = t(py — b).]

Ex. 29. Any circular cubic passing through its own singular focus may
be considered as the locus of a point P such that PA . PB = PC . PD,
where A, B, C, D are fixed points.

Ex. 30. Find the locus of P if

(i) The tangents of the angles APB, CPU have a constant ratio,

A, B, C, D being fixed points.

(ii) The product of the tangents from P to two fixed circles is equal
to the product of the tangents from P to two other fixed circles.

(iii) The square of the distance of P from a fixed point multiplied by
the distance of P from a fixed line varies as the distance of P from
another fixed line.

§ 4. Pencil of Tangents from a Point on a Cubic.

The theorem that the four tangents to a cubic from any
point of the curve (excluding the tangent at the point) form
a pencil of constant cross-ratio was proved in § 3 by means of

unreal projection. The theorem is so important that a straight-

forward proof is given here, only involving real quantities.

It is sufficient to show that, if A and B are any two points
on the cubic, the cross-ratio of the pencils of tangents from
A and B are the same. Let the tangents at A and B meet
at G ; and take ABC as the triangle of reference. Since (74, GB
are the tangents at A and B, the coefficients of x*, y

3
, x2

z, y
2z

in the equation of the cubic are zero.

Hence, choosing suitable real homogeneous coordinates, the
equation of the cubic becomes

z3 + z2 (x + y) + xy(ax + by + 3cz) = 0.

The line x = tz meets this cubic where

o (t+l) z2 +{at2 + 2ct + l)yz + bty* = 0,

and therefore touches it, if

{ati + 2ct + \f-4>U{t + \) = 0.

Hence the tangents from B to the cubic are

(ax2 + 2 cxz + z2
)
2-4 bxz2 (x + z) = 0.
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By Ch. I, § 11, the cross-ratio of these tangents is given by
I3 (0+1)2 (0-2)2 (0-i)» = 27J»(^-0 + l)3

,

where
2"= 12 {a2 -a& + 62 + 3a&c-2(a + 6) c2 + c

4
},

J=4,(2a2 -oab + 2b*)(a + b)-27a?b2 + 36ab(a + b)c

-12(2a2 + ab + 2b 2)c2 -36abc 3 + 24,(a + b)ci -8ce
.

Since these expressions for / and J are symmetrical in a
and 6, the cross-ratios of the pencils of tangents from A and B
are the same.

Another proof of the theorem is given in Ch. XVI, § 7, Ex. 1.

Ex. 1. Discuss the case tacitly excluded in § 4 in which the tangent
at A goes through B, or vice versa.

[Compare the pencils of tangents from A and B with the pencil
drawn from any other point of the curve.]

Ex. 2. Show that the pencils of tangents from two adjacent points
P and P of the cubic have the same cross-ratio, by using the fact that
the polar conic of P touches the cubic at P and passes through the points
of contact of the tangents from P.

Can the theorem of § 4 be deduced ?

[Strictly speaking, only if A and B lie on the same circuit of the
cubic]

Ex. 3. If a circular cubic is inverted with respect to a point O on the
curve, the cross-ratio of tangents is the same for the curve and its inverse.

By taking as the intersection of the curve with a real circle for

which it is self-inverse, prove that the intersection of two such circles

cannot be a focus; and that the four real foci of a harmonic one-
circuited cubic lie on a circle for which the cubic is not self-inverse.

[The four tangents from a> invert into tangents from a, forming a
pencil with the same cross-ratio.

The equation of the inverse curve is § 2 (i) with h = and k > 0.

The real foci are readily found. The curve is harmonic if ah = 2fc, and
one-circuited if 4& > a2

.]

§5. The Cubic (x + y + z) 3 + 6kxyz = 0.

We proved in § 1 that a non-singular or acnodal cubic has

three real collinear inflexions. Choose the tangents at these

inflexions as the sides of the triangle of reference, and choose

real homogeneous coordinates such that the line of inflexions

is x+ y + z — 0.

The most general equation of a cubic is

xyz = ax3 + bys + cz3 + 3yz(fy +pz) + 3zx (gz + qx)

. +3xy(hx + ry).

Q 2
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With our choice of coordinates x = meets, this where

(y + zf = 0, so that b = c —f = p. Similarly for y = and
z = 0. Hence :

Any cubic (other than a crunodal cubic, a cuspidal cubic,

or a cubic with three concurrent real inflexional tangents) can
be put in the form

(x + y + z) 3 + 6Icxyz =
by a real choice of homogeneous coordinates.

Conversely, the cubic

/= (x + y + z)3 + 6kxyz = (i)

has three and only three real inflexions (0, 1, —1), (—1, 0, 1),

(1, — 1, 0), the real inflexional tangents x = 0, y = 0, z =
being not concurrent. Hence we cannot put the equation
of a cubic with three real concurrent inflexional tangents or of

a cubic with a cusp or crunode into the form (i).

The curve (i) has a double point when

ix iy i)Z

This gives, on excluding x = y = z = 0,

Jc = — f and x= y = z.

Hence

:

An acnodal cubic can be put in the form
(x + y + z) 3 = 27xyz

by a real choice of homogeneous coordinates, the acnode being
the point (1,1,1).

To find the cross-ratio of the pencil of tangents drawn to

the cubic from any point of the curve, it is sufficient to con-
sider the tangents drawn from the point (1, —1, 0).

Now t (x+ y) = z meets the curve where

{t + \)
3 (x + yy + Gktxy = 0,

and therefore touches it if

4(* +m3 + 6 (2 + h) t* +U = 0.

Proceeding now as in § 4 we have

k(k + 4)
3

{(<l> + l)(<t>-2)(<!>-$}* = (]c* + 6k + 6)Z(<t>>-<p + l)\

The tangential equation of the cubic, found as in Ch. IV,

§ 3, is

9 (fi- vf {v- A) 2 (X- /*)
2 + 4k (- 2fiu + p\ + \,j.)

. , (fti'-2vX+\fi)(fiv + vX-2Xfi.)-l2k!i \2
fi

2v !i = 0.
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Ex. 1. For what value of h is the pencil of tangents from any point of
ihe cubic (x + y + z) s + 6kxyz = (i) harmonic, (ii) equianharrnonic ?

[(i) &2 + 6& + 6 = 0, (ii) k = -i.]

Ex. 2. Find the inflexions of the cubic

/= (x + y + z)
s+6kxyz = 0.

[The Hessian is

H=(x + y + z)(2yz + 2zx + 2xy-xt -yi -zi
) + 2kxyz = 0.

The inflexions lie on the lines

f-3H=4:(x + y + z)(x + ay + a>''z)(x + ca*y + B)z) = 0.]

Ex. 3. Show that in general two cubics with given inflexional tangents
at three given collinear inflexions touch a given line. Mention any
exceptions.

[If the line passes through an inflexion or the intersection of two of
the given tangents, there is only one cubic]

Ex. 4. Given the tangents at three given collinear inflexions of a
cubic, the locus of the remaining inflexions is two straight lines.

[See Ex. 2.]

Ex. 5. Show that nine cubics can be drawn in general to pass through
three given points, given three inflexional tangents and the fact that the
three corresponding inflexions are collinear.

[If ltx +miy + n(
z = (i = 1, 2, 3) are the inflexional tangents and

the three given points are the vertices of the triangle of reference, the
cubics are

{l-^x + m^y + iiyz) (l2x +m2 y + ii^z) (ls x + m3y + n3 z)

= {(hhhfi x + [mym^m^l y+ (n^n^i z} s
,

any value of the cube roots being taken.]

Ex. 6. Under what circumstances is the triangle formed by the real

inflexional tangents of a cubic self-conjugate with respect to one of the

polar conies of the cubics ?

[The polar conic of (1, 1, 1), when h = —3.]

Ex. 7. The point and tangential equations of an acnodal cubic can be

put in the form

xi + yi'+zi = 0, X-i+p-i + v
-
! = 0.

§ 6. Symmetry of Cubics.

A curve of the second degree has always symmetry, but this

is not true of a curve of the third degree. However, a cubic

may always be projected into a symmetrical curve.

Firstly, we have :

A cubic can be projected so as to be its own reflexion in

a line.

For suppose / is any real inflexion and I its harmonic polar.
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Let any line through I meet the cubic again in P, Q and I in R.
Then (IR, PQ) is harmonic.

Hence, if we project / to infinity and the angle between
I and IR into 90°, PQ will be bisected at right angles at R.
Again,

A cubic can be projected so as to be symmetrical about a
centre.

*» = I. * - I-

Pig. 4.

Aa/
c....\

For if we project I to infinity, 7 will be the middle point
or ry.

These two theorems hold for nodal and cuspidal cubics also.
More interesting, perhaps, is the result due to Clifford

(Collected Works, p. 412)

:

Any cubic (other than a crunodal or cuspidal cubic) can be
projected so as to have the symmetry of an equilateral triangle.

In fact project the cubic so that the line of real inflexions
is at infinity, and the triangle formed by the real inflexional



XIV 6 SYMMETRY OF CUBICS 231

: — i k = —2*3
8) K 56'

Fig. 8.
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tangents is equilateral. Then, taking areal coordinates, we
proved in § 5 that the equation becomes

(x + y + s)
3 + 6Jcxyz = 0,

from which the symmetry is obvious.

m = -l, fc = -'
7
2
-.

Fig. 10.

The case in which the inflexional tangents are concurrent

wants separate discussion.

In this case project the curve so that the line of real

inflexions is at infinity and the angles between the inflexional
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tangents are 120°, Take their intersection as origin and one
of them as the axis of x. Then the asymptotes of the curve
are y = 0, y — + -/3 . a; ; and -since the asymptotes meet the
curve in no finite point the equation of the curve is of the form

y(3x2—y2
) = a3

,

or in polar coordinates

r3 sin 3 6 = a3
,

from which the symmetry is obvious.

The cubic has one or two circuits according as y = z meets
the curve in one or three real points, i. e. according as h is

greater than or less than — f

.

Diagrams of the cubic" for various values of k are given in

Figures 4 to 10. The m and the dotted lines are explained

in § 7. We have (4m2-2m + l)J = 4(m-l) s
-

§7. The Cubic x3'+y3 + z3 + 6mxyz = 0.

Every real non-singular cubic can be put in the form,

x3 + y
3'+ z3 + Omxyz =

by a real choice of homogeneous coordinates.

We proved in § 5 that a cubic can be put in the form

(x + y + z) 3 + 6kxyz = (i)

by a real choice of homogeneous coordinates.

In this equation put

x = -2mX + Y+Z, y = X-2mY+Z, z = X+Y-2mZ,
where 4(m— l)

3 = fc(4m2—2m + l) .... (ii)

i.e. 2(1—m)(2m + l)X = (2m + l)x+ y + z, &c.

This will be lawful except in the cases

m = 1 when k = 0, and m = — \ when k

Then straightforward reduction gives

9
'S Wlicii n- — 2 .

(x + y + z)
3 + 6kxyz =^ +̂1

(X 3+Y 3 + Z 3 + 6mXYZ).

Hence if we choose m as the real root of (ii), i. e.

m - {2(2Jfe + 9)*+(2ifc)*} -> {2(2/c + 9)5-2(2/c)i},
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and replace X, Y, Z by x, y, z * we have the cubic in the

required form.

We now consider the cases m = 1 and m= —\.
Firstly, we note that, if

/= x3 +y
3 + z3 + 6mxyz = .... (iii)

has a double point, -^ = ^ = ^- = at the double point,r ' <>x <>y <>z

which gives on elimination of x : y : z that 8m3 + 1 = ,0. But
a value of m satisfying this equation makes / split up into

three linear factors.f Hence (iii) cannot be a unicursal cubic

unless it is three straight lines. This explains the failure of

the above argument when k = — •§, which gives us an acnodal

cubic (§ 5).

Secondly, we note that our argument does not apply to the

cubic for which the tangents at the three real collinear in-

flexions are concurrent ; for such a cubic cannot be put in the

form (i). We showed in § 6 that it can be put in the form

y(Sx2— y
2
) = a3

;

and putting

X = -2?a + &x + y, Y = -&a-&x + y, Z=-2$a-2y,
we have

X3+Y3 + Z3 + 6XYZ= -18cs3 -18i/ 3 + 54a;a2/ = 0.

Hence the case on = 1 gives us the cubic in which the
tangents at three real collinear inflexions are concurrent.
• The sides of the triangle of reference for the cubic (iii) are

given by the dotted lines of Figures 4 to 10.

§8.

The inflexions of

xs + y
3 + z3 + 6mxyz = . .- . . . (i)

are its intersections with the sides of the triangle of reference.

In fact the equation may be written

(— 2mx + y + z) (—%mx + a>
2
y + coz) ( - 2mx + a>y + a>

2
z)

+ (8m3 + l)a:3 = 0;
which shows that

— 2mx + y + z = 0, —2mx + m2
y + mz = 0,

—2mx + ay + a>
2z =

are inflexional tangents whose points of contact lie on x = 0.

* By Ch. I, § 1, this is equivalent to choosing fresh homogeneous co-
ordinates with (2m + l)x + y + s = 0, #c, as the sides of the new triangle of
reference.
* See the beginning of § 8.
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Another proof is obtained by writing down the polar conic of
any intersection of the cubic and x = 0, for instance (0, — 1, 1).
It will be found to be

(—2mx + y + z)(y-z) = 0.

Since this degenerates, (0,-1, 1) is an inflexion, •

— 2ma: + y + z =
being the inflexional tangent and y = z the harmonic polar of
the inflexion. Another proof is given in § 9.

The nine inflexions of (i) are given by the scheme

(0, -1,1), (0,.-o>2
,a>), (0, -co,co2

))
.(1,0, -1), (»,(>, -co2

), (a,
2

, 0, -»)
(-1,1,0), (-a,2

, co, 0), (-co,co\0)\

The inflexional tangents are

~2mx + y + z = 0, —2mx + coy + co
2z = 0, — 2mx + co*y + coz = 0)

x— 2my + z = 0, co
2x—2my + coz = 0, cox-2my + co

2z — 0\

x +y—2mz =
)

cox + co
2y— 2mz = 0, co

2x + coy— 2mz = Oj

The harmonic polars of the inflexions are

y = z, y = coz, y = co
2 z\

z — x, z = cox, z = co
2xl .

-co2
y)x — y, x = coy, x

The inflexions lie by threes on twelve lines

x =
y = o
z =

x + y + z =
x + coy + co

2z =
x + co

2
y + coz —

cox + y + z =
x + coy + z —
x + y + coz = 0.

co
2x + y + z = 0]

x + co
2y + = L

x + y+ co
2z = Oj

Three inflexions are collinear if (]») they lie in the same row
of the inflexions-scheme, (2) they lie in the same column,

(3) no two of the three inflexions lie either in the same row
or in the same column.
The twelve lines intersect in twenty-one points, namely the

nine inflexions and the twelve ' critic centres ' of the cubic

(1,0,0), (1,1,1), (0)2,1,1), (a,, 1,1))

(0,1,0), (1, co
2

, co), (1,«M), (l,«,l)f.
(0,0,1), (1, co, co

2
), (1,1, co

2
), (I, I, co))

If <j> is the cross-ratio of the pencil of tangents from any
point of (i) to the curve,

64m3 (m3 -l)3
{(</> + 1) (*-2) (</>-£)}

2

= (8m° + 2Qm3-
1)

2
(t/>

2- </> + 1)
3

.
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This may be proved as in § 5 by considering the pencil of

tangents from (—1, 1, 0) to the.curye ; or by putting

k = 4(m-l) 3
-T- (4m2-2m+l) . . . (ii)

in the expression for the cross-ratio found in that section.*

The tangential equation of the curve is

\e + fi
6 + va- (32m3 + 2) (ji* v3 + v3X3 + A3

/*
3
)

- 24m 2
A/«/ (A3 +^ + v3

) - (48m4 +-24m) AV v* = 0.

The curve has two circuits if m < — \ , and one circuit if

m>— \, as may be -deduced from § 6 by means of equa-

tion (ii) above.

As an exercise the reader may obtain this result from the

expression just obtained for (/>, noting that
<f>

is only real (and

not — 1, \, or 2), if the cubic has two circuits.

Ex. 1. Show that the equation of any cubic, not crunodal or cuspidal,

can be put in the form

y^z+ yz2 + z2x + zx2 + x?y + a>y
2 + 6lxyz = 0.

Find the cross-ratio of the tangents from any point of the curve.

[Consider the tangents from (1, 0, 0). The cubic is acnodal, ifl=—l.]

Ex. 2. Find the cross-ratio of the tangents from any point of

y*z + x'y '+ z^x + Gpxyz = 0.

[Consider the tangents from (0, 0, 1). The pencil of tangents is

harmonic if 2l6p" + B6p3 + l = 0, and equianharmonic if p = or

9ps + 1 = 0. We show in Ch. XVI, § 6, Ex. 15, that the equation of a
cubic can be put into this form in twenty-four different ways.]

Ex. 3. Show that the equation of any cubic, not crunodal or cuspidal
or having three real concurrent inflexional tangents, can be put in the
form

x3 + y
3 +z!i = h (x+ y + z) s

.

[Replace x,y,z by y + z, z + x, x + y in § 7 (i).]

Ex. 4. The inflexions of the cubic of Ex. 3 lie on

(x + y + z) (x + ay + a>
2
z) (x + a>

2
y + a>z) = 0.

The lines x = 0, y = 0, z = each pass through a real inflexion, the
inflexional tangents being y + z = 0, &c.

Ex. 5. Find the cross-ratio of the pencil formed by the tangents from
any point of the cubic of Ex. 3.

[Consider the tangents from ( — 1 , 1, 0).]

* For the caso of any cubic, see Elliott's Algebra ofQuanUcs, § 291, &c.
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' § 9. Syzygetie Cubics.

The Hessian of

x* + y
3 + z3 + Gmxyz = . . . . (i)

is at once found to be

x3 + y
3 + z3 + GMxyz =

where M = -(2m3 + l)/6m2
(ii).

The curve and its Hessian meet where xyz = ; i. e. the
inflexions of the cubic lie on the sides of the triangle of
reference, as proved before.

We see that

:

A cubic has the same inflexions as its Hessian.

The family of cubics found by varying m in the equation (i)

all have the same inflexions ; they are called a family of
syzygetie cubics. The Hessian of any member of the family
belongs to the family.

The harmonic polars of the inflexions are the same for all

the syzygetie cubics of the family.

Since (ii) is of the third degree when considered as an
equation in m,

Any non-singular cubic is the Hessian of three syzygetie
cubics.

Ex. 1. A real cubic is the Hessian of one or three real cubics according
as it has one or two circuits.

[The roots of the equation 2m3 + 6Mm* + l = in m are all real, if

8ifcf
3 + l< 0.]

Ex. 2. All cubics through eight given inflexions of a ctabie pass
through the ninth inflexion and are syzygetie with it.

[If /= is the cubic and ff = its Hessian, any cubic through
eight inflexions is f+hH= 0].

Ex. 3. The polar line of a point P on a cubic with respect to any
syzygetie cubic passes through the tangential of P.

[If P is (x, y, z), the tangential of P is

(xy^ — xz3
,
yz3 — yx3

, zx3 — zy3 ).]

Ex. 4. The polar conic of a point P with respect to any cubic of
a syzygetie family goes through four fixed points lying on that cubic
of the family which passes through P.

[IfP is (£, i), £), the polar conic passes through the four intersections

of £ks + ijy' + (z* = and %yz + r)zx+ £xy = 0.]

Ex. 5. If the pencil of tangents from any point of a cubic is harmonic,
the cubic is the Hessian of its Hessian.

[8m6 + 20m3 — 1 = 0. We may call the cubic 'harmonic'.]
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Ex. 6. If the pencil of tangents from any point of a cubic is equi-

anharmonic, the Hessian degenerates.

[ms (ms — 1) = 0. We may call the cubic ' equianharmonic '.]

Ex. 7. There are two species of equianharmonic cubic. One species

has a Hessian consisting of three real lines. Each real inflexional

tangent meets two unreal inflexional tangents at a critic centre which is

a vertex of the triangle formed by the Hessian.
The other species has a Hessian consisting of one real and two unreal

lines. Its real inflexional tangents are concurrent at a critic centre.

[to = and w? — 1 in the two cases. The critic centres are (1, 0, 0),

(0, 1, 0), (0, 0, 1) and (1, 1, 1) respectively.]

Ex. 8. Under what conditions is the polar conic of a point P for a
cubic a coincident line-pair ?

[Either (1) the cubic is cuspidal, and Pis the cusp or the intersection

of the cuspidal and inflexional tangents, or (2) the cubic is equi-

anharmonic, and P is one of the critic centres referred to in Ex. 7.]

Ex. 9. If all polar conies for a cubic have a common self-conjugate

triangle, the cubic is equianharmonic. The sides of the triangle are

the degenerate Hessian.
Obtain the equations of the sides of the triangle for the cubic of

§ 8, Ex. 2, in the cases p = and p = — 3~$
; show that the cubic is

equianharmonic of the second and first species respectively.

Ex. 10. The tangents at two inflexions of a cubic meet on the har-

monic polar of the inflexion collinear with the two given inflexions.

Ex. 11. The intersection of the tangent at an inflexion of a cubic
with its harmonic polar lies on the Hessian.

[If (0, —1, 1) is the inflexion, the intersection is (1, m, m).]

Ex. 12. The polar I of P with respect to the polar conic of Q for a
cubic is the same as the polar of Q with respect to the polar conic of P.

If P and Q are fixed and the cubic is any member of a syzygetic

family, I goes through a fixed point. If this point is on PQ, P and Q lie

on the same cubic of the syzygetic family.

If R is any point on I, the relation between P, Q, R is symmetric.

[PQR is an ' apolar ' triangle of the 3-ic. If it is taken as triangle of
reference, the coefficient of xyz in the equation of the 3-ic is zero.]

Ex. 13. If any line meets

Xs + y
3 + a3 + Gmxyz =

in (*i»yi.2i)i («j. ysi*j). (^3»y3 .%)i

then x^^x.+y^y^y^ + zxz^zs = 0,

[See Oh. I, § % Ex. 8, and Ch. VII, § 3, Ex. 15. Note list of ' Errata'.]

Ex. 14. The inflexions of a cubic lie by threes on the lines a, b, c.

The tangents at the inflexions . on 6 and the tangents at the inflexions

on c form two triangles whose vertices lie on a conic and whose sides

touch a conic. Both conies touch 6 and c at their intersections with o.

[If a, 6, c are x = 0, y = 0, z = 0, the conies are

x* +2myz=0 and x'
i + 8myz = 0.]
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Ex. 15. Two triangles are such that each side of either triangle
passes through three inflexions of a cubic, and no two sides of the same
triangle pass through the same inflexion. Show that the two triangles
are in perspective in six ways, and that the axes of perspective each
pass through three inflexions.

[If the sides of the triangles are x = 0, y = 0, z = 0, and
x + y + z = 0, x + wy + aPz = 0, x + a'y + az = 0,

the axes of perspective are ax + y +s = 0, &c]

Ex. 16. The pencil of four lines joining an inflexion of a cubic with
the other eight inflexions is equianharmonic.

[If the inflexion is (0, — 1, 1), the lines meet z — at

(0,1,0), (-1,1,0), (-o,»l,0), (-a,, 1,0).]

Ex. 17. Two lines each passing through three inflexions of a cubic
meet at O. Show that the points of contact of the tangents from O lie

by pairs on three lines through the remaining inflexions.

\a? + y
3 + z3 + 6 mxyz + hx (x1 + 2 myz) = is a line-trio, if

8ms
(& + 3)

3 + 27(fc + l)=0.]

Ex. 18. The three intersections of the line through three collinear

inflexions with their harmonic polars form an involution with those
inflexions.

[If the inflexions are (0, -1,1), (1,0, -1), (-1,1,0), the inter-

sections of x+ y + z = with their harmonic polars are

(-2,1,1), (1,-2,1), (1,1,-2).

The double points of the involution are (a>, o>
2

, 1), (w2
, w, 1).]

Ex. 19. The harmonic polars of three collinear inflexions of a cubic
pass through the same critic centre A, and the remaining inflexions lie

on two lines through A.
The line joining A to any one of the collinear inflexions is divided

harmonically by the cubic.

[Take the collinear inflexions as those on x = 0. Then A is (1, 0, 0).]

Ex. 20. The three real lines each passing through one real and two
unreal inflexions of a two-circuited cubic form a triangle. Show that

from each vertex of the triangle two real tangents can be drawn, that

the six points of contact lie on a conic, that the tangents meet the cubic

again in six points on a conic, and that the six tangents touch a conic.

[Ex. 20 to 24 are obvious from Fig. 4 to 10.]

Ex. 21. From each intersection of two real inflexional tangents of a
two-circuited cubic two real tangents can be drawn to the oval. Show
that these six tangents touch a conic, that their points of contact lie on
a conic, and that the intersections of each pair of tangents with the

third inflexional tangent lie on a conic.
;

Ex. 22. The three lines joining two real critic centres and passing

through a real inflexion meet the real inflexional tangents at those

inflexions and at six points lying on a conic.

[All the conies of Ex. 20, 21, 22 pass through the same two unreal

points on the line of real inflexions.]



240 SYZYGETIC CUBICS XIV 9

Ex. 23. The six tangents drawn to a cubic from a point on the

harmonic polar of an inflexion I form an involution, and the chords of
contact of conjugate pairs of the involution pass through I.

[There are also twelve cubics such that the tangents from any point on
one of them to the given cubic form an involution. Each such cubic

has three collinear inflexions and corresponding inflexional tangents in

common with the given cubic. See Roberts, Proc. London Math. Soc,
xiii (1882), p. 26.]

Ex. 24. It is possible to project a family of syzygetic cubics so that
each curve has the symmetry of an equilateral triangle.

Ex 25. The ' polo-conic ' of the lines I and I' with respect to a cubic is

the locus of a. point whose polar conic has I and V as conjugate lines.

The ' polo-conic ' of I is the locus of a point whose polar conic touches
l{l' = l). Show that

(i) The polo -conic of I and V is the locus of the pole of I with respect

to the polar conic of any point on V, and vice versa.

(ii) The polar line of any point on I touches the polo-conic of I.

(iii) The polo-conic of I touches the Hessian at three points, which lie

on the polo-conic of I and V.

[The polo-conic of
\x + fjy + nz = and X'a; + p'y + v'z =

is XX' (mrx1 — yz) + ... + ... + (fiv + n'v) (mx' r- m'yz) + ...+ ... = 0.]

Ex. 26. The configuration formed by the nine inflexions and the twelve
lines joining them is dualistic to the configuration formed by the nine
harmonic polars of the inflexions and the twelve critic centres.]

Ex. 27. If the equation /= of a cubic is given, prove that the in-

flexions can be found without solving any equation of degree higher than 4.

[Let H= be the Hessian of /= 0. Find k such that f+kH=Q
coincides with its Hessian ; then it will be a line-trio on which the
inflexions lie.]

Ex. 28. A quartic through the twelve critic centres of a cubic has an
inflexion at each critic centre.

[The quartic is ax (y
3 — z*) + by (z* —xs

) + cz (xs — y
s
) = 0.]

Ex. 29. A doubly infinite family of quintics passes through the nine
inflexions and the twelve critic centres of a cubic. Each such quiittic

has an inflexion at every inflexion of the cubic, and the nine inflexional

tangents are concurrent at a point of the quintic.

[The quintic is

ayz(ys + s3 -2x*) + bzx(z3 + x*-2ys)+cxy(x3 + y
s -2ss)= 0.

The inflexional tangents are

(b + c)x= a(y + z), (b+cu>)x = a(y + az), (b + ca2)x= a(y + a>
2
z),

&c, meeting at (a, 6, c).]

Ex. 30. Defining a syzygetic family of cubics by the equation
f+kH=Q,

where /= is a cubic and H = its Hessian, show that
(i) A syzygetic family of nodal cubics may be projected so as to be all

similar and similarly situated with the node as centre of similitude, and
(ii) A syzygetic family of cuspidal cubics may be projected so as to

be all congruent and have a common asymptote which is the cuspidal
tangent of each curve.

[(i) See Ch. XIII, § 4, Ex. 15. (ii) Project into (x-k) y* = 1.]



CHAPTER XV

CUBICS AS JACOBIANS

§ 1. Jacobian of three Conies.

Suppose that U = 0, V = 0, W = are the equations in
homogeneous coordinates of three conies not passing through
the same four points. The polars of the point P (a/, y', z)
with respect to the conies are

7>U 7>U IU
<>x - 7>y <sz

and two similar equations; where ^-—, means the result of

putting x' for x, y' for y, z' for z in —
<sx

&c.

These polars are concurrent (at Q
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The Jacobian of the conies

\
1
U+p

1
V+v

1
W=0, X

2 U+ft2
V+v

2
W=0,
X.lT+^V + h.W^O,

where the X's, /is, i>'s, are constants, is

^(X.V + fi.V+^W. X 2 U+fi2
V+u

2
W, \U+ ^V+v^W)=

d (x, y, z)

K Hi *(U, V,W)
S(a3, y, z)

as is at once verified by the rule for multiplying determinants.

If these conies all pass through the same four points,

A
i hi "i

A„ fi2
v
2

= 0.

.
*3 H "s

In this case the equation of their Jacobian vanishes identically;

as is geometrically obvious, for the polars of any point with
respect to all conies through four given points are concurrent.

If the conies do not pass through the same four points,

their Jacobian is identical with the Jacobian of the original

conies U = 0, V = 0, W = 0. Hence :

The Jacobian of any three conies of the family

XU+pV+vW =
(which do not pass through the same four points) is identical

with the Jacobian of IT = 0, V = 0, W = 0.

The conic X U + fiV+vW = has a node at (X, Y, Z), i.e.

is a line-pair meeting at (X, T, Z), if

7>U IV iW »7>U 7>V 3TT n
X ZX + >

X
*X + V

*X = '

, *U W 3F nx
Tz + >

1
iz + v

*z
=0 -

Eliminating X:pi:i> between these equations, we see that

(X, Y, Z) must lie on the Jacobian ; and if this is the case,

the equations give one and only one value of the ratio X: fi:v.

Hence

:

Any point on the Jacobian of a family of conies is the centre

of one and only one degenerate conic of tJie family, and the

centre of any degenerate conic must lie on the Jacobian. ,

If P, Q are conjugate points on the Jacobian, and A is any
other point on the Jacobian, the lines AP and AQ are har-
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monic conjugates with respect to the degenerate conic with
centre A. For AQ is the polar of P with respect to the
degenerate conic.

Ex. 1. If three conies have a point A in common, their Jacobian has
a node at A.

[Take A as (1, 0, 0)*.] '

Ex. 2. If three conies have points B, C in common, their Jacobian
degenerates into the line BC and a conic through B and C.

Ex. 3. The Jacobian of three circles is the line at infinity and the
circle orthogonal to them all.

[Take the circles as

x* + y* + 2gix + 2fiy + c = Q, (i = 1, 2, 3).]

Ex. 4. Find the circle orthogonal to

x2 + tf + Sx + \h = 0, xi + y
i + 2x-\2y + 2l = 0,

xi + if-2x + 4:y + \ = 0.

\xi + y
l + 2x-2y-7 = 0.]

Ex. 5. If three conies pass through the points A, B, C, their Jacobian
degenerates into the lines BC, CA, AB.

Ex. 6. If three conies pass through A and two touch at A, their
Jacobian has a node at A and one branch of the Jacobian touches the
two conies at A.

Ex. 7. If three conies have a common pole and polar, their Jacobian
degenerates.

[Into the common polar and two lines through the pole.]

Ex. 8. If three conies have a eom'mon self-conjugate triangle, their

Jacobian degenerates into the sides of that triangle.

[See Ex. 7.]

Ex. 9. The sides of the common self-conjugate triangle of any two
conies may be obtained by forming the Jacobian of the two conies and
their harmonic locus.

[The two conies and their harmonic locus have a common self-conjugate

triangle. See Ch. IV, § 4, Ex. 4.]

Ex. 10. The Jacobian of two conies and a coincident line-pair

degenerates.

[Into the line and a conic.]

Ex. 11. The Jacobian of a conic, a circle with centre P, and a co-

incident line-pair at infinity is the rectangular hyperbola through the

feet of the normals from P to the conic together with the line at infinity.]

[The Jacobian of

ax* + bya = z>, xi -^yl -2^xy-2r
t
yz + cz2 = 0, z2 =

is by (x - £z) = ax(y- rjz).

Now put z = 1.]

e2
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Ex. 12. The axes of a conic (using any coordinates) may be obtained
by writing down the Jacobian of the conic, its director circle, and a

coincident line-pair at infinity.

[We suppose that we know the equation of one circle and of the line

at infinity. We thus obtain the tangential equation of the circular

points. Then, forming the harmonic locus of the conic and the circular

points, we have the director circle. The Jacobian degenerates into the

axes and the line at infinity by Ex. 11.]

Ex. 13. The Jacobian of two conies having double contact and any
third conic degenerates.

[Into the chord of contact and a conic dividing the chord of contact

harmonically.]

Ex. 14. The Jacobian of two concentric circles and any conic is a
rectangular hyperbola and the line at infinity.

[See Ex. 13. Discuss the case in which the conic is a circle.]

Ex. 15. If the Jacobian of three conies passes through the intersection

A of two of them, the two conies touch at A.

[Take A as the point (1, 0, 0).]

Ex. 16. Tne locus of the point of contact of two members of the
family X U+ /xV + vW = is their Jacobian.

[See Ex. 15.]

§ 2. Any Cubic as a Jacobian of three Conies.

Suppose f(x, y, z) = is the equation of a cubic. Then the
polar conic, i. e. the first polar curve, of the point P (£, rj, () is

b
i>x <>y * <>z

(i)-

The Jacobian of any three polar conies is the same as the

Jacobian of

»/_„ v
Ix

and is therefore

32/
<>x-

ay
f>y <>x

ly

ay
<*xhy

ly*

ay

o,
30
= 0,

<>z ix <sz<)y

_ay_

(>X <>Z

iylz

ay
lz>

= o.

•which is the Hessian of f(x, y, z) = 0. Now any cubic * is

the Hessian of three different cubics by Ch. XI V, § 9. Hence:

i. e. non-singular cubic. See § 3, Ex. 9.
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Any cubic may be considered as the Jacobian of a family
of conies, and that in three different ways.

Suppose now that the polars of P with respect to

ox oy dz
are concurrent at the point Q (X, Y, Z), so that P and Q are
conjugate points of the Jacobian. Then

,,
a2/

, „ *f
,
> a2/ _ n

, *
2
/

, „
y/

,
>

a2/ _n

32
f a 2/ 2>'¥

But equations (ii) are the conditions that Q should be
a double point of the conic (i). Hence :

The polar conic of a point on the Hessian of a given cubic

is a line-pair meeting at the conjugate point of the Hessian
considered as the Jacobian of the polar conies of the given
cubic.

§ 3. Ruler-construction for Cubics.

Consider a given cubic as the Jacobian of a family of conies.

Denote conjugate pairs of points on the cubic by P and P',

Q and Q',

If P and P\ Q and Q' are conjugate pairs of points on a
cubic, so are the intersections of PQ and P'Q', PQ' and P'Q.

.

For P and J" are conjugate for any conic of the family, and
so are Q and Q'. ' But when two pairs of opposite vertices of

a quadrilateral are conjugate with respect to a conic, so is the

third pair of vertices.* Hence R and R' in Fig. 1 are con-

jugate for any conic of the family, i. e. are conjugate points on*

the cubic.

A cubic is uniquely given when three pairs of conjugate

points are given.

Expressing the fact that the conic

ax* + by2 + c22 + 2fyz + 2gzx + 2 hxy =
has the three pairs of points as conjugate pairs, we get three

* Hesse's Theorem. It may be proved by projecting the conic into a

circle and one vertex into the centre.
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linear relations between a, b, c, f g, h and thus reduce the
conic to the form \U+fiV+vW = 0, where A, /i, v are
constants. The Jacobian of this family is the cubic required.

Suppose that A and A', B and B', C and C are the three
conjugate pairs of points, then the intersection D of AB and
A'B'* and the intersection D' of AB' and A'B are a fourth
conjugate pair. From G and C", D and D' we obtain similarly
a fifth conjugate pair ; and so on. Hence

:

Given three pairs of conjugate points on a cubic, we can in
general construct an infinite number of conjugate pairs by
ruler only.f

Suppose that in Fig. 1 Q and R are consecutive points on

the cubic, then the conjugate points Q' and Bf are also con-

secutive points on the curve. We obtain then the result

:

The tangents at conjugate points Q and Q' of a cubic Trtteet

at a point P on the curve, and QQ' meets the curve again at

the point P' conjugate to P.

If, therefore, we draw the four tangents from any point P of

a cubic (Fig. 2), the points of contact are two conjugate pairs

Q and Q', 8 and tf; and the lines QQ', SS' meet at P'.

Since the four points of contact can be grouped into two
pairs in three different ways, we see that

The points of a given cubic can be divided into conjugate

pairs in three different ways,

* We have tacitly assumed that D does not coincide with C or C'.

f We do not necessarily obtain the whole cubic in this way. For special

positions of the three given pairs the number of conjugate pairs obtained by
the construction may be finite. See Ch. XVI, § 6, Ex. 9.
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This also follows from the fact that the cubic is the Hessian
of three different cubics, and is therefore the Jacobian of

three different families of conies.

By §2 the polar conic of P with respect to a cubic for

which the given cubic is the Hessian is a line-pair meeting at

P'r Also by § 1 this line-pair is harmonically conjugate with

Pig.

Thisrespect to P'Q, P'Q' and with respect to P'S, P'S'.

shows that the line-pair is QQ', SS'.

The tangent at P' is the harmonic conjugate of PP" with

respect to the line-pair QQ\ SS'.

For if p is a point on the cubic close to P, P' (pp', QS) is

harmonic ; and rp' is the tangent at P' in the limit.

Ex. 1. The real points of a cubic with one circuit can be divided into

conjugate pairs in only one way. The real points of a cubic with two

circuits can be divided-into conjugate pairs in three ways. In one way

both points of the pair lie on the same circuit. In the other two ways

one point lies on each circuit.

[See Ch. XIV, § 1.]
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Ex. 2. If three polar conies of a cubic are rectangular hyperbolas,

every polar conic is a rectangular hyperbola ; and the Hessian is a
circular cubic whose singular focus lies on the Hessian.

[The circular points are conjugate points on the 'Hessian. See also

Ch. VII, § 3, Ex. 10.]

Ex. 3. Given three pairs of points A and A', P and P', CandC';
the locus of P such that P (AA', BB', CC) is an involution pencil is

a cubic having the given pairs as conjugate pairs of points.

[The cubic is the Jacobian of conies having the given pairs as con-

jugate pairs. The double rays of the involution are the line-pair of the
family of conies through P.]

Ex. 4. A quadrangle is inscribed in a cubic so that its diagonal points

lie on the curve. Show that, if we take the vertices as (1, + 1, + 1), the

cubic has the equation

ax{y*-z>) + hy (a» - a?
2
) + cz (x*-y1

) = 0.

[The quadrangle is QQ
1

SS' in Fig. 2.]

Ex. 5. Show that in Ex. 4 the tangents at the vertices of the quad-
rangle meet on the curve at (a, b, c), and that the ^angents at

(1,0,0), (0,1,0), (0,0,1), (a,b,c)

meet on the curve at (1/a, 1/6, 1/c).

Ex. 6. Show that the cross-ratios of the pencil of tangents from any
point of the cubic of.Ex. 4 are (c

2 — a?) -r (c
a — b2

), &c.

[See Ch. VII, § 5, Ex. 2 (vi).]

Ex. 7. If the tangents at four points of a cubic meet on the curve, the
polar conic of any one has the triangle formed by the other three as

a self-conjugate triangle.

[Consider the polar conic of (a, b, c).]

Ex. 8. Any transversal through a fixed point O of a cubic meets the
curve again at P and Q. Show that the Iocub of the intersection of the
tangents at P and Q is a trinodal quartic.

[The locus has evidently nodes at the points conjugate to O in the

three ways of dividing the points of the cubic into conjugate pairs. It

also touches the cubic at the tangential of O and cuts it at the points

of contact of the tangents from O.]
,

Ex. 9. Any two conjugate points P and P on the Hessian of Ch. XIII,

§ 4 (ii) of the cubic of Ch. XIII, § 4 (i) are

(cos a, sin a, -3 sin 3 a) and (cos/3, sin 0, —3 sin 3/3),

where & = 0L + \ir.

The tangents from P to the Hessian touch at two points collinear with
P, and the polar conic of P degenerates into a line-pair through P-

For the cubic of Ch. XIII, § 4 (iii) and its Hessian we replace sin and
cos by sinh and cosh, while = OL + ^ni.

§ 4. Cayleyan of Cubic.

Suppose now that P, P' are conjugate points on the Hessian
of a given cubic (Fig. 2). The envelope of the line PP' is

called the Cayleyan of the given cubic. It may be considered
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as the envelope of the line joining any point P on the Hessian
to the centre of the degenerate polar conic of P with respect
to the given cubic*

The Cayleyan of a cubic is of the third class. For in Fig. 2
the tangentsfrom P' to the Cayleyan are PP', QQ', 8&.
Each of the lines of the degenerate polar conic of any point

on the Hessian of a cubic touches the Cayleyan.

For the polar conic of P is the line-pair QQ', SS' by § 3.

Any two conjugate points Q, Q' on the Hessian of a cubic

are harmonic conjugates with respect to the point of contact

of QQ' with the Cayleyan and the remaining intersection of
QQ' with the Hessian.

For in Fig. 1 suppose R, R' the pair of conjugate points on
the Hessian consecutive to Q, Q'. Then Pf

is the third inter-

section of QQ' with the Hessian, and the intersection E of

QQ', RR' is the point of contact of QQ' with its envelope.

But by the harmonic properties of the quadrilateral (P'E, QQ')

is a harmonic range in the limit.

§ 5. Tangential Equation of Cayleyan of Cubic.

The tangential equation of the Cayleyan of

x3 + y
3 + z3 + 6 mxyz —

W
\3 + u3+ v3 + -(l-4!m3)\uv=0.

We proved in § 4 that the Cayleyan touches the lines into

which the polar conic of a point (£, rj, ^) on the Hessian

degenerates. This polar conic is

i(x
2 + 2myz) + T] (y

i + 2mzx) + ({zi + 2mxy) = 0.

If one of the lines into which this conic degenerates is

\x + py + vz = 0,

the conic is

(Xx + fiy + vz) (£x/\ + rjy/fi + (z/v) = 0.

Comparing the coefficients of yz, zx, xy, we have.

2mgfiv— r)v
2— {/ji

z =
and two similar equations.

* We see that the Steinerian and Hessian of a cubic coincide. See

Ch. VII, §§ 8, 9.



250 TANGENTIAL EQUATION OF CAYLEYAN XV 5

Eliminating ^, i;, f we get

\ 3 + /j.

3 +v3+- (1-4to3)A/*i/= 0,

which is the tangential equation of the Cayleyan.
Exactly similarly we show that

The tangential equation of the Cayleyan of

(x + y + z)3+ 6 kxyz =
is {p + v) (" + ty (* + /*) = 2 (k + 4<)\(ji.t>.

• Ex. 1. The Cayleyan touches the inflexional tangents of a cubic.

[The polar conies of the inflexions touch the Cayleyan. Or use the
tangential equation of the Cayleyan.]

Ex. 2. The envelope of a line divided in involution by three given
conies is of the third class.

[The Cayleyan of a cubic having the given conies as polar conies.

The result may also be obtained by considering the tangents to the
locus from any intersection of two of the conies.

For a particular case of the reciprocal of this theorem see § 3, Ex. 3.]

Ex. 3. The poles of any line with respect to a cubic form the vertices

of a quadrangle whose sides touch the Cayleyan and whose diagonal
points lie on the Hessian.

[The polar conic of any point on the line goes through the four poles

by Ch. VII, § 2, Ex. 5.]

Ex. 4. The Cayleyan and Hessian touch at the point conjugate to any
inflexion P of the Hessian.

[Make P consfecutive to an inflexion in Fig. 2. Or verify that the two
curves touch at the points (m, m, 1), &c]

Ex. 5. The Cayleyan of a non-singular cubic is a curve of the sixth

degree with nine cusps.

The cuspidal tangents are the harmonic polars of the inflexions of the
given cubic.

[The cuspidal tangents and cusps of the Cayleyan are obtained in the
same way as the inflexions and inflexional tangents of

xs + y
3 + zs +Gmscyz = 0.]

Ex. 6. If A and A! are conjugate points on the Hessian, the polar of
A with respect to the polar conic of A! for any syzygetic cubic touches
the Cayleyan.

Ex. 7. The locus of a point whose polar line with respect to the cubic
touches the Cayleyan is a sextic.

Ex. 8. Discuss the case m = in § 5.

Ex. 9. Reciprocate the mutual relationships of cubic, Hessian, and
Cayleyan.
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Ex. 10. Find the tangential equation of the Cayleyan of

(i) y
2z = 4:a?-g

ixs*-g3
zs

,
(ii) z2x = y{y-x) (y-k2x),

(iii) ax (y
2 - z1

) + by (z2 -x2
) + cz (x2 -yi

) = Q.

[Equating the coefficients of x2
, y

2
, z

2
,
yz, zx, xy in

(\x + fiy + vz)(\'x + n'y + v'z) and £y- + >?y- + Cy>
and eliminating f, i/, f, X', //, v between the six linear equations thus
obtained, we have the tangential equation of the Cayleyan of the cubic

Ex. 11. The Cayleyan of a cuspidal cubic degenerates into the cusp
and the intersection of the cuspidal and inflexional tangents.

Ex. 12. The Cayleyan of a nodal cubic is a conic having as the vertices

of a self-conjugate triangle the node A, any inflexion C, and the inter-

section B of the harmonic polar of C with the line of inflexions.

[The Cayleyan of z(x2±y2
) = y (3x2 + f) is z2 = 9(y

2±x2
). See §3,

Ex. 9, for the coordinates of a pair of corresponding points on the

Hessian ; or use the method of Ex. 10.]



CHAPTER XVI

USE OF PARAMETER FOR NON-SINGULAR CUBICS

§ 1. A Standard Equation of the Cubic with two Circuits.

The equation of any cubic ivith two circuits can be put in
the form

z2x = y (y— x) (y— k2
x), where r>/c2 >0,

by a suitable choice of homogeneous coordinates.

Take a triangle of reference ABO such that BO is the

tangent at a real inflexion 0, and AB is the harmonic polar

of 0.

Since the equation of the cubic must reduce to y
3 = when

we put x = in this equation, the coefficients of z3
, y

2
z, yz 1 in

the equation are zero.

Since the polar conic of (0, 0, 1) is zx = 0, the coefficients of

x*z and xyz are also zero. Choosing homogeneous coordinates

such that the coefficients of z2 x and y
3 are equal and opposite,

the equation becomes

z2x^(y— ocx) (y— (3x)(y— yx) — 0.

The points (1, <x, 0) }> (1, ft 0), (1, y, 0) are the points of con-
tact of the tangents to the cubic from (0, 0, 1), and are real

since the cubic has two circuits. Suppose a > /8 > y.
Put now

X = -A-, y=Y+V^L, z=(<x-y)*Z, £=* = *«
tx — y a—

y

x " a — y 4

and the equation becomes

Z2X = Y(Y-X) (F-FZ).

Replacing X, Y, Z by x, y, z. we have the required form.

The point (1, 0, 0) is now the point of contact of a tangent
from 0.

§ 2. Coordinates of any Point on a. Cubic with two Circuits.

Any point on the cubic

z2 x = y (y—x) (y—k2 x)

may be taken as

(sn3u, snw, cnw clnu),
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the modulus of the elliptic functions being Jc, as is at once
verified.

Remembering that,* if m and n are integers,

sn(u+2mK + 2nK'i) = (-l^snw,
on (u +2m K + 2nK'i) = (-l)m+»cn^
dn(u + 2m K+2nK'i) = (-l^dn-u^

we see. that the point on the cubic is unaltered, if we replace

u by u + 2mK + 2n K'i.

The points with parameters u
x , u2) u3 are collinear if

u1 + u2 + u3
= (mod. 2K, 2K'i).

This is equivalent to sn (itj + u2 + u3)
= 0. Denote sn u^

,

cnUj, dniij, ... by s,, clt dx , ... . Then en. (u
1 + u2 + u3)

= +1
gives

+ c
3
= enfttj + ttjj) = (s

1
c
1
d
2
~s2 c

2
d

1 )-i-(sl c
2 d2 -s2

c
1
d

1
)*

Hence
<*, d., d„

Si(c2 c
3 + Ci) s

2
(c

z
c
1 + e2 ) s

3 (
c
i
c2 + c

3 )

Substituting for 'd^ : d2 : d3
in the determinant

S-i S. C. Ct-t

s2 s2 c2 ct
2

s3 c
3
a
3

we find that it vanishes. But the vanishing of this determi-

nant is the condition that the points with parameters u
x , u2 , u3

should be collinear.

Another line of argument is to employ the formula

sn (ttj + u2 + u3)
=

«l
s
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The even circuit of the curve is given by u = v + K'i, where
v is real and lies between and 2K.*

Ex. 1. Use § 2 to prove that the inflexions lie by threes on twelve
straight lines.

Ex. 2. The four tangents from any point of the cubic to the curve

form a pencil, one of whose cross- ratios is &2
.

[Consider the tangents from the inflexion C]

Ex. 3. The points of contact of the four tangents from the point on
the curve with parameter u are

(s\s,cd), (c
3

, ccP, -k'*sd), (1, &2
s
s
, -k*scd), (d\ k*c*d, k2 k"sc);

where s, c, d denote

sn( — \u), cn( — \u), ' dn ( — 1«), and k2 +k' 2 =l.

[The parameters of the points of contact are

-\u, -\n + K, -\u + K'i, -\u +K+ K'i.]

Ex. 4. Obtain the cross-ratio of the range in which the tangents at
the points with parameters

v, v + K, v + K'i, v +K+ K'i

meet a side of the triangle of reference, and verify that the cross-ratio of
the pencil formed by the tangents from a point on a cubic is constant.

[The method of § 7, Ex. 1, is also available.]

§ 3. Parameters of Points on a Conic or Cubic.

If u
1
,u

2,u3,ui,u5 , u6
are the parameters of points on a

conic,

u
1+ «2 -t-w3 + w,

t
+ u6 + «6 = 0.

The congruence is taken modulo 2K, 2K'i ; and so always
unless the contrary is stated.

For suppose the three lines joining the points with para-

meters u
t
and u

2 , u3
and uv u

6
and u6 meet the cubic algain

in points with parameters v12 , vu , vS6 . Then

u
1 + u2+ v12

= 0, u
3 + ui + v3i = 0, u6 + ue + v5e = 0.

But the given cubic, the three lines just mentioned, the

conic and the line through the points with parameters vn and
v3i are three cubics through the points with parameters

ult u2 , u3 , to4 , ub , ue , vl2 , v3V

They therefore all pass through the point with parameter
v
5e

(Ch. XII, §2). Hence the points with parameters v
12 , vu ,

vB6 are collinear, and v12 + vu + v56 = 0. Hence

U
1 + tt2 +''U,3 + tt4 + tt

5 -(-tt
e
=0.

* Porsn(»+ K'i) = l/fcsni>, cn(» + K'i) = idnv/ksnv,da(v + K'i) = ionv/snv,
see A. C. Dixon's Elliptic Functions, § 18.
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V ui<_u2> u3> ui'
us> ue>

u
i>
u$> u9 are the parameters of the

intersections of the given cubic with another cubic,

u
1 + u2 + u3 + ui + us + u6 + u7 + us + w9

= 0.

Suppose that the conic through the points with parameters
Uj, u

s , u3 , ut , uB
meets the cubic again in a point with para-

meter p; and that the two lines joining the points with
parameters u

6
and u

7 , us
and u

9
meet the curve again in

points with parameters q, r. Then
u

1 + u2 + u3 + ui + u6 +p = 0, u
6 + w7 + q = 0, u

s + u9 + r = 0.

Now of the twelve intersections of the given cubic and the
quartic consisting of the conic and the two linesjust mentioned,
nine lie on another cubic. Therefore the remaining three lie

on a straight line.*

Hence p + q + r = 0; and therefore

u
1
+u2 + u3 + ui + u5 + u6 + u1

+ us + Ug= 0.

§ 4. A Standard Equation of the Cubic with one Circuit.

The equation of any cubic with one circuit can be put in
theform

z2
(y— x) = (y + x) (k2x* + k'2y

2
) ; where k2 + k'2 = 1.

As in § 1, take G as a real inflexion and AB as the harmonic
polar of G. Bnt take A, B as the double points of the involu-

tion determined by (1) the intersection of AB with the tangent

at G and the real intersection of AB with the cubic, (2) the

pair of unreal intersections of AB with the cubic. Choose
also the homogeneous coordinates so that the tangent at G is

x = y. Then, as in § 1, the equation of the cubic contains no
term in z3

, x2
z, xyz, or y

2
z, and takes the form

z2
(y— x) = (y + x) (ax2 + by2

).

In this a and b have the same §ign. There is no loss of

generality in supposing them both positive, for we can inter-

change x and y if they are negative. Now replace z by

(a + b)iz, and the equation of the cubic is in the required form.

Any point on this curve is

(snu en it, snw, (l + cnu)dnu),

the modulus of the elliptic functions being k. The point on
the cubic is unaltered, if we replace u by

u + 2m (K + K'i) + 2n (K- K'i).

* Ch. XII, § 7, Ex. i. More rigorous is the proof by Abel's theorem,

Ch> X, § 7, Ex.57.
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4

As in § 2 the parameters u1} w2 , u3
of three collinear points

are connected by the relation

u
l
+ u2 + u3

= 0,

the congruence being now taken modulo 2 (K + K'i) and
2(K—K'i). The proof is as in §2, noting that for three

collinear points en (u
v + u2 + it

3 ) = +1.
The inflexions have parameters

|e (K + K'i) + |e' (K-K'i), (e, e' = 0, 1, 2).

The real inflexions have parameters 0, §K, %K. The real

part of the curve is given by real values of u lying between
and 4K.
The connexions between the parameters of the points in

which the curve meets a conic or another cubic are the same
as in the case of the cubic with two circuits, except that the
congruences are taken modulo 2(K + K'i) and 2(K—K'i}.

Ex. Show that the equation of a cubic with two circuits can be put in

the form
z*{y-x) = (y + as) (y^-l^x"), where l>fc*>0;

and express the coordinates of any point rationally in terms of elliptic,

functions.

[C is the inflexion, and A and B are the double points of the involution

determined by the intersections of the harmonic polar of C (1) wifh the
odd circuit and the tangent at C, (2) with the even circuit.]

§ 5. Unicursal Cubic.

If (x, y, z) is a double point of

zix = y{y-x)(y-lci
x), »

then (Ch. II, § 4)

2* + (l + k2)i/-21c2xy =
t
-3y* + 2(l + k2)xy-k*x* = zx = 0.

Rejecting the case x — y = z = 0, we get

either k = 0, y = z = 0,

when the cubic becomes

z2x = y
2 (y-x),

with an acnode at (1, 0, 0) ;

or k = 1, x— y = z = 0,

when the cubic becomes

z2x = y(y—tt)a
,

with a crunode at (1, 1, 0).
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Similarly (x, y, z) is a double point of

z2 (y-x) = (y + x) (k2x2 + k'2y2
), where h2 + lc'

2 = 1

,

either if k = 0, y = z = 0, when the cubic becomes

z2 (y-x) = y
2
(y + x),

with an acnode at (1, 0, 0)

;

or if k = 1, x = z = 0, when the cubic becomes

z2 (y—x) = x2
(y + x)

with a crunode at (0, 1, 0). ,

If the cubic has a double point, the elliptic functions de-

generate into trigonometrical functions, as could have been
foreseen, since the cubic is now unicursal.

We see that the standard equation of a cubic found in either

§ 1 or §4 includes the case of an acnodal or crunodal cubic, but
not that of a cuspidal cubic.

In Ch. XIII we expressed the coordinates of any point on a
unicursal cubic in terms of a parameter in such a way that

the sum of the parameters of three collinear points = 0.

Hence many of the results established for non-singular cubics

hold good with slight modification for unicursal cubics. We
shall leave the reader in general to find out for himself what
modification is necessary in any particular case.

§ 6. Applications of the Parameter.

We now apply the parametric representation of a point on
a cubic to the investigation of various properties of the curve.

A cubic has twenty-seven sextactic points, namely, the points

of contact of tangents from the inflexions.

A sextactic point of a curve is one at which the conic of

closest contact has six-point contact.

If u is the parameter of such a point, we must have &u = 0,

for the sum of the parameters of six points on a conic = 0.

This gives

u = IJf+ |' iV, (e , e' = 0, 1, 2, 3, 4, 6) ;

where M =2 K, N = 2K'

i

for the cubic with two circuits, and

M = 2 (K+ K'i), N=2(K- K'i)

for the cubic with one circuit.

But this formula includes the inflexions (the conic» being

the inflexional tangent taken twice), namely, when e and e' are

22)6 S
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both even. There remain twenty-seven values of u giving

sextactic points.

If the tangential of such a point has the parameter v,

e e'

u + u + v = 0, or v = — 2u = — -If— -iV.

Hence the tangential of a sextactic point is an inflexion.

A cubic has seventy-two coincidence points, namely, the

points coinciding vjith their third tangential.

A coincidence point of a curve is one at which an infinite

number of cubics can be drawn having nine-point contact

with the curve.

If it. is the parameter of such appoint, we must have 9w = 0,

and therefore

u = ^M+ 6
-V, (6, e' = 0, 1, 2, 3, 4, 5, 6, 7, 8).

Excluding the case in which e and e' are multiples of 3,

which gives the inflexions, we have seventy-two coincidence

points.

As shown above, the tangential of the point with parameter

u has parameter — 2«, the second tangential (tangential of

the tangential) has parameter — 2 (-2«) = 4u, and the third

tangential has parameter —2 . 4u ~ — 8w. Therefore a point

coincides with its third tangential if u = — 8 it or 9u = 0.

If the tangents at' the points with parameters u,v meet on
the curve, i.e. the points have the same tangential, 2u = 2v
and therefore, since v £ u,

v = u + %M, u + ^N, or u + ^M+^F. .

,

Hence when the points of a cubic are grouped into con-

jugate pairs (Ch. XV, § 3), the parameters of a pair differ

by \M, \N-, or %(M + N). It will be remembered that there

are three different ways of grouping the points into conjugate

pairs.

If, however, we confine ourselves to the real points of the

cubic, we have only one method of pairing the points of the

cubic with one circuit, and three methods of pairing the points

of the cubic with two circuits.

Ex. 1. If one polygon of 2 m sides can be inscribed in a given cubic
with the sides passing alternately through P and Q, where P and Q are
given points of the cubic, an infinite number of such polygons can be
inscribed.
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[Suppose «,, «,, ..., u2n are the parameters of the vertices of .such
a polygon, and p, q are the parameters of P, Q. Then we must have
the congruences,

q + u2 + us
= 0, 2 + m4 + ms

= 0, ..., 2+ «2n + «i = 0;
which are consistent if n (p - q) = 0.

P and § are called Sterner s points. See Clebsch, CWte, lxiii (1864).
p. 106.]

> > I J.

Ex. 2. Show that for the polygons of Ex. 1

(i) If n = 2, the tangents at P and § meet on the curve ; so that
P and Q are conjugate points on the cubic.

(ii) If n = 3, PQt and §Pj meet on the curve ; where P
x and Qx are

the tangentials of P and §.
Any two inflexions form a Steiner pair for inscribed hexagons.

(iii) If £4 = 5, PQ
S
and §P

S meet on the curve ; where PQ
X and QP

1

meet the curve again in P
2 and Q2 \ and P0

a and QP2 meet the curve
again in P3 and @3 .

The conies of closest contact at P and Q meet on the cubic.

(iv) Any two sextactic points form a Steiner pair for inscribed
dodecagons.

Ex.3. The two points in which the lines joining any point of the
cubic to a pair of Steiner points meet the curve again are also a
Steiner pair.

Ex. 4. If P, Q and P', Q' are two Steiner pairs, the lines PP' and QQ'
meet the curve again in a Steiner pair.

Ex. 5. If P, Q is a Steiner pair for a polygon of 2w sides, and PQ
meets the curve in the tangential of R, then P, R (and Q, R) is a Steiner
pair for a polygon of in sides. ,

Ex. 6. If all but one of the 3» points, which are the vertices of a
polygon of 2n sides and the intersections of opposite sides of the polygon,
lie on a cubic, so does the remaining point.

[If ult w 2 , ..,, uln are the parameters of the vertices, we have to prove

«!+«!= «» + «„+!, «<2 + '«S=«n+l + «n+2. •••

consistent ; which is evidently the case.

Pascal's theorem is a particular case of this result. The reader may
generalize the theorem. For instance, consider the case

U2n-S~^ w2n-2— M 2«. "^ wl) w2n-l + ^2n— w2
^~ WS'J

Ex. 7. \£ A-y, B
t , A%, B2 , ..., An , Bn are given points on a cubic such

that one polygon of 2 m sides can be inscribed in the cubic with its sides

passing in order through A
x , Blt Ait P2 , ..., An , B„, then an infinite

number of polygons can be thus inscribed.

.

Ex. 8. Three triangles can be inscribed in a given cubic whose sides

meet the curve again in three given collinear points.

Ex. 9. Three non-collinear points are taken on a cubic with parameters
u, v, w. The lines joining any two of these meet the cubic again in
three more points. The line joining two of the six points now obtained
meets the cubic again in a fresh point, and so on. Show that the points

thus obtained have parameters given by the expression mu + nv+pw,
s'2
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where m, n,p are positive or negative integers such that m+n+p—1 is

a multiple of 3.

Under what conditions is the total number of points obtained finite ? *

[The points with parameters

— v—w, —w—u, —u—v, (v + iv) + (u> + u), u + v— (u + v + 2w)= — 2u>,

and similarly —2 m, — 2» are among those obtained. Now assume the

result true for all values of m, n, p numerically less than those considered,

and use induction.

The number of points is finite if u, v, w are commensurable with any
periods.]

Ex. 10. The tangents at A, B, C, D on a cubic meet on the curve, and
P is any other point of the cubic. The lines PA, PB, PC, PD meet the

curve again at A', B', C', D'. Show that the tangents at A', B', C, D'
meet on the curve, and that the line joining A, B, C, or D to A', B', C,
or D' passes through one of four points P, Q, B, S on the curve, such

that the tangents at P, Q, B, S meet on the curve.

Ex. 11. An infinite number of triangles can be inscribed in a cubic

such that the tangent at each vertex meets the opposite side on the

curve. Any side is divided harmonically by the cubic and its point of

contact with its envelope.

[If u, v, w are the parameters of the vertices,

Su=Bv=3w= u + v + w.

See also Ch. XII, § 4, Ex. 21.] .

Ex. 12.. Find the number of conies through four given points of a
cubic which touch the curve, and the* number of conies through three

given points of a cubic which osculate the curve.

[Easy also by quadratic transformation.]

Ex. 13. Nine or three of the sextactic points are real. Three of them
lie on the odd circuit, and six on the even circuit, if it exists.

Ex. 14. Six of the coincidence points are real. They all lie on the
odd circuit.

Ex. 15. The coincidence points are the vertices of the 24 '.Hart

triangles ', both inscribed and circumscribed to the cubic-

Ex. 16. If a conic has five-point contact with a cubic, it meet* the
cubic again on the line joining the point of contact to its second
tangential.

Deduce the fact that the sextactic points are the points of contact of
tangents from the inflexions.

[5w + » = 0, w + 4m + k>EE0 give v= w.]

Ex. 17. If a conic has four-point contact with a cubic, the line joining
the other two intersections of the conic and cubic passes through the
second tangential of the point of contact.

[Au + v +w=0, p + v + w= give p= 4:U.]

Ex. 18. All cubics having eight-point contact with a given cubic at

a given point pass through the third tangential of the point of contact.

Deduce the fact that a coincidence point coincides with its third
tangential.

* If not, the construction gives the whole of the odd circuit or the whole
of both circuits. See Hurwitz, Orelle, cvii, p. 141.
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Ex. 19. The locus of the sextactic points of a pencil of syzygetic cubics
is nine straight lines.

[The harmonic polars of the inflexions. The locus of the coincidence
points is eight equianharmonic cubics ; see Halphen, Math. Annalen,
xv (1879), p. 359. We may get their equation by identifying P with its

third tangential in Ch. XIV, § 9, Ex. 3.]

Ex. 20. A cuspidal cubic has no sextactic or coincidence points.

Ex. 21. A nodal cubic has three sextactic and six coincidence points.

»How many are real ?

Ex. 22. Prom the number of sextactic points of a cubic, deduce that

any curve has 12m — 15« + 9k sextactic points.

[We assume that the number is the same for all curves of the same
type. Let it be <t>(n, m, a), where a is Bm + K. Now if /= 0, /, =
are the equations of two curves, ffx = e is a curve very close to the

degenerate curve ffx = 0, e being a small constant. Hence for all values

of n, m, OL, n', m', OL' we must have

cj> (n, m, a) + (n', m', OL') = (j>(n + A', m + m', OC+OC').

The theory of functional equations gives readily that
<fi
= an + bm + cOt,

where a, b, c are constants not involving n, m, OL. Now a, b, c are at

once given by noting that

n = 3, m = 6, OL = 18,
<f>
= 27 ; n = 3, m = 4, a = 12, <£ = 3 ;

n = 3, m = 3, a = 10, <j> =
must satisfy the relation <j> = an + bm+cOL.]

Ex. 23. The number of coincidence points on a curve, is

33m-42>i + 27K.

[As in Ex. 22. For a more general result see Halphen, Bull, de la

Soc. Math, de France, iv (1876), pp. 59-85.]

Ex. 24. Three families of conies can be drawn touching a given cubic

at three distinct points. If a conic is drawn through the three points of

contact of any such conic, it meets the cubic again in the points of

contact of a triply-tangent conic of the same family.

Ex. 25. If six points of a cubic lie on a conic, so do the six conjugate

points.

[If Mi + MjH- ... +u6
= 0, {u

1 + \M) + {u
i + \M)+ ... +(ui + \M) =0.]

Ex. 26. If a second cubic passes through nine points of a given cubic,

another cubic passes through one of the points and the points conjugate

to the other eight.

§ 7. Another Standard Equation of the Cubic

The equation of any cubic can be put in the form

y
2 z = 4x3-g2

xz2-g
3
z3

by a suitable choice of homogeneous coordinates.

In this equation g2
and g3

are any constants, the notation

being that which is usual in the theory of elliptic functions.
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Take as sides of the triangle of reference the tangent at

a real inflexion B, the harmonic polar of B, and the polar line .

of the intersection A of this tangent and harmonic polar..

Since the equation of the cubic must reduce to x'
6 = when

we put z = in this equation, the coefficients of x2
y, xy2

,

and y
3 in the equation are zero.

Since the polar conic of (0, 1,0) is yz = 0, the coefficients

of xyz and yz2 are zero.

Since the polar line of (1, 0, 0) is x = 0, the coefficient of

x2 z is zero.

We see then that the cubic is of the form

ax? + by2z + cxz2 + dz3 = 0.

Replacing now x by (
— 4b/aftx, we get the required form..

The cubic has one or two circuits according as the harmonic

polar y = of the real inflexion meets the curve in one or

three real points ; that is, according as <72
3— 27#3

Z is less than

or greater than zero.

The usual condition (Ch. II, § 4) shows that, if (x, y, z) is

a double point of the curve,

yz = 12x2-g2 z
2 = y

2 + 2g2xz + Sgsz
2 = 0,

leading to g2
3 = 27g 3

2
, and to

x:y:z= - #3
* : : 2.

It will be readily found that in this case the double point is

a crunode, cusp, or acnode, according as g3
is < , =, or >0.

Hence the equation of every (non-degenerate) cubic can be

put in the given form.

Ex. 1. Use the equation of a cubic given in § 7 to prove that the

pencil of tangents from any point of a cubic has a constant cross-ratio.

[Let (£, % 1) be a point P on the curve. The line

y — r\z = m (x — i-z)

through P meets the curve where x = £z and where

4a;s + (4|-)»2
) xz + (m'i£-2mn + 4:l

i-g
2) z* = 0.

The line is therefore a tangent if this equation in x/z has equal roots,

which gives m* _ 24£m2 + 32 ijm + 1 6 g2
- 48 £

2 = 0.

Since the line meets z = at (1, m, 0), the cross-ratio of the pencil of

the tangents from P is given by (Ch. I, § 11)

(<p+iy(<l>-2f(<i>-iYP = 2i(^-cp+iyj\
where /= 16&, ^=64^.]

Ex. 2. The cross-ratio of the tangents from any point of the curve is

harmonic if gs
= 0, and equianharmonio if g2

= 0.
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§ 8. Coordinates in terms of Weierstrass's Function.

If the cubic

y
2 z = ^x'— gi

xz1
'— g%

zz

is non-singular, we may take any point on the curve as
(pu, p'u, 1) ; where pu is Weierstrass's elliptic function
given by

(p'uf = 4! (pu) :i-g
2
pu-g,; L' u*.pu=\.

If the points with parameters u, v, iu are collinear,

pu p'u 1

.

pv p'v 1

pw p'w 1

This gives

u + v + w = (mod. 2co, 2o/),

where 2o>, 2a>' are the periods of pu.
In fact (Dixon's Elliptic Functions, § 72), if u + v +w = 0,

,
,• , - t /P'v— p'w^ , /p'w— p'u^pu+pv + piu = i(- *— ) =ii~ —

)

4 & *\pv-pw) *\pw-pu)

4 \pu—pv)

'

Hence + Pv-P'w = + ?'lizl'u = + P'U~P'V
.

— pv—pw — pw—pu ' ~ pu—pv '

from which (i) immediately follows.*

The inflexions have parameters

= (i).

(eeo + eV), (e,e'= 0,1,2).

The real inflexions have parameters 0, -^-> —
- ; where 2a>

o o
is the real period.

The odd circuit is given by real values of the parameter.

If g2
3 >27g3

2
, the cubic has also an even circuit given by

parameters of the form u + co, where u is real.

The connexions between the parameters of the points in

which the 'curve meets a conic or another cubic are the same
as in the case of the cubic with two circuits in § 3, except that

the congruences are taken modulo 2o> and 2a>. The standard

form of this and the preceding section may be used as in § 6

to establish properties of the cubic instead of the standard

forms of §§ 1, 4.

* It is at once proved that all the plus or all the minus signs must be taken.



CHAPTER XVII

UNICURSAL QUARTICS

1. Types of Quartie.

A quartic cannot have more than three double points

(Ch. VIII, § 2), so that its deficiency may be 0, 1, 2, or 3.

By the aid of Ch. VIII, § 1, we may draw up a table showing
all possible types of quartic as follows

:

Type
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A process which comes to the same thing is to project B
and into the circular points and then invert with respect
to A, when the quartic becomes a conic (a parabola, if J. is a
cusp) ; and from each property of the conic a property of the
quartic is deduced.

In fact, it is readily seen that the equation of a quartic with
double points at the origin tnd circular points is of the form

c (x2 + y
2
)
2 + 2 (g'x+fy) (x2 + y

2
) + ax2 + 2hxy + by2 = 0,

since every circular line meets it in only two finite points

Fig- 1.

The limaijon r = a + 6 eos for a/b = |, 1, §, 2, f .

(Ch. II, § 5). An inverse of this with respect to the origin is

the conic

ax2 + 2hxy + by2 + 2 gx +.2fy + c = 0.

The method of projection and inversion will, however, be

suitable only if B and G are double points of the same kind,

e.g. both cusps or both ordinary nodes. It is not readily

applicable if all the double points are of different kinds

;

for instance, a cusp, an ordinary node, and a flecnode. But
quadratic transformation is still available.

In the case of a quartic with a node A and two cusps B, G
each property of the curve can be duplicated by reciprocation

;



266 GEOMETRICAL METHODS XVII 2

for the reciprocal of such a curve is a similar quartic, as is

evident from its Pliickev's numbers.
If we project B, C into the circular points, and then invert*

with respect to A, the quartic becomes a conic with A as focus

;

since the inverse of a curve with respect to a focus has cusps
at the circular points, and conversely (see Ch. V, § 4, and
especially Ex. 1 to 6 in that section).

Hence, if we project the cusps of a quartic with a node and
two cusps into the circular points, it becomes the inverse of

a conic with respect to a focus, i.e. a limacon with polar

equation of the form
r = a + b cos 6.

Fig. 1 shows five limacons with the same b and

a/o = -g, 1, %, 2, -j.

The properties of a quartic

with three cusps may be inves-

tigated geometrically in various

ways. For instance, we may
obtain its properties by re-

ciprocation from the known
properties of the nodal cubic.

Or again, if we project two
of the cusps into the circular

points, the curve becomes a

limacon with a finite cusp,., i. e.

the cardioid

r = <z(l+cos#),

which is the inverse of a para-

bola with respect to its focus.

Or again, if we project the

points of contact of the bitangent into the circular points, the

curve becomes a three-cusped hypocycloid (Fig. 2)»

For the polar reciprocal of the curve with respect to a cusp A
will be a cubic touching, the circular lines at A and having
the line at infinity as inflexional tangent. Its equation can

therefore be put in the form

c (x2 + 1/
2
) = xz

(i),

A being the origin.

But the parametric equations of a three-cusped hypocycloid

are

x = %a (2 cos + cos 2<p), y = Ja(2sin0— sin20) . (ii),

the cusps being = 0, §tt, 4""j and the origin the centre of

Pig. 2.

Three-cusped hypocycloid.
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the curve. Writing down the polar of the point (ii) with
respect to the circle

(£c-a)2 + i/
2 = 62

and finding its envelope, by differentiating with respect to
<f>

in the usual manner, we obtain

Sb2 {(x-a)* + y
2
} +4a(x~af =

as the polar reciprocal of the hypocycloid with respect to

a cusp. But this is the curve (i).

Another proof is given in § 5.

Ex. 1. A quartic has nodes A, B, C. Through A is drawn any line

meeting the. quartic again in P, Q and BC in B. Find the locus of S if

(PQ,,BS) is harmonic.

[Project B and C into the circular points. Then we have : ' Find the
locus of the middle point S of a chord PQ of a bicircular quartic meeting
the quartic again at its finite node A.' Now invert with respect to A,
and we have :

' Through a fixed point A a line is drawn meeting a fixed

conic in P, Q and S is a point on PQ such that 1/AP+ 1/AQ = 2/'AS ;

find the locus of &'.' It is a straight line (the polar of A). Hence the
locus of the middle point of the chord of the bicircular quartic is a circle

through A ; and the locus of S for the original quartic is a conic through
A, B,C]

Ex. 2. The four points of contact of tangents from two nodes of a
trinodal quartic lie on a conic through those nodes.

[Projecting the two nodes into the circular points and inverting with
respect to the other node, we have :

' The intersections of a conic with
a pair of directrices are concyclic.']

Ex. 3. A quartic has nodes A, B, C. Tangents BM, BM' and CN, CN'
are drawn to the quartic. Show that two bitangents to the quartic pass

through the intersection ofMN and M'N'.
IfBM and BM' meet CA in m and m', CN and CN' jneet BA in n and

n', then two bitangents pass through the intersection of mn and m'n'.

[Project B, C into the circular points and invert with respect to A ; or

use the equation of the bitangents given in § 3. These theorems are

due to Jolliffe, Messenger Math., xxxiii.]

Ex. 4. Six conies pass through the nodes A, B, C of a trinodal quartic

and .touch the curve. The first conic meets the second again in P, the

second meets the third again in Q. and so on for the points P, Q, B, S, T, V.

Show that the conies ABCPS, ABCQT, ABCBXJ pass through the same
four points.

[Projecting and inverting we have Brianchon's theorem. Derive a

theorem from Pascal's theorem similarly.]

Ex. 5. A quartic has three nodes A, B, C. The conies through A, B, C
osculating the curve at A cut at L and M a conic through A, B, C
touching the curve at P. Show that LM, PA are conjugate chords of

the conic LMPABC. •

Ex. 6. A quartic has three nodes A, B, C. A chord PQ meets BC in B
and (PQ, BS), A (PQ, BC) are harmonic. Show that the locus of Sis a

conic through B, C and that the envelope of the conic ABCPQ is a

quartic with A as node and B, C as cusps.
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Ex. 7. A quartic has nodes A, B, C. Conies are drawn through these

nodes touching the quartic at P and Q. If PQ passes through A, the
locus of the remaining intersection of the conies is a conic through
A, B,C.

Ex. 8. Quartics with three given nodes and passing through four other

fixed points cut any line through a node in involution.

Ex. 9. In general there are two quartics with three given nodes,
passing through four other fixed points and touching the circle through
the nodes (the point of contact not being a node).

Ex. 10. A quartic has a node A and two cusps B, C. Prove that

(i) IfAD is the chord conjugate to BC of any conic through A, B, C
touching the quartic, the locus of D is a conic through B and C.

(ii) If tangents from B and C to the curve meet at D and AD meets
the curve at P, PA and the tangent at P divide BC harmonically.

(iii) The chord of contact of a conic through B and C touching the
quartic at two points passes through one or other of two fixed points.

(iv) If PAQ is a chord of the quartic, the conies through A, B, C
touching the curve at P and Q meet again on a fixed conic through
A,B,C.

[Project B and C into the circular points and invert with respect to A.
The reader may derive other properties of the quartic similarly, or may
obtain other theorems by reciprocating those given above.]

Ex. 11. The tangents at the cusps ofa tricuspidal quartic are concurrent.

[The reciprocal of_: ' The inflexions of a nodal cubic are collinear.'

Obtain other properties of the tricuspidal quartic by reciprocating the
examples in Ch. XIII, § 4.

The result is also evident on projecting the quartic into a cardioid or
three-cusped hypocycloid.]

Ex. 12. Quartics have given cusps A, B, C and the tangent at A is

also given. Show that the locus of the point of contact of a tangent
drawn from a fixed point on BC is a pair of lines through A.
Show also that the tangents to two such quartics at an intersection

divide BC harmonically. t

Ex. 13. Through the cusps of a tricuspidal quartic three conies are
drawn touching the curve elsewhere. Show that the remaining inter-

sections of the conies are collinear.

Ex. 14. Find the envelope of the line through any point P of a
tricuspidal quartic which forms a harmonic pencil with the lines joining
P to the cusps.

Ex. 15. Any tangent to a tricuspidal quartic meets the curve again at
P and Q. The tangents at P, Q meet at T and cut the bitangent IJ at
E, F. Prove that

(i) (EF, IJ) is harmonic.

(ii) The locus of T is a conic through I, J touching the quartic at

three points.

(iii) The line joining T to the intersection of PF and QE passes
through the point of concurrency of the cuspidal tangents.
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Ex. 16. Two bicircular quartics with the same foci and common finite
node cut orthogonally.

Ex. 17. If Sand S' are the foci of a bicircular quartic with a finite
node A, (AS'. SP±AS .S'P)/AP is constant, P being any point on the
curve.

Ex. 18. In Ex. 17 the lines AS, AS' are equally inclined to the tangents
from A to the quartic.

Ex. 19. A bicircular quartic with finite node can be regarded as the
envelope of a circle passing through whose centre lies on a fixed conic.

It can also be regarded in two ways as the envelope of a circle
orthogonal to a fixed circle j through whose centre lies on a fixed

conic touching,?' at 0.

s „ m, „ .a b c 2f 2g 2h .
§ 3. The Quartic -z + —„+-„ + -A + L̂ + — = 0.

g.1 yi Z i
yZ zg, Xy

Another method of obtaining properties of the trinodal

quartic is to take the three double points as vertices of the

triangle of reference. In the equation of the quartic there can
be no terms involving the third or fourth power of x, y, or z.

Hence the quartic takes the form

ay2z2 + bz2x2 + cx2
y

2 + 2xyz (fx + gy + hz) = . . (i).

If we divide by x2
y
2z2

, we get the equation at the head of

this section.

G, F, G, H the cofactors ofWe shall denote by A
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quartic at its intersections with the conic a/x + h/y + g/z =
other than the nodes.

The four bitangents of the quartic are

fx + gy + hz = ± Vbc x + Vca y '+ Vab z,

either three or one + signs being taken on the right.

For putting

u= fx + gy + hz,

the equation of the quartic may be written

( -/a yz + Vbzx + Vc xyf
= 2xyz(—u+ Vbcx + Vcay + Vabz) . . (iii)

;

showing that

u = Vbcx+ Vcay+ Vabz
is a bitangent with its pointe of contact on

Va yz+ -/bzx + Vcxy = 0;

and similarly for the other bitangents.

The result may also be proved by writing the equation of

the quartic in the form

(u2— be x2— ca y
2— ab z2

)
2

= (u— Vbcx— -/cay— Vabz) (u— */bcx+Vcay + Vabz)

x(u+ Vbcx— Vcay+ Vabz) (u+ «/bcx+ Vcay— Vabz)

'.' '

(iv) '

The tangential equation of the quartic, found in the usual

way,* is

22 (A2 + A2
) = Xfiv (18 AAS + 16A3 + 27A2

Xfiv),

where A = F\ + Gfi + Hu
and 2 = a\2 + b/j 2 + cv2 -2ftiv-2gi>\-2h\ii. ,

It will be found that

A2 + A2 = BG\2 + GAfi2 + ABu2 + 2AFfiv + 2BGv\ + 2GH\fi
.... (v).

The cross-ratio of the range in which the line

Xx + jiy + vz-=

is divided by the quartic is given by
/3

{ (0 + l
) (0_2)(^)

_l
)}

2 = 3r</2(02_^+ l
)

3

where
I=322 -36\fiv\, J"=-23 + 18A

)
u»/2A + 54AA2

AtV.

* See Oh. IV, § 3. Or, if \x + py + vz = and the quartic touch one
another, so do K/x + /i/y + v/s = and ax2 + 6j/

2 + cs2 + 2fyz + 2gex + 2 hay = 0.

Now write down the well-known condition that these two conies Bhould
touch.
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For the lines joining the intersections of the line and
quartic to (0, 0, 1) are

6bX2x* + 12 (h\2 + b\p-f\v)x*y
+ 6(a\2 + b/j.'

i + ct>
2 ~2fiJLi>-2gi>\+4h\n)x'i

y
2

+ 12 (h fi
2, + aX/i- gpv)xy3 + 6a /i

2y* = ;

and the cross-ratio (p of this pencil is given by the above
equation (Ch. I, § 11).

Ex. 1. If a quartic with three real nodes has a real bitangent, each
node is either an acnode, or is a crunode such that the tangents at this

crunode and the lines joining it to the other two nodes form two non-
overlapping pairs of lines. In this case all four bitangents are real,

the tangents from the nodes are all real or all unreal, and the quartic

may be put in the form

y
izt + z1x1 + x2 y'' + 2xyz (fx + gy + hz) = 0.

[For a real bitangent a, b, c have the same sign.]

Ex. 2. A real quartic with three nodes of which only 'one is real has
two real bitangents.

[We may suppose a and 6, /and g, x and y conjugate imaginaries, and
c, h, z real.]

Ex. 3. The envelope of a line divided by a trinodal quartic in a
equianharmonic range is a curve of the fourth class with four nodes.

Three of these nodes are the nodes of the quartic and the two curves

have the same tangents at these nodes. The other common tangents of

the ciirves are .the inflexional tangents of the quartic.

[The envelope is 1=0. The fourth node is (F, G, H). We shall

show in § 4 that 2 = touches the nodal tangents of the quartic]

Ex. 4. The envelope of a line divided harmonically by a trinodal

quartic is of the sixth class. It has the nodeB of the quartic as biflecnodes,

the two curves having the same tangents at these nodes. The other
common tangents of the curves are the inflexional tangents of the
quartic.

[The envelope is J= 0.]

Ex. 5. Show that (2l+3J)/\/i.v = is a curved of the third class and
that the twelve common tangents of this curve and 1=0 are the nodal

and inflexional tangents of the quartic.

Ex. 6. If one of the nodes becomes a cusp, one of A,
:

B, C is zero.

Ex. 7. What modification occurs in the tangential equation of the

curve, if one or more nodes become cusps ?

Ex. 8. Find the bitangents if one or more of the nodes becomes a

cusp. What modification must be made in Ex. 1 in this case ?

Ex. 9. The diagonals of the quadrilateral formed by the bitangents

are Gx + Fy — Cz = 0, &c. The triangle whose sides are these

diagonals and the triangle whose vertices are the nodes are in plane

perspective.

[The axis of perspective is
_
x/F+ y/G + z/H = ]
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Ex. 10. The four conies through A, B, C and the points of contact of

a bitangent touch in pairs at C, and the two tangents at C are harmonic
conjugates for CA and CB.

[The conies are ± */a yz + */l zx ± */c xy = 0.]

Ex. 11. The equation */p + >Jq + */r+ */s = 0, where p, q, r, s are of
the first degree in x, y, z, represents a quartic with bitangents

p = 0, 2 = 0, r = 0, s = 0,

and with nodes

p = s, q = r; q = s, r = p ; r = s, p = q.

Conversely, the equation of any trinodal quartic can be put in
this form.

[The equation may be put in either of the forms

{2(p
2 + q

2 + i
s + s

2)-(p + q + r+ s)
2

}
2 = Gipqrs,

{(p-s) + (q-r)} i -8(pq + rs){(p-s) + (q-r)}*

+ lG{q(p-s) + s(q-r)} 2 = 0.

For the converse take p — u — ^bcx + */ca y+ </abz, &c, in §3(iv).

The points of contact of the four bitangents all lie on the conic

2(p2 + q
2+ri + s

2
) = {p + q + r+ sy.]

Ex. 12. Three bitangents of a quartic with nodes A,B, C form a triangle
PQB- Show that the triangles ABC and FQB are in perspective.

Show that, if AP meets QB in P, &c, .the conic touching QB at P',

BP at Q', PQ at B' passes through the points of contact of the fourth
bitangent.

[The centre of perspective is p = q — r, and the conic is

2(jp
2 + 2

2 + r!

) =(p + q+ r)i]

Ex. 13. The four centres of perspective obtained in Ex. 12 are the
vertices of a quadrangle whose harmonic triangle is ABC.

[For the quartic of § 3 (i) they are ( + i/a, */± b, + */c).]

Ex. 14. One of the common chords of any two of the four conies of

Ex. 12 passes through a node.

Ex. 15. Find the locus of the nodes of a trinodal quartic, given the
four bitangents and two points on the curve.

Ex. 16. The double rays of the involution formed by the tangents at

C and the lines CA, CB pass through a pair of vertices of the quadri-

lateral formed by the bitangents.

[6a;
2 = ay*.]

Ex. 17. The bitangents touch the quartic at real points if a, 6, c are

positive and

2 (a/2 + hg* + ch* - abc) > ( + >/af± <Jbg±Jch- ^dbcf,

three or one + signs being taken.

Ex. 18. The quartic is the envelope of the conic

APa? + Brh?y
1 + Cn*f + 2 Fmnyz + 2Gnlsx + '2Hlmxy = 0,

where I, m, n vary subject to l + m + n = 0.

Ex. 19. The quartic is the envelope of the conic

fix2 + 2 1 (ayz + hzx + gxy) -By2 + 2 Fyz- Cz2 = 0,

where t varies ; and of two similar families of conies.
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Ex. 20. ABC is a fixed triangle and a fixed point. Through the
remaining intersections of AO, BO, CO with the sides of the triangle
a conic of given eccentricity is drawn meeting 'the sides of the triangle
again at D, E, F. Show that AD, BE, CF meet in a point whose locus
is a quartic with nodes at A, B, C.

Ex. 21. Conies of given eccentricity pass through fixed points A, B, C.

Show that their envelope and the locus of their centres are quartics with
nodes at A, B, C.

[The envelope of an asymptote or axis is a three-cusped hypocycloid."

See Annals of Math., II. iii (1902), p. 154; Trans. Amer. Math. Soc, iv

(1903), pp. 103, 489.]

Ex. 22. A conic touches the sides of a given triangle ABC, and one
focus lies on a fixed conic S. Show that the locus of the other focus is

a quartic with nodes at A, B, C.

Ex. 23. Given the nodes and five other points of a unicursal quartic,

construct the tangents at and from the nodes and any number of' other
points on the curve.

[Use Ex. 22. By varying the relative positions of S and ABC, we may
find every possible shape of a quartic with three real double points.]

§ 4. Conies connected with a Trinodal Quartic.

There are many conies of interest connected with the tri-

nodal quartic

ay2z2 + bz2x2 + cx2y
2 + 2xyz(fx+gy + kz) = . . (i).

Their properties are given in the following theorems.

If the point-equation of the conic is obtained, the tangential

equation can, of course, be at once deduced, and vice versa.

Various forms of the equation of each conic are given, as they

are needed in the examples.

To save space we use the following contragtions

:

/ u=fx + gy + hz,

A = F\ + Gfi. + Hi>,
fc

M=f(gG + hH)x + g(hH+fF)y + h(fF+gG)z,
2 = a\2 + bfi

2 + cy2- 2f/iv-2gv\-2 h\/i,

U = afyz + bgzx + chxy,

T = a2
f

2\2 + b2g
2
n

2 + c
2h2

v
2-2bcghnv-2cahfv\

— 2abfg\u,

T = ghyz + hfzx +fgxy,

\K = ay2z2 + bz2x2 + cx2
y
2 + 2 xyz (fx + gy + hz).

By u, A, 2 we denote the same as in § 3. The identity of

§ 3 (v) is useful in the examples.

The conies T = and U = (i. e. T = 0) are of importance

n the theory. They pass through the nodes of the quartic
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K = and meet the quartic again at its intersections with the

line M = 0. For we have

TU+xyzM=fghK.

I. The eight points of contact of the four bitangents lie on
the conic

u2 = bcx2 + cay2 + abz2

i.e.

(abc- af
2- bg2- ch2

)
(a\2 + bfi

2 + cv
2
) + (af\ + bgp + chvf = 0.

This follows at once from § 3 (iv). See also § 3, Ex. 11.

II. The six intersections of the tangents at a node with the

line joining the other two nodes lie on the conic

bcx2 + cay2 + abz2 + 2 afyz + 2 bgzx + 2chxy = 0,

or u2 = Ax2 + By2 + Cz2-2Fyz-2Gzx-2Hxy;

a2A\2 + b2
B/j.

2 + c2 Cy2 + 2bcFij.v + 2caGy\ + 2abH\fi = 0,

or abcZ = T.

For the intersections are z = 0, bx2 + 2hxy + ay2 = 0, &c.

III. The six tangents at the nodes touch the conic

(Ax2 + By2 + Cz2-2Fyz-2Gzx-2Hxy) + 4! T = 0,

or (Ax2 + By2 + Cz2 + 2Fyz + 2 Gzx + 2Hxy) + 4 U = ;

i.e. 2 = 0.

This result is at once established by using the equations of

the nodal tangents ; or it may be deduced from II by using
the fact that the lines joining the vertices of the triangle of

reference to the intersections of the conic

ax2 + hy2+ cz2 + 2f'yz + 2%zx + 2hxy =
with ttie opposite sides all touch the conic

bcX2 + ca/i2 + ataj^
2 -2af/ti'-2tagi'X-2ohX// = 0.

IV. The six intersections of the tangents from a node with
the line joining the other two nodes lie on the conic

Ax2 + By2 + Cz2-2Fyz-2Gzx-ZHxy = ;

i. e. A2 + 2 (GHftv + HFv\ + FGX/j.) = 0.

For the intersections are z = 0, Cx2— 2Hxy + By2 = 0, &c.

V. The six tangentsfrom the nodes touch the conic

aA 2x2 + bB2
y
2 + cOzz2 + 2fBCyz + 2gCAzx +2hABxy = ;

i. e. AS + A2 = 0.
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VI. The six inflexional tangents of the quartic couch

4>(aA 2x2 + ... + ... + 2fBCyz+

.

.. + ...)

= A
(
Ax2 + By2 + Cz2 + 2 Fyz + 2 Gzx + 2 ITxy) + 4AU

;

i.e. 3A2 + 4A2 = 0.

For, if \x + jiy + vz =
is an inflexional tangent, we obtain on eliminating z between
the equations of this line and the quartic an equation in x/y
with three equal roots. The same will therefore be true, if

we eliminate z between the result of substituting 1/x for x,

l/y for y, \/z for z in the equations of the line and quartic.

This shows that the conies

X/x + ji/y + v/z = 0, ax2 + by2+ cz2 + 2fyz + 2gzx + 2 hxy =
.... (ii)

have three-point contact.

The conditions for this are well known to be (with the

notation of Salmon's Conic Sections)

3A/© = 0/0'= ©'/3A',

where A' = 2\/j.v, ©' = -2, © = 2A.

The relation ©2 = 3 A®' is the tangential equation of the

conic required.

VII. The six inflexions of the quartic lie on the conic

2 (aA 2x2 +...+... + 2fBCyz + . .. + ...)

-2A(Ax2 + By2 + Cz2-Fyz-Gzx-Hxy) + AU=0,
or
2M(ghAx + hfBy+fgCz)
= U{fgh(4>abc+,2fgh-£)-2bcfh2 -2cah2

f
2 -2abf 2

g
2
}.

Since with the notation of the last paragraph the two
conies (ii) have three-point contact, therefore for some value

of*
h (ax2 + by2 + cz2 + 2fyz + 2gzx + 2hxy)

- {x {ax' + hy' + gz') + y (hx' + by' +fz') + z (gx' +fy' + cz')

}

(px + qy + rz)

= Xyz + /izx + vxy
;

where (a/, if, z') is the point of contact of the conies and

px + qy + rz = is the line joining this point of contact to

their fourth point of intersection. Equating to zero the co-

efficients of x2
, y

2
, z

2 on the left-hand side, and remembering

that px' + qy' + rz' = 0, we have

ax' by' cz' _
ax' + hy' + gz' hx' + by'+fz' gx' +fy' + cz'
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Hence the point of osculation of the two conies lies on

ax(hx + by+fz) (gx+fy + cz) + ... + ... = 0,

and therefore on

(ghx + hfy +fgz) (ax2 + by2 + cz2 + 2fyz + 2gzx + 2 hxy)

— ax(hx + by+fz)(gx+fy + cz) + . .. + ... ,

i.e. on

2Ayz (hy + gz) + 2Bzx (fz + hx) + 2 Gxy (gx +fy)
+ (4*abc — Afgh— A) xyz = 0.

Replacing now x by 1/x, y by 1/y, z by \/z, we Bee that

the point of contact of Xx + fiy + vz = and the quartic,

i. e. any inflexion of the quartic, lies on

2 Ax2
(gy + hz) + 2By2 (hz +fx) + 2 Cz2

(fx + gy)

+ (4 ahc— 4>fgh— A) xyz = 0.

Of the twelve intersections of this cubic with the quartic

six lie on the conic T = which touches the cubic at each

vertex of the triangle of reference. Therefore the remaining six

intersections of the cubic and quartic, namely, the inflexions

of the quartic, lie on a conic (Ch. XII, § 7). We can verify

that

(afghA + bfghB + cfghC+2bcghF+2cahfG + 2abfgH) K
+M{2Ax2

(gy + hz) + 2By2 (hz +fa) + 2Gz2
(fx + gy)

+ (4<abc— ifgh— A) xyz]
= T{2A (gG + hff)x2 + . .. + ...

_ (4,fF
2 + 2gh A + SafA) yz-. ..-...}.

The contents of the last brackets { } equated to zero give

the equation of the conic through the inflexions, which is

readily seen to be the same as that given above. This proof
is due to Richmond and Stuart, Proc. London Math. Soc, II.

i (1903), p. 130. »

The remaining intersections of the quartic with the
inflexions-conic are those intersections of the quartic with
the line M = which do not lie on the conic T = ; i. e. the
intersections of the line with the conic U = 0.

VIII. The six points where the tangents at the nodes meet
the quartic again lie on the conic

2M (beghx + cahfy + abfgz)

= U(5abcfgh-4>fghA-2bcg2h2 -2cah2
f

2 -2abf2
g

2
).

The lines joining the intersections of the quartic with
\x + ny + vz = to the node (0, 0, 1) are

(ay2 + bx2 + 2hxy) (Xx + /xy) 2- 2xy (fx + gy) v (\ x + py)
+ cv2x?y2 = 0.
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If ay2 + bx'- + 2hxy = is one pair of the&e lines and
Px2 + 2Qxy + By2 = is the other pair, we have readily, on
identifying the four lines with

(ay2 + bx2 + 2hxy) (Px2 + 2Qxy + By2
) = 0,

\:fi:v = gbc:fca:-2(fF+gG);
P:Q:B = b2 cg2

:fg (abc + 4fgh-2af2 -2bg2
) : a2

cf
%

.

Suppose the tangents at the nodes meet the curve again in
A

x
and A

2 , B1
and B

2 , G
1
and C

2
. We have just shown that

G-fi2 is the line

be ca 2(fF+qG)
-j-x+— y = 'v '

z.

« f 9 fg
JNow, since

(bz2 + cy2 + 2fyz) (az2 + ex2 + 2gzx) — cK
= z2 {abz2 + 2 (2fg— ch) xy + 2 bgzx + 2 afyz

}

,

the four points A lt A 2 , Blt B2
lie on the conic

abz2 + 2 (2fg— ch) xy + 2 bgzx + 2 afyz — 0.

They therefore lie on the conic

k {abz2 + 2 (2fg- ch) xy + 2 bgzx+ 2afyz}

( 2(gG + hH) ca ab ) (be 2(hH+ fF) ab )= i
——

i

x+ — y+-j-z} \-j;X —,.
J ' y+ -f-z\-

I gh g
y h S\f hf

y h S

We require to show that k can be chosen so that this conic

also passes through G
1
and C

2 , in othei» words that k can be
chosen so that the equation of this conic is symmetrical.

A comparison of the coefficients of x2
, y

2
, z

2 shows that- the

required value of k must be

{2h(fF+gG) + abfg}+fgh\

and straightforward verification then shows that for this value

of k the conic reduces to

2bc(gG + hH)x2 + . .. + ...

= a (abcf+ 2bcgh + 4af3- Spgh) yz + ...+....

,

which is equivalent to the given form.

IX. The six points of contact of the tangents from the nodes

to the quartic lie on the conic *

aA 2x2 + bB2
y
2+ cC2z2 + 2fBCyz + 2gCAzx + 2hABxy

= A (Ax2 + By2 + Gz2- Fyz- Gzx- Hxy).

* An alternative form is obtained by omitting the A from the right-hand

side of the second form of the equation of the conic through the six

inflexions.
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If the tangents touch the quartic in A
t
and A

2 , Bx
and B

2 ,

C
1
and

2 , we prove as in the case of Theorem VIII that G^C^ is

A B fF+gO
-j x + — y = ——— z

;

the lines joining (0, 0, 1) to the intersections of this line and the

quartic being the tangents from the nodes -4a;
2 + By2 — 2 Hxy

and the lines

bg2Ax2 + 2fg (A -hH) xy + af2By2 = 0.

Then since
,

(By2-2Fyz + Gz2
)
(Ax2 -2Gzx + Gz2

)-AK
= (Cz2-Fyz-Gxz + H^y) 2

,

Fig. 3.

3 (</
2 - *?) (x-±)(Ax-y -40) = 10(x2 + 2t/2 -12a;) 2

.

the points A
t , A 2 , Blt B2

lie on the conic

Gz2- Fyz - Gxz + Hxy =
and also on

k (Gz2— Fyz— Gxy + Hxy)

/gG +hH B G w A hH+fF G \

which reduces to the given form on taking

k = (fhF+ghG+fgC)/fgW.

In the following examples the conic through the points of

contact of the bitangents, which is referred to in Theorem I, is

called ' Conic I
'
; and so for the other theorems.

In Figs. 3, 4 are shown typical unicursal quartics..
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Ex. 1. The tangents a* the nodes A,B, C of a trinodaU quartic meet
the curve again in A1 and A a

,.B
1 and Bit C, and C2 . Show that the

intersections of A
XA2 and BC, B^an&CA, 0,0, and .-LB are collinear.

. I'roye also a similar result for the points of contact of the tangents
from the nodes.

[The required lines are hcghx + cahfy + abfgz = and
ghAx + hfBy+fgCz = 0.]

Pig- 4-

{if -lx*) (a- 4) (20x + y + 160) = 10{2x2-yi + 8x) 2
.

Ex. 2. Show that if in Ex. 1 (either case) the line A
X
A

2
meets the

quartic again in A\, A\, &c, the six lines AA\, AA't , BB\, BB\,
CC\, CC\ touch a conic, and their intersections with BC, CA, AB
respectively lie on a conic.

[The equations of the lines are given in § 4.]

Ex. 3. The conies III, V, VI touch at the same two points.

[Evident from their tangential equations. The chord of contact is

AFx + BGy+ CHz = 0,

and its pole is (F, G, H).]
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Ex. 4. The conies I, VI, VII pass through the same four points.

[If S
l
= 0, S2

= 0, Ss
= are the point-equations of the conies 'in the

first form given, we have S
3
-2S2

= 3^. This result is due to

W. Gross ; see Stahl, Crelle, civ, p. 308.]

Ex. 5. The conies U = 0, VII, IX pass through the same four points.

Ex. 6. The conies {7=0, I, IV pass through the same four points.

Ex. 7. The conic's T= 0, III, IV pass through the same four points.

Ex.8. The conies f7=0, VII, VIII, IX pass through the same two
points on the quartic.

[The intersections of U = with M = 0.

Obtain theorems by projecting these points into the circular points,

inverting with respect to a node, and generalizing by projection.]

Ex. 9. The conies U = 0, II, III have four common tangents.

Ex. 10. The conies II and IV have double contact. The chord of

contact passes through the intersection of a common chord of V =
and VII, and a common chord of U= and VIII.

Ex. 11. A conic can be drawn touching the lines joining the nodes
and the common tangents of the conies III and IV.

Ex. 12. A conic can be drawn having. the nodes as vertices of a self-

conjugate triangle and touching the common tangents of the conies
IV and V.

Ex. 13. The diagonals of the quadrilateral formed by the bitangents
are the polars of the nodes with respect to the conic IV.

Ex. 14. If the conic

Ax* + By 1 + Ca2 - Fyz- Gzx -Hxy =
meets the sides of the triangle of reference in X

x
and Xt , 1\ and F2 ,

Z
1
and Z2 , the lines AX1 and AX,, &c., meet the conic again at its

intersections with the diagonals of the quadrilateral formed by the
bitangents. The conic passes through the intersections of the conies
V and IX.

Ex. 15. Show that the common tangents of the quartic and the conic
AS + kh? = are the common tangents of the conic and the two cufves
of the third class

(1 - k) A3 = {(8 - 9i) + (4 - 3/fc)t} \,xV.

Deduce the equations of the conies III, V, VI.

[k = 0, 1, 4/3. Use the tangential equation of the quartic]

Ex. 16. Conies are drawn touching the four bitangents and one side of
the triangle ABC. Show that the points of contact with these sides are
collinear.

[On AFx + BGy+CHz = 0. Any conic touching the bitangents is

{(bg^-eh^W-lAff + cAS + lcGvX-lbHXn}
+ k{-aB\* + (af

2 -ch2

)iJ!
, + cBp,l + 2cFViJL-2amiJ} = 0.]

Ex. 17. If the points of contact of the tangents from P lie on a conic,
the locus of P is the cubic

Fx {cy* - bz1
) + Gy (az2 - ex*) + Hz (bx2 - ay*) = 0.

[The polar cubic of P touches a conic at A, B, C]
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Ex. 18. If the tangents at A are harmonic conjugates with respect to
AB and AC, the points of contact of tangents from C lie on a line
through B, and so do the remaining intersections of the curve with the
tangents at C
[/- o.]

Ex. 19. If the tangents from A are harmonic conjugates with respect
to AB and AC, the points of contact of tangents from B and C are
collinear.

[P=0.]

Ex. 20. The tangents at the nodes meet by threes in two points,, if

A = 4fgh.

[Conic III is a point-pair. Illustrate by tracing

x2

y
2 -2xy(x-2y)-Bx2 + 8xy + 3y 2 = 0.]

Ex. 21. The tangents from the nodes cannot meet by threes in two
points.

Ex. 22. The points of contact of the four bitangents are the inter-

sections of the quartic with two lines, if A =,2fgh.

[Conic I is a line-pair.]

Ex.^23. The intersections of the tangents at each node with the line
joining the other two nodes cannot lie on two lines.

¥

Ex. 24. The intersections of the tangents from each node with the
line joining the other two nodes lie on two lines, if A2 = 4FGH.
' Ex. 25. Show that conies II and V are always real. What conditions
must hold in order that conies I, III, IV may be real?

[The conic ax1 * by2 + czi+ 2fyz + 2gzx + 2hxy = is real, if «A and C
are not both positive.]

Ex. 26. Conic II for

ay2z2 + ... + ... + 2fxlyz + ... + ... =
is the polar, reciprocal with respect to x2 + y

2 + z" = of conic V for

Aifz2 + ... + ... + 2Fx2yz + ... + ... = 0,

and vice versa.

Similarly for conies III and IV.

The reader should read Ch. XVIII, §§ 1 and 4, before attempting the

following examples.

Ex. 27. The tangents at A and B form a quadrilateral. One diagonal

is AB ; the other two meet at C and intersect AB in R1} P2 . Similarly

we obtain points A', P1; P2
and B', Qlt @2 . Show that AA', BB', CC

are concurrent. Show also that three of the points Pt , P2 , Qx , Q2 , Et , P2

(say P2 , Q2 , B2 ) are collinear, and that APlt BQlt CE1
are concurrent.

[AC and AB are harmonically conjugate with respect to the tangents

at A. Therefore AC is cy+fz = Q, and similarly BC is cx+gz = 0.

Hence 6" is (g,f, —c), and the point of concurrency is fx = gy = hz.

Blt P2 are Ax2 = By2
, z = 0.]

Ex. 28. Show that AC and the harmonic conjugate of BC for BA, BC
meet on a diagonal of the quadrilateral formed by the bitangents.

[See § 3, Ex. 9.]
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Ex. 29. The lines BA', CA', CB', AB', AC, BC touch a conic.

[aX2 + ... +.... ~(f+bc/f)ixv+ ... + ... = 0.]

Ex. 30. The conic through ABC touching AC and BC passes through
the points of contact of the tangents from C to the quartic.

[gyz+fzx + cxy = 0.]

Ex. 31. The points of contact of the tangents from C to the quartic
lie on a conic through C.

[(fh + bg) xz + (gh + of) yz = Ax2 + By2+2 (ch - 2fg) xy. ]

•Ex. 32. The points of contact of the tangents from A lie on a conic
through A, C and the intersections of BC with the quartic. Similarly
for the tangents from B. t

[bgxz + ghyz = By1 + (ch — 2fg) xy ;• fhxz + afyz = Ax2 + (ch — 2fg) xy.]

Ex. 33. The conies of Ex. 31, 32 pass through the same four points.

Ex. 34. The tangents at C meet the quartic again in C
1
and C2 , and

C
y C% meets the curve again at C\ and C2

. Show that the points of

contact of the tangents from C lie on a conic touching CC\ and CC\ at

C\ and C'j and passing through A and B.
Show also that through the intersections of the conic U = with this

conic a conic can be drawn touching CA and CB at A and B.

[(/F+gG + hH)f-H(hz2 + cxy) = cU.]

Ex. 35. Through two pairs of vertices of the quadrilateral formed by
the bitangents can be drawn (i) a conic touching CA at A and CB at

B ;
(ii) a conic touching conic I at its intersections with AB ; (iii) two

conies each touching CA at A and CB at B and each passing through
the points of contact of two bitangents.

[(i) uz + cxy = ; (ii) u2 — bcx2 — cay* + abz1 = ;

(iii) wz + cxy+\/abz2 = 0.]

Ex. 36. Show that, if

u lEfx+gy + hz,

v = cxy + uz— tz
2

,

w = bcx2 + acy2 — u2 + 2t (cxy + uz) — t 'z
2

,

iv = touches the quartic at its four intersections with v = 0, other

than A and B.
Show that v = touches CA and CB.

[The quartic is v2 +z2w = 0.]

Ex. 37. Show that w = is a line-pair, if t = h or if t = + 'Jab. Show
that in the former case w = is the tangents from C to the quartic, and
that in the latter case to = is two bitangents. ,

Ex. 38. Show that the locus of the pole of AB with respect to v> =
is a conic through C, C, Rlt R$; and that this and the two similar

conies pass through the same four, points.

[Ax2-By2 + Fyz- Gxz = 0.]

Ex. 39. Show that w — divides ^Bj harmonically.
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§ 5. Tricuspidal Quartic.

The results of the preceding section require modification if the
three double points of the quartic are not all ordinary nodes.

Suppose the double points are all cusps. Since the tangents

at each double point are coincident, the quartic takes the form

a b c 2V(bc) 2V(ca) 2V{ab)—
-„ H—o -I—^ + H + — u.

ar y
i zL yz — zx — xy

The ambiguous signs may all be taken as minus without

loss of generality. For unless the quartic is a pair of coin-

cident conies, three plus signs or one plus and two minus
signs are impossible ; while if (say) the first sign is minus
and the other two plus, we can make all signs minus by
replacing Va by — Va.

Finally, replacing x, y, z by -/a. x, Vby, -/cz we obtain

the equation of the tricuspidal quartic in its canonical form

x2
y

2 s2
. yz zx xy

The cuspidal tangents y = z, z = x, x = y are concurrent

at the point (1, 1, 1).

Since the equation of the quartic may be written

(yz + zx + xy) 2 = 4xyz(x + y + z),

x + y + z = is the bitangent, its points of contact being its

intersections with yz + zx + xy = 0.

The equation of the quartic may be also written

a;
-
5+2/

-
2 + z

-
2 = 0.

The tangential equation is

(A + n + vf = 27\pv.

In the equations of the three-cusped hypocycloid given in

§ 2 (ii) put

2X=a-x-</3y, 2Y=a-x+ </3y, 2Z=a + 2x;

so that X = 0, Y = 0, Z = are the sides of the triangle

whose vertices are the three cusps.

This gives

6Z = a{l + 2cos(0 + §7r)}
2
, 67=c6{l + 2cos(0 + |7r)}

2
,

* 6£ = a{l+2cos0} 2
,

from which is readily deduced

It follows that, if any three-cusped quartic is projected so

that the cusps and the point of concurrency of the cuspidal
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tangents become th» vertices and centroid of an equilateral

triangle, the quartic becomes a three-cusped hypocycloid.

Ex. 1. The coordinates of any point on the tricuspidal quartic in

canonical form are expressed rationally in terms of a parameter t by

{t-iy>x = (t-hlfy = 4z.

Ex. 2. A conic is inscribed in a given triangle and passes through
a fixed point. The locus of the point of concurrency of the lines joining

the vertices of the triangle to the points of contact of the opposite sides

is a tricuspidal quartic.

[If the point is (X, Y, Z) and the conic is

(*/fl* + (yA)*+(*/fl* = o,

the quartic is

(X/*)l + (r/y)* + (Z/*)* = 0.]

Ex. 3. A variable cubic touches three fixed lines at fixed collinear

points and has inflexions at its other intersections with the fixed lines.

Show that .the line of these inflexions envelops a tricuspidal quartic,

having the line of the fixed points as bitangent.

[Writing down the conditions that (0, —v,y.) and ( — v, 0, X) are

inflexions of
xyz+(x + y + zy(\x + /j.y + i'z) = 0,

we obtain

which is of the third class and fourth degree since it has (1, 1, 1) as

a bitangent.]

Ex. 4. The locus of the centre of a conic having a given equilateral

triangle as self-conjugate triangle and having its asymptotes inclined at

an angle tan-1 J */3 is a three-cusped hypocycloid.

Ex. 5. A fixed radius of a circle and' the tangent at its extremity
intercept on a moving line a segment which is bisected by the circle.

Show that the envelope of the moving line is a three-cusped hypocycloid.

Ex. 6. The envelope of the Simson (pedal) line of a given triangle is

a three-cusped hypocycloid.
The tangents from a vertex of the triangle are the two sides and

altitude of the triangle through that vertex.

[Writing down the condition in trilinear coordinates that the lines

perpendicular to the sides of the triangle at their intersections with

\a + rt3 + vy=
are concurrent, we get the tangential equation of the envelope

2 (1 + cos .4 . cos B . cos C) \/iv = 2 sin2 A . fiv(ii cos C+ v cos B)

which touches sin A . Oi + sin B . + sin C . y = at the circular points.

See Converse, Annals of Math., II. iii (1904), p. 105, for an extension of

this result.]

Ex. 7. The equation of a quartic with one real and two unreal cusps
may be put in the form

(a? +y*-2 xzf = 4z* (x* + y*).

The quartic can be projected into a cardioid by a real projection.

[Replace x, y in § 5 by x+ iy. For other examples on the tricuspidal

quartic see § 2.]
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§ 6. Other Quartios with Three Distinct Double Points.

The point (0, 0, 1) is a cusp of

ay2z2 + bz2x% + cx2
y

2 + 2xyz (fx + gy + hz) = . . (i)

if C = 0, i. e. ab = K\
It is a flecnode if the terms

cx2 + 2hxy + by2
(ii)

multiplying s2 in (i) have a factor in common with the terms

®y(fa+gy) (»i)

multiplying z. This is the case, if

fF+ gG = 0, i.e. 2fgh = a/2 + bg\

It is a biflecnode if (ii) is a factor of (iii), which is only

possible if r_ _

I. Quartics with three Biflecnodes.

Ex. 1. If two of the nodes of a trinodal quartic are biflecnodes, so is

the third.

[/=</ = fc = 0.]

Ex. 2. If a quartic has biflecnodes A, B, C, the tangents at A are

harmonic conjugates for AB, AC.
The tangents at A, B, C touch a conic for which ABC is a self-

conjugate triangle.

Ex. 3. If a quartic has three real biflecnodes, one is an acnode, and
the others are crunodes. Its equation cap be put in the form

a?
-2 + jr

2 = s-2 .

Ex. 4. If a quartic has three real biflecnodes, the acnode is the
intersection of two diagonals of the quadrilateral formed by the tangents

at the crunodes.

Ex. 5. Show that the ' cross-curve

'

x*f = a2
y
1 + bi x*,

the ' carbon-point-curve

'

and the ' hour-glass-curve

'

are curves of this type.

Trace the curves, and show that the two former are the loci of inter-

section of lines parallel to the axes of an ellipse or hyperbola through

the intersections of any tangent with the axes.

Ex. 6. The points of contact of the tangents from to a quartic with

three biflecnodes A, B, C lie on a conic which meets the quartic again

on the polar line of with respect to the quartic.

[Take the quartic as ar2 + ir2 +.z
_2 = and as (£, /?, £). Then use

the identity

{£W+e)x+ ••• + -}{f*(y
1, +«,

)+ ••• + •••}

= Hyz + £&x + £r,xy) {(v
2 + i

1)x>+ ... + ... +v(ye+ ... + ...}]
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Ex. 7. If in Ex. 6 lies on the quartic, the points of contact lie on
a line whose envelope is a conic havingABC as a self-conjugate triangle.

[The conic of Ex. 6 degenerates into x/t + y/n+z/C = and the

polar line of 0.]

Ex. 8. Any point of the curve x~* + y-' = z~ a is (sec $, cosec <b, 1).

Four points with parameters 0,, $a , $3 , <p± lie on a conic through the

crunodes, if <j>, + d- 2 + <f 3 + 4>t
= (2n — l)ir.

The four points are collinear, if in addition t
1
t
i
t
i ti
= -1, where

?, = tanj^, &c.
Three points with parameters </>j, (fj, <p3 are collinear if

k hh (V, + t
s h + h

t

t )
= *, + 12 +

1

3 .

Ex. 9. The conies through the crunodes A, B of a;
-2 + y~2 — z~"

osculating the quartic at P, Q, R, S meet the curve again at P', Q', R', S'.

If A, B, P, Q, R, S lie on a conic, so do A, B, P, Q', R', 8'.

Ex. 10. Two conies through the crunodes A, B of a;
-2 + y' 1 = z~''

meet the quartic again in P,, Qlt R
1 , Si and P2 , Qit R2 , S2 . If

A, B, P
x , Qx , P2 , §„ lie on a conic, so do A, B, Ru Slt P2 , S2 .

Ex. 11. The sextactic points of ar' + jr' = z~l are

( + i, +2-i, 1), (±2-*, +*, 1), ( + 1, +1, 2i).

[The method of Ch. X, § 2, Ex. 17, gives sin4# = or cos40 = 17

at a sextaetic point.]

Ex. 12. Through the crunodes A, B of the quartic of Ex. 8 four conies

can be drawn having four-point contact with the curve. Their points, of

contact are the real sextactic points.

The conic through A, B and three of the sextactic points touches the

quartic at one of them.

Ex. 13. If in Ex. 9 the conic ABPQR meets the line joining S to the

acnode on the quartic, the conic ABP'Q'R' meets the line joining S" to

the acnode on the quartic.

Ex. 14. Obtain the envelope of a line divided in a range of given
cross-ratio by a quartic with three biflecnodes.

[Put f=g = h"=0 in § 3.

The envelope becomes the conic touching the tangents at the
biflecnodes, if the range is equianharmonic] *

Ex. 15. The equation of a real quartic with one real and two unreal
biflecnodes can be put in the form xyz 1 = (x 1 + #

2
)

2
.

The quartic can be projected into the lemniscate of Bemouilli
»-2 = a* sin 2 6.

II. Quartic with, two Cusps and a Node.

[See § 2, Ex. 10 ; and Ch. X, Fig. 1.]

Ex. 1. A quartic with two real cusps and a real node can be put in the

form 2/'z
2 + zlxl + xl

y
% = 2xyz{x + y + mz).

The inflexions are unreal or real according as in does or does not lie

between 1 and 7.

[The quartic .meets x (y-z) = {t + 1) yz at

(Jct^kf + t+l), kt' + t + l, hfi),

where 2k (iw + 1) = 1.
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Now using Ch. X, § 1 (v), we get

3kf + (8k+l)t + B =
i.e. §{m + l){x2 + y

!1

) = 2(m'1 +m + 16)xy
for the inflexions.]

Ex. 2. The bitangent of the quartic of Ex. 1 is 2x + 2y + (m + l)z = 0.

Its points of contact are unreal or real according as m does or does not
lie between - 1 and 7.

[The points of contact lie on 2a;
2 - (m- 3) xy + 2y2 = 0. The reader

may illustrate by tracing a;
2
?/
2 + xi + y

1 = 2xy {x + y + 8), with bitangent
2x + 2y + 9 = 0.]

Ex. 3. Find the value of m in Ex. 1, if polygons of 4, 5, or 6 sides can
be inscribed i.n the quartic whose sides touch the curve.

[If tu tt , ts , tt are the parameters of collinear points

h + h + h + h = - 2 (»» + 1)> h"
1 + h'

1 + *s

_1
+ h'

1 = ~ 1-

Eliminating ts and tt from these and ts
= tt , we have

4V2
= {2 (m+ 1) + (*, + *,)} {<! t2 + (t1 + ti)}.

But this is the condition that the tangents at the points (1, t
2

, 2^) and
(1, £j

2
, 2t2) on z2 = ±xy should meet on

4xy = {2(m + l) x + z} {y + z}.

Now use the properties of invariants of conies to obtain the condition

that polygons of 4, 5, 6 sides can be inscribed in the lattericonic and
circumscribed to the former. We find

«~-2, -fori, -H-r
Ex. 4. Show that in the case m = — 2 the cuspidal tangents pass

through the points of contact of the bitangent, and that any two lines

harmonically conjugate with respect to the tangents at the node meet
the curve again. at four points such that the tangents at these points

form a quadrilateral inscribed in and circumscribed to the quartic.

[(i) The points of contact are (2, -1, 2), (-1, 2, 2).

(ii) The points of contact of the two other tangents to the curve from
the point with parameter T are given by

2k (T+ 1) t
2 + (kT2 + 4kT+ T+l)t + 2T (kT+ 1) = 0.

If tx , *2 are the roots, we readily verify that x = kt
1
2
y and x = kt2

2
y

form a harmonic pencil with x2 + y
2 — 2mxy in the case

m = -2, * = -$.]

Ex. 5. Show that the line joining the points of contact of the other

two tangents from any point of the bitangent of a quartic with a node
and two cusps envelops a unicursal curve of the third class.

[The tangents from the point (x, y, z) are given by

(t + 2)x + kts (2kt+l)y-2(kt2 + t + l)
2z=0.

If the point lies on the bitangent z = — 4k(x + y), this becomes

{2kt2 + t + 2} {(4/fc
2
*
2 + 6fc*+4&+l)x+fc(47c*2 + «

2 + 6* + 4)y} = 0.

Hence if t
x , t3 are the parameters of the points of contact, while

t1 + t2
= u and t

1
t2 = v, 6kv + (8k + l)u + 6 = 0.

But the line joining the points with parameters t
lt t2 involves u and v

in the third degree.]

* See Eoberts, Proc. London Math. Soc, xxiii (1892), pp. 202-211, for this and
the following examples.
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Ex. 6. A quartio has cusps A, B and a node C. Show that the
following points lie on a conic :

(i) A, B, the points of contact of tangents from A and B, and the

points of contact of the bitangent.

(ii) A, B, the inflexions, the remaining intersections of the curve with
the tangents at C.

[These and many similar results are proved by noticing that the curve

can be projected so as to be symmetrical.]

Ex. 7. A quartic has two cusps A, B and a node C. Show that the

line joining C to the intersection of the tangonts at A and B is a
double line of the involution determined by the tangents at C and the

lines CA, CB.
Given A, B, C, 0, find the locus of the inflexions and of the points of

contact of the bitangent.

[A quartic with nodes at A, B and a cusp at C touching OA, OB
;

a conic through ABO. See Ch. V, § 4, Ex. 8.]

Ex. 8. Reciprocate Ex. 5, 6, 7.

III. Quartics with two Flecnodes and a Node.

Ex. 1. The equation of a quartic with two real flecnodes and a node
can be putm the form

{x* + y
2
) z^-x^f + Zhxy {z + x){z + y) = 0.

Ex. 2. A quartic has two flecnodes A, B and a node C. Show that the
following sets of six points lie on a conic

:

(i) A, B and the points of contact of the tangents from A, B, C.

(ii) A, B and the intersections (other than A, B, C) with the curve of
the tangents at A, B, C.

[These and many similar results follow at once from the fact that the
quartic can be projected into a quartis with symmetry.]

Ex. 3. A unicursal quartic with two unreal flecnodes can be projected
into the inverse of a conic with respect to the reflection of a focus in

the corresponding directrix.

IV. Quartics with a Biflecnode and two Nodes.

Ex. 1. The tangents from A to a quartic with nodes A, B, C form
a harmonic pencil with AB, AC, and similarly for the tangents from B.
Show that C is a biflecnode ; and that the tangents at A form a harmonic
pencil with AB, AC, and similarly for B.
Show that the equation of the quartic can be put in one of the forms

z* (a? ±yi + 2mxy) ±x"-yl = 0.

[F = G = gives / = g = 0, if the curve is not degenerate.]

Ex. 2. Show that, if a quartic has nodes A, B and a biflecnode C, it

can be projected so as to have two axes of symmetry ; unless A is a
crunode and B an acnode, or vice versa, when it can be projected so as

to have a centre of symmetry at C.

Trace the projected curves in the various cases which can occur.

Prove that, if A and B are acnodes, C is a crunode.

[Putz = l in Ex. 1.]
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Ex. 3. A quartic has crunodes A, B and a biflecnode G. Show that the
tangents at A and B meet at the vertices of a quadrangle having A, B, C
as diagonal points; and that their remaining intersections with the
curve are the vertices of a quadrangle whose diagonal points are C and
two points on AB.

[This and similar theorems follow from symmetry, or by putting
/=<7 = in§§ 3 and 4.]

Ex. 4. A unicursal quartic cannot have (i) a biflecnode and a cusp,
(ii) a biflecnode and a flecnode, (iii) a flecnode and two cusps, (iv) three
flecnodes.

§ 7. Unicursal Quartics with Two Distinct Double Points.

Unicursal quartics with only two distinct double points

include quartics with a tacnode or rhanrphoid cusp and another

double point. The reader will readily obtain their properties

by modification of the results of Ch. XVIII, §§ 14 and 15. He
may illustrate his argument by tracing the curves of Ch. Ill,

§ 6 (xi) to (xv), § 8 (v) to (vii).

I. Unicursal Quartics with a Tacnode.*

Ex. 1. A quartic has a tacnode at C and another double point at B

;

CA is the tangent at C and BA the harmonic conjugate of BC with
respect to the tangents at B. Show that its equation is

(yz + x*f = (1 - m) x2 (x2 +p^y + p2 y
2

)

in general.

Show that p2
= 0, if B is a cusp ; (1 — m)p^ = 4.p% if B is a flecnode

;

and that B cannot be a biflecnode.

Ex. 2. The bitangents \, h2
of the quartic of Ex. 1 are

2z = (1 + -/m) (px
x +pi y).

Ex. 3. If Cj, C2 are the points of contact of the tangents from C,

then Clt C2 and the points of contact of \ lie on a conic touching the

quartic at C.

[yz + x*= (l + Vm)(x2+p1
xy+p

2y
i
).]

Ex. 4. The points of contact of 6t and 62 lie on a conic touching the

quartic at C.

[2yz + 2x* = (1-m) (ix^+p^y+p^).]

Ex. 5. AB, C^, bu 6„ are all concurrent.

Ex. 6. A conic touches the quartic at C,, C2 and touches the tangents

from B.

[{PxX + p^y-zf = (l-m)p2 {x
i + p1

xy+p
i y

2
).]

Ex. 7. The points of contact of \ and its intersections with the

tangents from B form an involution with a double point on CA.

Ex. 8. The points of contact of the tangents from A lie on a conic

touching the quartic at C.

[Write down the polar cubic of A.]

* For other examples see Messenger Math., xlvii (191V), p. 95,

22Ifi U
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II. Unicursal Quartics with a Ehamphoid Cusp.

Ex. 1. A quartic has a rhaniphoid cusp at C and another double point

at B ; CA is the tangent at C and BA the harmonic conjugate of BO
with respect to the tangents at B. Show that its equation is

(yz+ a?)* = 4a;sy (x + ay).

Show that a = 0, if B is a cusp ; a = 1, if B is a flecnode ; and that B
cannot be a biflecnode.

Ex. 2. The bitangent 6 of the quartic of Ex. 1 is x + ay *=z touching

where x* — xy— ay* = 0.

The tangent from B is z = (l + a)x, touching at B
x
(\-a, 1, 1-a2

).

The tangent from C is x + ay = 0, touching at Cj (a, - 1, a
2
).

Ex. 3. AB, b, CC
1
are concurrent.

Ex. 4.- 6, CA, B1
C

1
are concurrent.

Ex. 5. B, C, Blt Clt and the points of contact of & lie on a conic for

which AC and BC^ are conjugate lines.

[z(2x + ay) = (2 + a) a? + 2axy.]

Ex. 6. If BBL
meets & at J, the involution pencil formed by CB, CH

and by the lines joining C to the points of contact of 6 has CA as

a double ray.

Ex. 7. The points of contact of b and Cx lie on a conic osculating

the quartic at C,

[yz+ x* = 2y(x + ay).]

Ex. 8. The points of contact of the tangents from A lie on a conic
osculating the quartic at C.

[Write down the polar cubic of A.]

Ex. 9. If the tangents at B meet the quartic again at F1
and F

2 , the
line CA is divided harmonically by F

1
F3 and the tangent at B to the

conic touching CA at C and passing through B, Flt F3 .

[J?
7

! Ft is 2x + 9>(a — l)y + z = 0, and the conic is xi —4:xy + 2yz = 0.]

Ex. 10. The conic osculating the quartic at C and touching the conic
of Ex. 9 at B passes through Bt .

[yz+ x* = 2xy.]

Ex. 11. The conic osculating the quartic at C and passing through
the intersections of the curve with AB (other than B) passes through Cv

[yz+ x* = 4:y(x + ay).]

Ex. 12. The conic osculating the quartic at C and passing through
the remaining intersections K

x , K2 of Flt F2 with the curve passes

through Bj.

[yz + x1 + 2 xy = 4 (1 - a) y\]

Ex. 13. BK
X
and BK, touch the conic of Ex. 12 ; and KX

K2 is divided
harmonically by CA, CB.

§ 8. Quartics with a Triple Point, &c.

A quartic with a triple point is converted into a unicursal
cubic by projecting two points of the quartic into the circular

points and then inverting with respect to the triple point.



XVII 8 QUARTICS WITH A TRIPLE POINT 291

Of course quadratic transformation with the triple point and
two other points on the curve as the points C, A, B of Ch. IX,
§ 1, comes to the same thing.

Hence from each property of a unicursal cubic can be
deduced a property of a quartic with a triple point.

An alternative is to reduce the equation of the quartic to

a simple form by a suitable choice of axes or triaDgle of
reference.

The coordinates of any point can be expressed rationally in

terms of a parameter by considering the intersection of the
curve with a line through the triple point.

If we take the triple point as (0, 0, 1), the equation of the

quartic is

zwj-v = (i),

where
u = a x3 + 3a

1
x2
y + 3a2

xy2 + a
3y

3
,

v = A x* + 4:A
x
x3
y + 6A 2x

2
y
2 + 4>A

3
xy3 + A^y*.

We may simplify this equation by a suitable choice of the

other two vertices of the triangle of reference.

For instance, if all three tangents at (0, 0, 1) are real, we
may suppose u = xy (x + y). Then, replacing z by z +px + qy
and choosing p and q so as to make the coefficients of x3y and
xy3 zero, we may reduce (i) to the form

zxy(x + y) = axi + 2hx2
y
2 + byi .... (ii).

The reader will easily verify that, if

(t-Va-Vb) 2 = a + 2h + b, (T- Va+ Vb) 2 = a + 2h + b,
.

then

z + 2t(</ax+Vby) = 0, z+2T(Vax- Vby) = (iii)

meet the curve (ii) where

(
Va x2 + txy + Vb y

2
)

2 = 0, ( Va x2 + Txy- Vb

y

2
)
2 = 0. r

Therefore the lines (iii) are the four bitangents of (ii), and

= is a diagonal of the quadrilateral formed by these

bitangents*

I. Quartics with a Triple Point.

Ex. 1. If is a triple point of a quartic through A and B, the three

conies through A, B, O osculating the quartic at O meet the quartic

again on a conic through A, B, O.

[Project A,B to the circular points and invert with respect to O.

Then : ' The tangentials of three collinear points of a cubic are

collinear.']

* An exception arises if h2 = ab. See Ex. 18, 19, p. 295.

V2
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Ex. 2. In Ex. 1 there are three conies through A, B, which osculate

the quartic at P, Q, R. Show that A, B, 0, P, Q, R lie on a conic.

Ex. 3. A conic through the triple point of a quartic meets the

curve again in A, B, P, Q, R. If A, B, P are fixed and Q, R vary, OQ
and OR trace out an involution pencil.

[See Ch. XIII, § 4, Ex. 12.]

Ex. 4. Two conies through the triple point O of a quartic meet again
at A, B, P on the curve, and they both touch the quartic at Q and R
respectively. The conic OABQR meets the quartic again at S. Show
that OQ and OR are harmonically conjugate with respect to OP and 0.9,

and also with respect to the lines joining to the other intersections of

AB with the quartic.

[See Ch. XIII, § 4, Ex. 13.]

Ex. 5. No triangle can be both inscribed in and circumscribed to

a quartic with a triple point.

[The quartic could be transformed quadratically into a quintic with a

triple point and three cusps, whose reciprocal would be a quintic with
a triple tangent.]

Ex. 6. The line y = tx joining the triple point of § 8 (ii) to the
remaining intersections of the curve with the line joining the inter-

sections of y = t
x
x and y = t

1
x with the curve is given by

bt
2 + {b + av-(a + 2h + b)u} t + av = 0,

where 91^=1, •» (l + sfj) (1 + fc,) EE 1.

Ex. 7. A triangle is inscribed in a quartic with a triple point 0. The
lines joining to the remaining intersections of the quartic with the
sides of the triangle form an involution.

[Use Ex. 6.]

Ex. 8. A quartic with a triple point passes through three fixed

points A, B, C and meets BC, CA, AB again at six fixed points. Show
that the locus of is a cubic.

[Use Ex. 7 and Ch. XV, § 3, Ex. 3.]

Ex. 9. If p = 0, q = 0, r = 0, s 5= are four lines, such that p = s,

q= s, r = -s «are concurrent, Vp + -x/ff + */r+ a/s = is a quartic with
a triple point and with these lines as bitangents.

{See §3, Ex. 11.]

Ex. 10. The points of contact of the four bitangents of a quartic with
a triple point lie on a conic.

For the quartic § 8 (ii) the equation of the conic is

z2 + 4z (ax + by) - 8 (ab + ah) x* - 8 (ab + bh) y* = 0.

[It is readily seen that these bitangents are

{z"+ 4z (ax + by)~8 (ab + ah) x2 - 8 (ab + btyy*}
1*

+ 64-ab (a + 2h + b) {zxy (x + y)- ax* -2hxi
y
i - by*} = ;

or we may use Ex. 9.]

Ex. 11. Any diagonal of the quadrilateral formed by the bitangents
of a quartic with a triple point O meets the curve and the conic through
the points of contact of the bitangents in an involution whose double
points lie on two tangents at O.
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[In § 8 (ii) the diagonal is z = 0. The curve

16(x-y)(2x + y)y = 12x* -Wx*y -ix^y* + 8xys + Syi

with bitangents

Sx + 2y + l2 = 0, a; + 2 = 0, x-4 = 0, y-3 = 0,

will illustrate Ex; 10 to 15.

The conic 6x2 + 4xy + 3y'i -24:X + 8y-96 = passes through the points

of contact of the bitangents, and the conic

52ar-52jBy-27y
1 - 16a- 152^-48 =

touches the six inflexional tangents (only two are real). Through the
four real intersections of these conies passes another conic through the
inflexions.]

Ex. 12. Let E
t

, F1 ; Ea , F2 ; E3 , F3 be the three pairs of vertices of
the quadrilateral formed by the bitangents of a quartic with a triple

point 0. Show that, if the tangents tlt t
2 , t3 at are taken in a certain

order, then :

(i) t2 , t3 are the pair common to the two involutions subtended at
by the points of contact of the pair of bitangents which meets at Ex

and
the pair which meets at F

1 .

(ii) The two conies through and the points of contact of these two
pairs of bitangents both touch t

1
at and have four-point contact,

(iii) The conic OE2F2
E

3F3
touches t

t
at 0.

(iv) Through E2 , F2 , E3 , F3 can be drawn a conic having double
contact with the conic through the points of contact of the four

bitangents at its intersections with tx .

(v) Let Slt S2 , S3 be the conies of closest contact with the quartic

at O, and llt lit l3 the lines joining to their remaining intersections

with the quartic. Then prove that t
t
and lx

divide E
1
F1

harmonically,

(vi) The lines OE1 and OFlt ta and \, t
s
and ls form an involution,

(vii) A conic passes through E1 , Ft
and the four intersections of S

2
and

S3 . It touches at the harmonic conjugate of tx for t2 and ts .

(viii) The conic through the intersections of St and S3
touching t

x
at

meets t2 and t3 in points collinear with the intersection of £, and E1
F

1
.

[Two pairs of bitangents are

z"
t + 4(*/a + Vb) {-/ax + */by)z-8 (h- a/oB) (*/ax + ./by)1 = 0,

s2 + 4(./a- V b) (>/ax-/by)z -&(h+ ^ab) (a/ox- ^/byi
2 = 0.

Add and subtract these equations, and subtract each from the equation

of the conic of Ex. 10.

The conies of closest contact at O with § 8 (ii) are

zy-a(x2 -xy + y
2
)
— 2hy1 = 0, zx-b{xl — xy + y2

) -2hx i = 0,

z (x + tj) + (3a + 6)a;2 + (3a + 36 -2A) xy + (a + 3b)if = 0.]

Ex. 13. A line divided equianharmonically by a quartic with a triple

point O envelops a conic touching the six inflexional tangents and
touching the Hessian of the tangents at O.

For the curves § 8 (i) and (ii) the tangential equation of the conic is

4(A Ai -4:A1
A3 + BA i

2
)v'

i -4:(a
<
,Ai-Sal

A
s + Ba

2
A2 -a3A1) vX

- 4 (osA - 3 a
2 Ai + 3 a^A %

- a A s )
v/i — 3 (a

x
a
3
— a2

2
) X

2

+ 3(a as -a1
a

l!
)X/i-3(« a

i!

-«
l

2
)n

2 = ;

X2 + Al.

2 -A|ii + 4^(\ + F)v + 4(^+3o6)j,
2 = 0.
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[Eliminates between Xx + py + vz = and the equation of the quartic,

and write down the condition that the resulting pencil of lines is equi-

anharmonic.
The inflexional tangentB are divided equianharmonically by any

quartic]

Ex. 14. With the notation of § 8 (i) verify that

(3 C20)a « +2Cn ,,)(C10 ,
«+Cs„,)-2Ci, „(*« + «>)

• = ^20)2 (3C40)0 s + C aul z + 2 CM>2 ),

where C20 , 2 &c. , are invariants or covariants of u and v given by

Cm , i = {a
ll
ai -a^)x'

i + •>
C11 , s

= (a A
2 -2a1 A1

+ ai A )x3 + ...,

C40 , = «0
Z
"s*- 6 «0 al °2 a8 + 4 a a2

S + 4 fl
l
3

ffS
- 3 ^I

2^

,

C3l , i = {A (o a3
2 - 2 ax a2 as + az

s
)

+ (a ai-a1
*)(-4:A

i
a3 + 6A2aa

-4A s al + A i a )} x + ...,

C41 , o = AK a
s ~«aT + 2A («i «s - «2

2

) K «2 - ao «s)
+ A %

(a
2 a3

2 + 3 a
a

2 a
2

2 - 2 a^ a3
- 2a a 2

3

)

+ 2As (Oi a2 ~ «o as)K «2 - «i") +AiK «2 - «i
2

)

2
,

C31 ,
!= {^„ (5a a3

2 - MojOjaj + 9

a

2
s
) +^ ( — 16a a2a3 + 28

o

x
! Oj — ^a^,*)

+ v4
2 (30ff a2

2 — 12a Oj a3
- 18«j2 o2 ) +A S

(4a aa3
— 16a o1 o2 + 12a!3

)

+ ^ 4 (a
2 a2 -a a1

2)}a: + ...,

C22,2 = {A2

«s
a -6A^i«2«s + A-<M9a2

2 - 2 «ias) + 8A 2

«i as

+ ^ j4
3 (2a a3

— 6 a
x
a2)

- -ij A2 (12 ax a2 + 4 a a
3) + .4 A

i
a?

+ 8A 1
A

S Oj
2 + 6 .4

2

2 a
x
a2
— 2A

1 A t a a, — &A % A3 a a
x +A z

A
i
a 2

} x* + ....

Deduce that the six inflexions lie on the conic

3 Ci0 , „ s
2 + C31 + 2 C22 , 2

= 0.

For the quartic § 8 (ii) the inflexions lie on

2a (b + 3h) xi -4{ab + h2)xy + 2Ji, (a + 3h) y
2

= {3a-2h)zx+(3b-2h)zy + z2.*

[By Chi VII, § 7, Ex. 14 (v) the inflexions lie on

3C2012 * + 2C11I3 = 0.]

Ex. 15. The three conies of Ex. 10, 13, 14 pass through th» same
four points.

Ex. 16. Show that the, equation of a quartic with a triple point at
which (i) three tangents are real, (ii) one tangent is real, can be put
into the form

(i) z(dx2y-ys)+xi + Gax2

y
2 + 4:bxys = 0,

(ii) z(3x2
y + y

s)-xi + 6ax2

y
2 —ibxys = 0.

Show that the bitangents of these curves are

z = 2tx
/26-f '

A St J

where (i) 27 *
4 -(18a + l)<2 + 462 = 0,

(ii) 27i4 + (18a + l)r--462 = 0.

* For this equation, which suggests the more general form, I am indebted
to Miss J I. E. Colomb.
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Ex. 17. The bitangents of a quartic with a triple point at which the
three tangents are real are all real or all unreal.

If one tangent at is real, two bitangents are real.

Ex. 18. Find the condition that the conic touching the inflexional
tangents of the quartics of § 8 (ii) or Ex. 16 should degenerate into a
point-pair.

Determine whether this point-pair is real or unreal, and find the
bitangents in this case. ^

[For § 8 (ii) the condition is h? = ab, and the point-pair is unreal.]

Ex. 19. If the conic touching the inflexional tangents degenerates,
three bitangents are concurrent. Each of them is divided harmonically
by two of the tangents at the triple point 0. The fourth bitangent is

divided harmonically by the Hessian of the tangents at 0.

Determine whether the points of contact of the bitangents are real

or unreal.

[Illustrate by tracing 2ixy (x+ y) = (2xi
.+ y

i

)

!i

, whose bitangents
are the line of infinity and

2x + y + 2 = 0, 2x-y+S = 0, 2x-y-6 = 0.

Their points of contact lie on 2 (a: -2,*+ (y-lf = 21.]

Ex. 20. Determine the condition that the conies of Ex. 10, 14 should

degenerate into line-pairs.

[C41 ,
— 0. For § 8 (ii) this becomes a + h + b = 0, when the conies

become respectively unreal and real line-pairs.]

Ex. 21. By replacing x, y, a, b, h in § 8 (ii) respectively by

x + iy, x-iy, p + iq, p-iq, r-\(a + b)

obtain the equation of a quartic with a triple point at which one

tangent is real. Obtain the conies through its inflexions, &c.

Ex. 22. Sketch roughly the different types of quartic with a triple

point 0, one tangent at being the line at infinity, and determine the

number of bitangents and inflexions for each type.

[There are four such types ; one is illustrated by

S6y(y + l)x = 4
2/
4 -84

2/
! + 81

with bitangents

9a; + 10y + 45 = 0, Sx + 4y + 18 = 0, Sx-2y + 9 = 0,

9x-8y+36 = 0.]

II. Quartics having a Triple J*oint with two Coincident Tangents.

Ex. 1. The equation of a quartic with a triple point at which two

tangents coincide may be put in the form zx2
y = y"(2 xt+ y) + ax*.

The bitangents are z + y = ± 2 </a (x 4 y)

.

Ex. 2. The inflexions lie on the conic Eys+2xz = 2ax%
.

[Eliminating a between the equations of the curve and its Hessian,

wegef 2f + x2z = 0, &c]

.Ex. 3. The conic through the points of contact of the bitangents and

the triple point O touches the linear branch at O.

[y(y + z) = 2ax\]



296 QUAETICS WITH A TKIPLE POINT XVII 8

Ex. 4. The envelope of the line divided equianharmonically by the

quartic is a conic touching the inflexional tangents and touching the

superlinear branch at 0.

.
ry + 12a»» = 6X».]

III. Quartica with a Superlinear Branch, of Order Three.

Ex. 1. The equation of a quartic with a superlinear branch of order

three can be put in the form zy3 = (Bay^ —x2
)

1
. t

The bitangent is z == 0.

The inflexions are (±ai, 1, 4a2
) and the inflexional tangents are

z + 8aix— 12a'y = 0. *

They meet the curve again at ( + 3ai, 1, 36a2
).

Ex. 2. The inflexions are real or unreal according as the points of

contact of the bitangent are real or unreal.

Ex. 3. The tangent to the superlinear branch, the bitangent, the line

joining the inflexions, and the line joining the remaining intersections

of the inflexional tangents with the curve, are all concurrent.

[Putting z = 1, we see that the curve may be projected into one with
an axis of symmetry. Trace this projection, distinguishing the cases

a > 0, a = 0, a < 0.]

Ex. 4. Any line met by the quartic in an equianharmonic range passes

through the intersection of the inflexional tangents.

Ex. 5. The line divided harmonically by the quartic envelops a conic

touching the curve at the singular point, and touching the inflexional

tangents.

[It is X2 +16a/i» + 128aV = 0.]

Ex. 6. A conic passes through the inflexions and the remaining inter-

sections of the inflexional tangents with the curve, which touches the
bitangent and touches the quartic at the singular point.

[yz = 4aa;2.]

IV. TJnieursal Quartics of Class Six with one distinct

Double Point.

. Ex. 1. A quartic has two linear branches having three-point contact
with one another. Show that its equation can be put in the form

(yz + x*y = y
1 (px1 + qy

%
).

[By Ch. Ill, § 8, Ex. 6, the equation is

= (yz+ x2

f + 2 y (yz+ x>) (Ix + my) + y
1 (ax1 + 2hxy + by2

)

.

Choose a triangle of reference ABC such that C is the double point,

B the other intersection of the osculating conies at C, A the intersection

of the tangent at C with the other common tangent of the conies. We
find that then I — m = h = 0.]

Ex. 2. Show how to transform the quartic into a conic by quadratic
transformation.

[Put z-x2
/y for z in Ex. 1.]

Ex. 3. The bitangents of the quartic of Ex. 1 are

(p^ + iq) y = 4^2 and y" = 0.
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Ex. 4. Show that the quartic can be projected into one with an axis
of symmetry. Indicate roughly its shape in the cases

p>0, 2 >0; p>0, q<0; p<0, q>0.
Put 2=1. Properties of the curve can be written down from the

symmetry; e.g. 'A conic through two inflexions and the points of
contact of a bitangent touches the curve at &']

Ex. 5. Express the coordinates of any point of the curve rationally in

terms of a parameter.

[Put 2tpix = (l-?)qly.]

V. Unicursal Quartics of Class Five with one distinct

Double Point.

Ex. 1. If in IV, Ex. 1, a = I
2

, the equation can be put in the form

(yz + x2
)

2 = xys
.

[Replacing z by z — lx —my we reduce the equation to

{yz + x2

)

2 = y'(px + qy).

An infinite number of conies meet the curve at seven points coinciding
with (0, 0, 1), but no conic meets it eight times there.

Choose a new triangle of reference ABC such that C is the singularity,

CA the tangent at C, B the point of contact of the tangent from C, AB
the tangent at B to that conic of closest contact at C which goes
through B.]

Ex. 2. Any point on the quartic is (t
2

, 1, — t*— t).

If the points with parameters t
t , t

2 , t3 , ti are collinear,

h + h + h + h = 0, h ts tt + <
x
t
s
t
t + t

t
t% t

t + t
x
tt ts + 1 = 0.

Ex. 3. The tangent at any point is

(l+4?)x + P(l-2ts
)y + 2tz = 0,

and meets the curve again at the points with parameters + (l/2£)z — t.

The curve is of class 5.

Ex. 4. One of the inflexions is real and two unreal. They lie on a

conic having double contact at B and C with that conic which passes

through B and has closest contact at C with the quartic.

The inflexional tangents meet the curve again at points lying on
such a conic.

[t = h i<o, £w2
. Conies are yz + 'dx2 = 0, 8yz + 35x2 = 0. More

generally, if any such conic meets the curve at P, Q, E, the tangents at

P, Q, R meet the quartic again in six points lying by threes on two
such conies.]

Ex. 5. The bitangents coincide with y = 0.

Ex. 6. Derive properties of the quartic from those of the conic by

quadratic transformation.

[Putting z-x2/y for z we obtain z2 = xy.]



CHAPTEK XVIII

QUARTICS OF DEFICIENCY ONE OR TWO

§ 1. Nodal Quartics.

In this chapter we shall consider quartics with deficiency

one or two.

A quartic with deficiency/two has a single node or cusp. If

it has a node 0, we take this node as (0, 0, 1). Each of the

Fig. 1.

i00{2vi + ij
1 -lGx-ltj)(x'i + 3yi -Sx-l2y) + (ix + y)(2x + 3y) = 0.

«

tangents at meets the curve at another point. We call

these points / and J, and take the line IJ as z = 0.

Since (0, 0, 1) is a node, the equation of the quartic is of

the form
u4 + 2usz + u^z2 = ;

where u
2
,u

3 , ui are homogeneous of degree 2, 3, 4 in x and y,

and u
2
= is the equation of the tangents at the node. Also,

since z = and w
2
= intersect at two points on the curve,
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u
2
is a factor of% . Hence the equation of the quartic may

be written , „ , „ _ ...

u2v2 + zu3z + u2
z2 = (i),

v
% = being the equation of the lines joining to the points
H and K at which IJ meets the quartic again (Figs. 1 and 2).

The six points of contact of the tangents to the quartic from
the node-0 lie on a conic touching OH and OK at H and K.

For the polar cubic of is u.6 + u2
z = 0, which meets the

quartic six times at and at the six intersections of the quartic
with z2 = v2 , as is seen by writing (i) in the form

u
2 (
v2~ z2

) + %z (us
+u

2
z) = 0.

Ex. 1. We may without loss of generality take u2 as xy or xl —yi
if the

node is a crunode, or as x^ + y* if the node is an acnode.

Ex. 2. A line meets the quartic in A, B, C, D and OA, OB, OC, OD
meet the quartic again in A', B', C, D'. Show that 0, H, K, A', B', C", D'
lie on a conic.

[If the line is z = %, the lines OA, OB, OC, OD are

«2 vi + '2vl u3 + 1«2 1>!
2 = 0,

and the required conic is »2
= v

i
z-]

Ex. 3. A line through H meets the quartic again in A, B, C; and
OA, OB, OC meet the quartic again in A', B', C. Show that K, A', B', C,
are collinear, and that the lines HABC, KA'B'C meet on the conic
through the points of contact of the tangents from 0.

Ex. 4. IfH and K are unreal, the quartic can be projected so as to be
its own inverse with respect to a circle j whose centre is the node 0.

Eight foci of the projected 4-ic lie on j, and the 4-ic is the envelope of
a circle cuttings orthogonally whose centre lies on the polar reciprocal
with respect to j of the .polar cubic of 0. The foci of the 4-ic on ,; are
the points of contact withj of the common tangents of j and the polar
cubic of 0.

Conversely, the envelope of a circle cutting any given circle ortho-

gonally whose centre lies on a tricuspidal 4-ic with an infinite bitangent
is a nodal 4-ic.

[Project H and K into the circular points. See also Ch. XI, § 11, Ex. 3.]

Ex. 5. If IJ touches the quartic at H, the points of contact of tangents
from lie on two lines through H.

Ex. 6. Show that :

(i) The equation of a quartic with a biflecnode can be put in the

form xyz2 + u = Q or (xl + y
2)z! + u = 0, where u is homogeneous of

degree 4 in x and y.

(ii) The points of contact of the tangents from are collinear.

(iii) The sixteen inflexions other that lie on another quartic.

(iv) Any line through is divided harmonically by the quartic and
a fixed line.

[(iii) Combine the equations of the curve and its Hessian.

(iv) Putting z = 1, we see that the curve can be projected so as to

have as a centre of symmetry. Prom this fact other properties of a

biflecnodal quartic may be written down.]
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Ex. 7. Show that

:

(i) The equation of a quartio with a flecnode can be put in the form

xyz2 + 2yuz + xi v = 0,

where u and v are homogeneous of degree 2 in a: and y.

(ii) The tangents from to the curve lie on a conic touching the
non-inflexional branch at 0.

(iii) If a line meets the quartic in A, B, C, D and OA, OB, OC, OD
meet the quartic again in A', B', C, D', then A', B', C, D' lie on a conic
touching the non-inflexional branch at 0.

[(ii) xz + u = 0, (iii) x {z + w) + 2 u = 0, if the line is z = w.\

Ex. 8. Show that the theorem of § 1 can be generalized as follows

:

Given an «-ic with an (n — 2)-ple point 0, we can find an »*-ic with an
(>--2)-ple point at such that any line through Ois divided harmonically
by the curves ; r being any given number ~^\n. Each curve passes

through the points of contact of the tangents from .0 to the other.]

[If m„_ 2 z* + 2 uB_i z + un = 0, j',.-2 s2 + 2 »,._! z+ »,. = are the curves,

«»-» »r + «» «V-«= 2 ««-i «V-i •

See Bateman, Archiv der Math, und Physik, xiii (1908), p. 48.]

Ex. 9. Show that Ex. 4 can be generalized as follows : If an n-io with
an (n — 2)-ple point O is self-inverse with respect to a circle j with centre

O, it is the envelope of a circle cutting j orthogonally whose centre lies

on the polar reciprocal with respect to j of the first polar curve of O.

This polar reciprocal passes through 4 {n — 2) foci of the «-ic lying on j.

Ex. 10. A large number of polished wires in the form of concentric

circles lie on a table. Light emanating from a fixed point is reflected

at the wires to another fixed point. Find the locus of the point of

reflexion.

[A nodal circular quartic]

§ 2. Cuspidal Quartic s.

If a quartic has a single cusp 0, we may take O as (0, 0, 1).

As in § 1 the equation of the-quartic is

ui + 2u3
z + u 2

zi = 0,

where in this case u
2

is a perfect square. Most of the results

of § 1 hold with slight modifications. The points /, J coincide
at the intersection of the quartic with the cuspidal tangent,
and the tangent at this intersection meets the quartic again
in H and K.
We shall leave the verification of these facts as an exercise

to the reader, and give here only the method of finding the
bitangents of a cuspidal quartic*

Tfle polar cubic of the cusp O has also a cusp at O and the
cuspidal tangents of the cubic and quartic coincide ; for this"

cubic is U = zu
2 +u3

= 0.

* H. A. Richmond, Quarterly Journal Math., xxvi (1893), pp. 5-26.
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The quartic is

U2 = u
3
2— u2u±.

Now by a proper choice of the triangle of reference we may
reduce the equation of the polar cubic to

zx2 + y3 — 0.

We have then u2
'= x2

, ua = y
s

, and the quartic becomes

(zx2 + y
3

)

2 = y
6— x2ui .

Suppose that

y
6-x2

Ui = (y + ax) (y + hx) (y + ex) (y + dx) (y + ex) (y +fx) ;

where a, b, c, d, e,f are subject only to the relation

a + b + c + d + e+f= 0.

We shall denote y + ax, y + bx, ... by a, /?, y, 8, e, £ and
zx2 + y3 by U.

Now
2U = (xPy + 8e£

is equivalent to

x2 {2z— (be + ca + ab + ef+fd + de)y— (ahe + def) x} — 0,

and meets the quartic

U2 = <xPy8e£

where (a/?y- 8e£)2 = 0.

Hence
2a— (bc + ca + ab + ef+fd + de)y— (abc+def)x = . (i)

and the nine similar equations are the ten bitangents of the
quartic*

Writing the quartic in the form

(2 z-p3
x-p2y)

2 x2 + 4 (2a -p3
x-p

ty) y
s

= { (4^6-p*) ®2 + 3
(
3^5 -PiPz) xv + (Apt-p?) y

2
}A

where p2 , p3 , p4 , p6 , p6
are the sum of the products of

a, b, c, d, e,f two, three, four, five, six at a time, we see that

the tangent at /(= J) is

2z-p
3
x-p

2y = 0,

and that the points H, K of § 1 are its intersections with

(*Pb -2%
2
)
*2 + 3

(
3F5 -P2P3) XV + (

4^4 -Pi) y
2 = 0.

Some of the properties of the cuspidal quartic may be
verified on Fig. 2. In it a, /3, . . . denote the points of contact

of oc = 0, j8 = They are the points with abscissae

— £, — 1, — -|, f , I, 5 ; the cusp being (0,.co ), and the cuspidal

tangent x = 0.

* The six quantities a, /?, 7, S, e, £ can be divided into two sets of three in

ten ways.
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The bitangent (i) may be conveniently denoted by the
symbol (abc, def). In Fig. 2 the equations of the bitangents
are as follows

:

(abc, def) x + 45 y = 122 ;
(abd, cef) x- lOy = 23 ;

(abe, def) x-5y=12; (abf, dec) 991 x- 4,50y = 859

;

(adc, bef) 3x + 15 y = - 34 ;
(aec, bdf) Sx + 30y = - 61

;

(afc, bde) 24 lec- 225 y = 92 ;
(ade, bcf)x-4-5y = -68

;

(oc?/, bee) 65a + 50?/ = -51
; (aef bed) 4\x + 25y = -38.

The bitangents (abc, def) and (abd, cef) have unreal points
of contact.

Ex. 1. Of th^ ten bitangents of a cuspidal quartic, ten, four, or two
are real,

[If a, b, c, d, e, /are real, ten bitangents are real. If four or none of
them are real, four bitangents are real. If two of them are real, two
bitangents are real.]

Ex. 2. No two of a, b, c, d, e, f can be equal unless the quartic has
a second double point.

[If a = 6, (1, —a, a3
) is a node.]

Ex. 3. Through the points of contact of any bitangent can be drawn
two conies touching the quartic at the cusp and each passing through
the points of contact of three tangents from the cusp.

\xz = abc x* + (be + ca + ab) xy + (a + b + c) y
l
, &c]

Ex. 4. Show that the points of contact of e = 0, f = and the

bitangents (abe, cdf) and (abf, cde) all lie on a conic through the cusp.

[0(« + fl
= (O/3 + y8K.]

Ex. 5. The point of contact of a = 0, the intersection of /3 = with
the bitangent (acd, bef), and the intersections of the bitangents
(abe, cdf) and (abf, cde) are collinear.

[They lie on 2 U+ a 2
/3 = 0ty8 + ape + a/3f, which is a straight line.

The reader may refer to Richmond, loc. cit., for further examples.]

Ex. 6. What modifications must be made in § 1, Ex. 4, in the case of

a cuspidal cubic ?

[Six foci lie oiij. The centre locus is a cuspidal cubic having three-

point contact with the line at infinity.]

Ex. 7. A quartic with deficiency two is referred to a triangle both in-

scribed and circumscribed to the curve, the double point being taken as

(1, 1, 1). Show that its equation takes the form

ayz.y? + bzx »a + cxy w1 = 0,

the tangents at the double point being an? + 6»2 + civ
2 = ; where

u = (l + A)x-y-Az, v= -Bx + (l+B)y-z, iv=-x-Cy + (l + C)z.

Show also that au+fiv+.yiv = 0, and that the quartic has a cusp if

bc(X'i + caPi + aby*= 0;

where a, /3, y denote BC+B+1, CA + C+1, AB + A + 1.

Show that the polar cubic of the node is

a (y +z) u
2 + 6 (z + x) »2 + c (x + y) w 1 = 0.



304 BICIRCULAR QUARTICS XVIII 3

§ 3. Bicircular Quartics.

If a real quartic has a pair of unreal nodes, they may be

projected into the circular points at infinity. The quartic then

becomes bicircular, and its equation is of the form

c (x2 + y
2
)

2 + 2 (Ix + my) (x2 + y
2
)

+ ax2 + 2hxy + by2 + 2gx + 2fy = 0,

if the origin is taken on the curve.

If we now invert with respect to a circle with centre the

origin and unit radius, the quartic becomes the circular cubic

c + 2 (Ix + my) + ax2+ 2 hxy + by2 + 2 (gx +fy) (x2 + y
2
) = 0.

Since foci invert into foci and a circle and two inverse

points into a circle and two inverse points, the,properties of

the foci of a circular cubic proved in Ch. XIV, §§ 2, 3, hold for

a bicircular quartic, namely :

—

A bicircular quartic is self-inverse with respect to each of

four mutually orthogonal circles each of which passes through

four foci. If the four real foci are ccmcyclic, the quartic

consists of two ovals and three of the four circles are real. If
the four real foci are not concyclic, the quartic consists of a
single oval and two of the circles are real, while each passes

through two real foci.

The reader will at once verify that, if the four lines

y
2 +(x±<x) 2 =

each meet a bicircular quartic at only one finite point, the

coefficients of x3
, x2

y, xy2
, y

3
, xy in the equation of the quartic

are all zero. Hence the equation of a bicircular quartic becomes

(x2 + y
2
)
2 + ax2 + by2 + 2gx + 2fy+c = . . . (i)

when the line joining a pair of singular foci is taken as y = 0,

and the middle point of the line is taken as origin. The
four singular foci of this quartic are readily shown to be
(+§-/(&-«), 0), (0, ±iV{a-b)). We shall suppose b>a
in the following.

The quartic (i) may be written

(x2 + y
2 -t) 2 + (a + 2t)x2 + (b + 2t)y2 + 2gx + 2fy + c-t

2 = 0.

Hence the conic

(a + 2t) x2 + (b + 2t)y2 + 2gx + 2fy + c-t
2 = . . (ii)

has contact with the quartic at four points lying on a circle

x2 + y
2 = t (iii)

with centre 0, whatever may be the value of t. If

4! i
i + 2(a + b)t3 + (ab-4:c)t2 -2(ac + bc-f2-g2)t

-(abc-af2 ~bg2
) = . . (iv),
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the conic (ii) is a line-pair. It is therefore a pair of bitangents

in this case.

We may exhibit the bicircular quartic (i) as an envelope in

another manner. In fact it is the envelope of a circle whose
centre lies on the conic

4.xy(a + 2t)+4>y2/(b + 2t) + l = . . . (v)

and which cuts orthogonally the circle

x2 +f + 2gx/(a + 2t) + 2fy/{b + 2t) + 1 = . . ( vi),

where t is any root of equation (iv).

For, if we take the centre of the variable circle at

(^-a-2t)*eosfc J (-6-2*)* sin $) . . (vii),

its equation is

(a? + y*-t) = cos(/> {(-a-2f)ix-(-a-2t)-*g]

+ sin<j>{(-b-2t)iy-(-b-2t)-if} . . (viii),

whose envelope is found in the usual manner to be (i), on
making use of (iv).

The variable circle has double contact with its envelope (i).*

The foci of (v) are the singular foci of (i).

The curve (i) is self-inverse with respect to the circle (vi),

since the variable circle is self-inverse with respect to (vi),

being orthogonal to it. Hence the four circles with respect to

which (i) is self-inverse are obtained by putting into equa-

tion (vi) any value of t derived from (iv).

The ordinary foci of the quartic (i) ai-e the intersections

of (v) and (vi), each value of t giving four such foci.

For, if P is any intersection, the circular lines through P
form a degenerate circle orthogonal to (vi) and touching the

envelope of the circle (viii), which is (i).

The conies (v), where iisa root of (iv), are called the ' focal'

or ' deferent ' conies of the bicircular quartic.

The reader will notice that (ii) and (vi) have the same centre.

It follows that a pair of bitangents passes through the centre

of each circle for which the quartic is self-inverse, as is

geometrically obvious.

In Fig. 3 is shown the bicircular quartic, whose real foci

(0, 1), (-M, -ft), (¥. -I), (hi) lie on the focal conic

«2 + 92/
2 = 9. The centres of the circles for which the quartic

is self-inverse are (f, 3), (-
4
T
2
-, A), (M, t

3
o), (If, -*!). being

the harmonic points of the quadrangle formed by the real foci

* As is the case in general with any singly infinite family of circles. For
the similar result for circular cubics see Ch. XIV, § 3.

951R -^*-
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and the centre of the circle through the foci. The quartic is
drawn by the method described in Ch. XI, § 11, Ex. 3.

The real foci are denoted by O, the singular foci by x , and
the centres by • in the figure.

Pig. 4.

(x2 + y*) 2 -22x*-2y2-i = 0.

Singular foei ( + -\/5, 0); ordinary foci ( + 1, 0), (0, +2).

Ex. 1. The inverse of a bicircular quartic with respect to a point not
on the curve is a bicircular quartic ; the inverse with respect to a point
on the curve is a circular cubic.

Ex. 2. Through any point O of a bicircular quartic three real circles

of curvature pass besides the circle of curvature at 0, and the three
points of osculation lie on a circle through O.

[Invert with respect to O. We may derive other theorems' by inverting
properties of a circular cubic, e.g. Ch. XIV, § 3, Ex. 10, 11.]

Ex. 3. The circles of curvature of a bicircular quartic at its four
intersections with any circle for which it is self-inverse have four- point
contact.

Ex. 4. If O is the point half-way between the real singular foci of

a bicircular quartic, show that

:

(i) O is half-way between the unreal singular foci, and the sum of

the squares of the distances of O from the singular foci is zero.

(ii) The points of contact of the tangents from O lie on a conic.

(iii) O is equidistant from the middle points of AB and CD, where
A, B, C, D are the intersections of any line with the quartic.

[Use equation (i) of § 3, and write down the first polar of O.]

Ex. 5. The bisectors of the angle between any pair of 'bitangents of

a bicircular quartic are parallel and perpendicular to the line joining

the real singular foci.

[Equation (ii) of § 3 has no term in xyi\

Ex. 6. The four intersections of two pairs of bitangents lie on a circle

whose centre O is half-way between the real singular foci.

The sum of the squares of the radii of the circles obtained by taking

two pairs of bitangents and also the other two pairs is the same for each

way of dividing into pairs.

X 2
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Ex. 7. The eight points of contact of any two of the conies (ii) of § 3

lie on a conic.

The eight points of contact of any two pairs of bitangents lie on a conic.

[The points of contact of the conies for which i = t
t
and t = t2 lie on

(a + 2t1)x
2 + (b + 2t

1)f + 2gx + 2fy + c-t1
" + (t

1
-t

1)lx'
2 +^-t

1)^0,
i. e. ax1 + bf + 2gx + 2fy + c + (t

1 +

1

2 )
{x1 + y

2
)
- t

x *, = 0.]

Ex. 8. The four intersections of any two of the conies (ii) of § 3 lie on
a circle with centre 0.

The rectangular hyperbola through the intersections has fixed

asymptotes.
The conic through and the intersections has a fixed tangent at 0.

[Note the case in which the conies are pairs of bitangents as in Ex. 6.]

Ex. 9. Find the centres of the circles for which the quartic (i) of § 3

is sell-Inverse ; and show that they lie on a rectangular hyperbola
through whose asymptotes are parallel and perpendicular to the line

joining the real singular foci.

[(-g/(a + 2t), -f/(b42t)), where t is given by (iv).

The centre of (ii) lies on b — a = g/x—f/y-]

Ex. 10. The centroid of the four finite intersections of a bicircular

quartic with any circle whose centre is half-way between the real

singular foci of the quartic is a fixed point V. It is also the centroid of

any four concyclic foci, and the centroid of the four points of contact of

any pair of bitangents. It is the intersection of the axes of the two
parabolas of the family (ii) ; and the centre of the rectangular hyperbola
of Ex. 9.

[Eliminate x or y between (i) and](iii) or between (v) and (vi). V is

the point (g/(b-a), f/(a-b)).]

Ex. 11. In Ex. 10 the ratio of the distances from x = of the centre
of (ii) or (vi) and of Fis the square of the eccentricity of (v).

[This enables us to determine the focal conic corresponding to any
circle for which the quartic is self-inverse

]

Ex. 12. The centres of three circles for which a bicircular quartic is

self-inverse are the vertices of the common self-conjugate triangle of the
fourth circle and its focal conic.

[They are the harmonic points of the quadrangle whose vertices are

the four foci on the fourth circle.]

Ex. 13. If a bicircular quartic consists of two ovals one inside the
other, the focal conic through the real foci is a hyperbola and the other
three focal conies are ellipses.

If the qaartic consists of two ovals external to each other, the focal

conic through the real foci is an ellipse and, the other three focal conies

are hyperbolas.
If the quartic consists of one oval, one focal conic is an ellipse, one is

a hyperbola, and two are unreal.

[Use Ex. 11 and'Ch. XI, § 11, Ex. 3, 4]

Ex. 14. The directrices corresponding to four concyclic foci pass

through the centre of the circle and form a pencil of the same cross-

ratio as that subtended by the foci at 0.

[The line joining to the point (vii) forms a pencil homographic with
that traced out by the chord of contact of (viii) with its envelope.]
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Ex. 15. The normals to a bicircular quartic at the points where it
meets a circle for which it is self-inverse touch a conic whose foci are the
singular foci of the quartic.

[The corresponding focal conic. It follows that these normals form a
quadrangle whose opposite sides subtend supplementary angles at either
singular focus, &c, &c]

Ex. 16. The pair of bitangents through the centre of any one of 'the
circles for which a bicircular quartic is self-inverse are perpendicular to
the asymptotes of the corresponding focal conic.

[See Fig. 3 and compare Ex. 13.]

Ex. 17. The distances of any point P on a two-circuited bicircular
quartic from three real foci A, B, C are connected by a linear relation
C.PA + m.PB +n.PC=0, where I, m, n are constants.

[Invert Ch. XIV, § 3, Ex. 20, with respect to any point, and we find
that the result of Ch. XIV, § 3, Ex. 23, holds for the bicircular quartic.
As in Ch. XIV, § 3, Ex. 26, we obtain results for the one-circuited

quartic.

As an alternative, we may invert the result of § 6 (iv) or § 10, Ex. 3.J

Ex. 18. If a two-circuited bicircular quartic with real foci A, B, C
passes through real points P, Q, R, then a two-circuited bicircular quartic
with foci P, Q, R passes through A, B, C.

PA PB PC
QA QB QC
RA RB RC

interchange of P, Q, R and A, B, C]
»

Ex. 19. Any bicircular quartic can be inverted into a bicircular quartic
symmetrical about two perpendicular lines on which lie the real foci
and singular foci.

[Invert with respect to the intersection of two real circles for which
the quartic is self-inverse and on which lie the real foci. See Fig. 4.]

Ex. 20. Obtain the equations of the bicircular quartic symmetrical
about the axes of reference whose real singular and ordinary foci are
given and are on these axes.

[There are three types. We may take the real singular foci as
( + m, 0). Then the curve is

{x1 + %/f - 2 (I +m1
) x1 - 2 (I- m?) f + fax 2

|3
2 = 0,

where

(1) The real foci are (±<X,0), (±/3,0), P = (m2 -a 2)(m2 -lb1
), k = + 1.

(2) The real foci are (0, ±OC), (0, +0), P = (w2 + a 2

)
(»i

2 + /3
2
),' h = + 1.

(3) The real foci are (±a, 0), (0, ±/3), I- = (m2 -a 2

) (w
2 + |8

2
), jfc = -l.

As an exercise the reader may discuss the relative position of singular
and ordinary foci, and the nature of the ovals and bitangents for each
type. He may also find the relation connecting the distances of any
point of the curve from three foci (Ex. 17). For this purpose he may
put m2 = a2 cosh2 f— j3

a sinh2
e in type (1).]

Ex. 21. Find the locus of the singular foci of a two-circuited bicircular

quartic, given the real ordinary foci.

[The circular cubics with the given foci. See Ch. XIV, § 3, Ex. 27.]

= ; which is unaltered by
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Ex. 22. Show that the equation of a two-circuited bicircular quartic

can be put in the form

(x2 +y2

)

2 -2{lx + my)(x* + y'l -l) + axi + 2lmxy + bif + l = 0.

[Take x^ + y' + l = as the unreal circle with respect to which the

quartic is self-inverse, and the axes of reference parallel and perpendicular

to the line joining the real singular foci.]

Ex. 23. Obtain the equations of the conies touching the quartic of

Ex. 22 in four points, the equations of the bitangents, and the equations

of the circles with respect to which the quartic is self-inverse.

[The quartic is «<
2 + v = 0, where

u = xi + y
1 — Ix — my + 1,

v= (a-P-2t)x2 + (b-m2 -2t)yi + 2{t+l)(lx + my) + (l-f).

The conies are e = ; and the bitangents are v = 0, where

t = -l or t
1 , t

3 , t„

which are the roots of the equation

it3 -2(a + b + 2)t'i + (ab + 2a + 2b—iP-im?-Pm?)t
+ (2 am- + 2W-ab-BP ni?) =*0.

The required circles have their centres at the centre of v = where
t = — I, t

x , t2 , ts , and are mutually orthogonal. Their equations are

therefore x> + if + 1 = 0, S
x
= 0, St

= 0, S3
= 0, where

S1
= x°-+ y

i -2(t
1 + l)lx/(2t1 + P-a)-2(t1 + l)my/(2t

1
+ m?-b)-l, &c]

Ex. 24. Show that the squares of the tangents from any point of a

twe-circuited bicircular quartic to the three real circles with respect to

which the quartic is self-inverse are connected by a homogeneous linear

relation. ,

Conversely, if the squares of the tangents from P to three given circles

are connected by a homogeneous linear relation, the locus of P is a
bicircular quartic ; which is self-inverse with respect to each of the given

circles, if these circles are mutually orthogonal.

[The quartic of Ex. 22 is

{tl -ts){2t1
+ P-a)(2ti + mi -b)S

1

i + ... + ... = O.'J

Ex. 25. Show how to find the foci of aS,2 + 6S,a + cS
3

2 = 0, where
S

t
= 0, -S2 = 0, Ss

=0 are given mutually orthogonal circles. »

[The quartic is the envelope of K^i + pS^ + vSs = where

Now make the radius of this circle zero.]

Ex. 26. Given the circles with respect to which a bicircular quartic is

self-inve\'se and one point on the curve, find the locus of the singular foci.

Ex. 27. Find the locus of P, if

(i) PA. PB x PC. PD,
(ii) PA . PB <r. PC,

where A, B, C, D are fixed points.

[(i) A bicircular quartic such that an infinite number of quadrilaterals

can be inscribed in it whose sides pass alternately through the two
circular points.

(ii) A bicircular quartic with A and B as singular foci. What is its

inverse in respect to A, C or any point ?]
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Ex. 28. Find the locus of P, if the product of the tangents from P to

two fixed circles (i) is constant, (ii) varies as the square root of the
distance of P from a fixed line, (iii) varies as the taDgent from P to

another fixed circle.

_
[A bicircular quartic with singular foci at the centres of the two

circles.]

Ex. 29. Find the locus of P, if the product of the tangents from P to

two fixed circles (i) varies as the distance of P from a fixed line, (ii)

varies as the product of the tangents from P to two other fixed circles.

[The reader may consider the question, ' Under what circumstances
can a given bicircular quartic be generated by one of the methods of

Ex. 27-29 ?
' For instance, any bicircular quartic can be generated by

a point P the product of whose distances from the singular foci varies as

the tangent from P to a fixed circle, if we allow this circle to be unreal,

or allow P to be inside the circle if real ; but not always, if we refuse to

allow these alternatives.]

Ex. 30. The locus of the intersection of two orthogonal circles one
belonging to a given coaxial family and the other belonging to another
given coaxial family is a bicircular quartic through the common points

and the limiting points of the two families.

[Invert with respect to a common point.]

Ex. 31. Trace the quartic (i) as the intersection of circles.

[It'is- easy to put the equation in the form SlS2 = S, where S
L
— 0,

St
= 0, S = are circles.

Now find the intersections of <St = S, S2
= t for different values of

the parameter t.]

§ 4. Quartics with Two Real Nodes.

In our discussions of quartics with two real double points,

we shall adopt throughout the following notation. The real

'

double points are A and B. The harmonic conjugate of AB
t

with respect to the tangents, at A meets the curve again in M
1

and M
2

. The harmonic conjugate of BA with respect to the

tangents at B meets the curve again in Zj and L
2 . The lines

AM
t
M

2 , BLX
L
2
meet at C. The tangents at A meet the curve

again at E
x
and E

2 ; the tangents at B meet the curve again

at F
t
and F2

. The line E
1
E

2
meets the curve again at H

x

and H2 ; the line F
1
F

2
meets it again at K

x
and K

2 . The
tangents from A touch at A 1} A 2 , A 3 , A t and the tangents

from B touch at Bv B2 , B3 , B^ The ranges {ATI, M
X
M

2)
and

(BV, L
X
L2)

are harmonic. The other diagonals of the quadri-

lateral formed by the tangents at A and B meet AB at R
x

and B2 and intersect at C (Fig. 5).

If A and B are not ordinary nodes, a slight modification

of the above notation is necessary. Such modification will

usually be quite obvious without explanation.
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For instance, if B is a flecnode, one of the points F^ and F
2

will be at B, and the other will be denoted by F. The points

K
1
and K

2
do not exist in this case. There are only three

tangents from B (other than the tangents at B) ;
their points

of contact are Blt B2 , B3
.

Or again, if B is a cusp, the points Fx
and F%

coincide at

the intersection of the curve with the cuspidal tangent, now

called F. The points K
1
and K2

are the other intersections

of the curve with the tangent at F. There are only three

Pig. 5.

tangents from A, whose points of contact are Av A 2 , A 3
.

Similarly in other cases.

Taking ABC as triangle of reference, the coefficients of

a;
4

, y
4

, x6
, y

3
, x2yz, xy2z are zero in the equation of the

quartic, which takes the form

(x2 +pz2
) (y

2 + qf) + 2m xyz2 + 2 (fx + gy + hz) z3 = . (i),

where y
2 + qz2 = and x2 +pz2 = are the tangents at A

and B.

Replacing x and y by suitable multiples of x and y, we may
simplify the equation (i). For instance, we may make/ and g
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both unity.* But in view of the following sections, it is better

to leave / and g general at present.

Writing equation (i) in the form

{xy + (m—t) z2 }
2 + z2 {qx2 +py2 + 2txy + 2fxz + 2gyz

+ (pq + 2h-[m-t]2)z-} = 0,

we see that the conic

qx2 +py2 + 2txy + 2fxz + 2gyz+(pq + 2h— [m—t] 2)z2 — . (ii)

touches the quartic at its four intersections with

xy + (m— t) z
2 = (iii)

other than A and B.

The conic (ii) is a line-pair, and therefore represents a pair

of bitangents, if

t* -2mt3 + (m2- 2pq- 2h) t
2 + 2 (fg + mpq) t

+ (p
2
q
2 + 2hpq—pqm2

—pf
2— qg

2
) = . . (iv).

We shall take the values of t given by (iv) as a, b, c, d.

The pole of AB with respect to the conic (ii), or the inter-

section of the pair of bitangents, is

(gt-pf,fi-qg,pq-t2
).

The locus of this point when t varies is

qx2 -py2 +fxz-gyz = (v),

which passes through the points c, i?15 R2
.

Ex. 1. The points Elt F,, E2 , F2 , A, B lie on a conic.

[On mxy + (fx + gy + hz) z = 0.]

Ex. 2. The points of contact of the tangents from C lie on a conic.

[On qx*+py'i + 2(pq + 2h)zl + 2mxy% 3(fx + gy)z=0.

Write down the first polar of C]

Ex. 3. The points A, Alt A2 , A s , At , Llt L^ lie on a conic, and so do

B, Blt B2 , B3 , Bit Mt , Mv .

The two conies touch the conic of Ex. 1 at A and B respectively.

[On py
2 +(pq + 2h) z* + mxy+fxz + 2gyz = 0,

and qx* + (pq + 2 h) z* + mxy + 2fxz +gtjz= 0.

Write down the first polar of A and use

z3 {py'
1 + (pq + 2h)z

l + mxy+fxz + 2gyz}+x {xy'
l + qxzi + myzi +fzz\

= (x* +pz2

) {y
1 + qz*) + 2mxyz* + 2(fx+ gy + hz)z'i .]

Ex. 4. The three conies of Ex. 2 and 3 pass through the same four

points, which also lie on the conic (v).

[Add and subtract the equations' of the conies in Ex. 3.]

* We cannot, however, make / 2
: f = q : p ;

/org zero, &c.
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Ex. 5. The points Au A2 , As , At , B, Hx , H3 lie on a conic which
touches AHit AHa , BC.

[On (f + qm2
) x2 + 2 (fg- hm) xy + 2 (qmg + hf) xz

-(pf +pqm
2 + 2hm2 - 2fgm) z2 = 0.

The conic B
1
B

2
B, Bt A K^ K

2
is

(g
1 +pm2

)y
1 + 2(fg-hm)xy + 2(pmf+hg)yz

- to2
+pg.m + 2hm - 2fffm )

z = °-

If we write X= (/
2 + qm2

) x + {fg- hm) y + (qmg + hf) z, the quartic

becomes (y
2 + qzi)X'i + 2th X+(yi + qz2)v2,

- 0, where

i\ =
{ (fg

- hm) y + (qmg+ */) z} 2 + (f + qm?) (pf +pqm? + 2hm? - 2fgm) z*

and «s is homogeneous of degree 3 in y and z.

Hence the required conic is X2 = »„ by § 1; the line El
E

i
being

X = 0, and the lines AHX , AH%
being v, = 0.]

Ex. 6. A conic touches the quartic at Llt Lit M1) M%.

[Put t — m in (ii).]

Ex. 7. The conies (ii) meet the sides of the triangle ^.BCin involutions

of which BV, AU, B^Ri are double points.

Ex. 8. Through the intersections of any two of the conies (ii) passes

a conic touching CA and CB at A and B.

[
{qx1 +py2 + 2 tY xy + 2fxz + 2gyz + (pq+ 2h-[m-t1f) z2}

-{qx l +pyi + 2t
1
xy + 2fxz+ 2gyz+(pq+ 2h-\m-tiY)z

i

}

= (h

-

*,) {2 (xy +[m-t] z>) + (2t-t1 -Q z2
}.]

Ex. 9. If P, Q are any two points dividing R1R1
harmonically, a

conic can be drawn through P, Q and the intersections of any one of

the conies (ii) with any one of the conies (iii). It touches one of the

conies (ii) at P and Q.

[See Ex. 8.]

Ex. 10. Through the points P, Q of Ex. 9 a conic can be drawn passing

through the four points of contact of any one of the conies (ii) with the

quartic.

[In Ex. 8 put *! = t.]

Ex. 11. A conic can be drawn through the points of contact of any
two of the conies with the quartic.

[If the conies are given by t = t' and t = t", put t = t
x
*= f and

2t2
= t'+ t" in Ex. 8.]

Ex. 12. The conic through C and the intersections of any two of the

conies (ii) has a fixed tangent at C and divides AU, ST harmonically.

Ex. 13. The points of contact of any pair of bitangents lie on a conic

touching CA at A and CB at B.

[On conic (iii), where t = a, 6, c, or d.]

Ex. 14. The intersections of the four pairs of bitangents with AB form
an involution whose double points are jB

t
and iJ2 .

[See Ex>7.]

Ex. 15. The four intersections of the two pairs of bitangents lie on
a conic touching CA at A and CB at B.

[See Ex. 8.]

Ex. 16. The conies through C and the intersections of any two pairs

of bitangents touch one another at C and divide AU, BV harmonically.

[See Ex. 12.]
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Ex. 17. The points of contact of any two pairs of bitangents lie on
a conic. *

[See Ex. 11.]

Ex. 18. The conic CE
1
E2
F1F2 touches the conies of Ex. 12 at C.

The tangent to this conic and the tangent to conic (v) at C divide AB
harmonically.

[The conic is

h (f
2 + qm2

) x2 + h (g
2 +pm2

) f + (2fgh -mh2 -pqm3
) xy

+ (gh -pqm2

) {fx+gy) * = o.]

Ex. 19. Show that the pencils of tangents from A and B have the same
cross-ratio.

[The tangents are

py
i + 2gy3 z + (2h +2pq-m2

) y
2z2 + 2 (gq-mf)yzs +(2hq+pqi -fi

) z* = 0,

qxl + 2fxsz + (2k +2pq-m2
) x2z2 + 2 (fp-mg)xzi + (2hp+p2q-g2

) z* = 0.

Now use Ch. I, § 11.

Another proof consists in projecting A and B into the circular points

and using the fact that the foci of a bicircular quartic lie by fours on
circles.]

Ex. 20. The left-hand side of (ii) may be written in the form uv + kz2
,

where Jcpq is the left-hand side of (iv) and

,——.—=— , tan a . / , a , tan a „ .

u = Vq tan |0t (x j= gz) +^p cot -= (y + —==.fz),
Vqp y * VP2

/ 7^— i
*an <* \ I l & ,

tan a , .

v—Vq cot \<x (x + —-=. gz) + *lp tan ^ (y y=fz),
_ vpq y * vpg

t = A^pq cosec a.

[Taking t = a, b, c, d, we get the eight bitangents.]

Ex. 21. The quartic is the envelope of the conic

p
2 uz + 2p \xy+(m — t)z2} +vz = 0;

where t is any root of (iv), and p is a parameter.

The locus of the pole of z = with respect to this conic is a conic

touching the tangents at A and B to the quartic.

[qx2 +py2 -2 txy + (pq- 1
2
) z

2 = 0.]

Ex. 22. The sixteen intersections of tangents to the quartic from
A and B lie by fours oh four conies touching the tangents at A and B.

[The intersections are the centres of the line-pair conies of the family

of Ex. 21, and these lie on the pole-locus.]

Ex. 23. The points A, Alt AtK A a
,A lt B, Blt B2 ,B3 , Bt , U, V lie on

a cubic. It passes through the intersection of AB with' the tangent at

C to the conic at Ex. 12 and the intersections of CA and CB with the

tangents at B and A to the conic of Ex 1.

[Dividing

(xy2 + qxz2+ myz2
+fz?) (yx2 +pyz2 + mxz2 + gs?)

—xy^x2 +pz2

) (y
2 + qz2) + 2 mxyz2 + 2 (fx +gy + hz)z3

\

by z3 we obtain the cubic

xy (fx + gy) = z {qmx2 + (m? -2h)xy+pmy
+ z2 { (qg + mf) x + (pf+ mg) y) +fgs\]
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Ex. 24. If one polygon of 2n sides can be inscribed in a binodal
quartic so that the sides go alternately through the nodes, an infinite

number of such polygons can be inscribed.

[Project the Steiner points of a polygon inscribed in a cubic (Ch. XVI,
§ 6, Ex. 1) into the circular points and invert.]

Ex. 25. All quartics with two given nodes and passing through seven
other fixed points, pass through an eighth fixed point.

[Project the nodes into the circular points and invert with respect to

one of the fixed points
]

Ex. 26. Discuss the quartic for which f*/g* = q/p.

[The quartic has either two crunodes or two acnodes. In the first case
we may take jp = g = — 1, g=f. One root of (iv) is t = — 1, the
corresponding pair of bitangents meeting at (1, —1, 01. The locus of
the pole of AB with respect to the conies (ii) is x = y. The quartic can
be projected so as to be symmetrical. Similarly in the second case.]

Ex. 27. Discuss the quartic for which fg = hm.

[The conies of Ex. 1 and 5 degenerate.]

§ 5. Quartics with a Node and a Cusp.

In § 4 A and B were any two real double points of a quartic.

If A is a node and B is a cusp, we have p = and we may
also take /= 1, g = 1, as explained in § 4.

The equation (i) of the quartic becomes

x2
(y

2 + qz2
) + 2mxyz2 + 2(x + y + hz)z3 = . . (i)

;

while equations (ii), (iii), and (iv) become

qx2 + 2taiy+ 2xz + 2yz + (2h- [m- 1]
2
) z

2 = . (ii),

xy + (m— t)z2 = (iii),

t
i -2mt3 +(m2 -2h)t2 + 2t-q = . . . (iv).

If t is any one of the roots a, b, c, d of (iv), (ii) represents

a line-pair which must evidently be

(z + tx) {qtx + 2t2y+{2t-q)z} =0,
and by § 4 this touches the quartic where it meets (iii). *

Taking t = a, we obtain a tangent from the cusp z + ax =
touching at the point B

1
(— 1, ma2—

a

3
, a), and a corresponding

bitangent b
x
with equation

qax + 2a2
y + (2a— q)z =

touching where
2a2

y
2 +(2a-q)yz + qa(a— on) z2 = 0.

Similarly taking t = 6 we get the tangent z + bx = from
the cusp touching at B

2
and the corresponding bitangent b2 .

qbx + 2b2
y + (2b-q)z = 0;

and so for t = c, t = d.

The line 2y = ez meets the curve (i) again in coincident
points, if

e
3 + (2h-m2)e2 + 4:(q~m) e + 4(2qh-l) = 0.
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This is readily proved to be an equation in e whose roots are

ad + bc, bd+ca, cd + ab.

Hence the tangents from the node A are

2y = (ad + bc) z, &c.

The points of contact A lt A 2 , A 3
will be found to be

(2b + 2c-2a-2d, 2ad-2bc, a2 d2-b2
c
2
), &c.

-i 1 -+- 4->

4

-

Pig. 6.

IOOsV + 22/(100 + 90s) - Hix1 + 36rr + 469 = 0.

In Fig. 6 is shown the quartic

I00x2
y
2 + 2y (100 + 90a;) - 144 a;

2 + 36a; + 469 = 0.

The tangents from the cusp (0, oo ) are

3a; =-5, 4a; = 5, a;=l,'3a: = —

1

and the corresponding bitangents b1% b.
z , b3 , bi arc

\2x-\0y = 23, 9x + l0y = -9, 36x + 50y = -27,

12x-50y = 7.
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The tangents from and at the node (oo , 0) are respectively

101/= 13, 2y = -3, 50y = -S7, and 5y = + 6.

In Fig. 6 B
l
,b

1
, &c, are represented by their suffixes only.

Ex. 1. Apply the method of § 2 to obtain the bitangents of the
quartic (1) of § 5 and the tangents from A.

[yx^+z^ + mz'x = is the polar cubic of B and the quartic is

(ya? + z* + nu?x) % = (z + ax) {z+ bx) {z + ex) (z + dx).

Hence 2 (yx1 + s3 + mz*x) = z2 {z+ ax) + (z + bx) (z + ex) (z+ dx) is a bi-

tangent touching where

z2 (z + ax) = (z + bx) (z+ ex) (z+ dx).

Similarly 2 (ya? + za + mz*x) = z(z + ax) (z + dx) + z (z+ bx) (z + ex) is a

tangent from A touching where

(z + ax) (z + dx) = (z + bx) {z+ ex).

The reader may consult Messenger Math., xlvi (1916), p. 81.]

Ex. 2. The conic A
t
A

2
A

s
HtH2 touches the quartic at B and touches

AH^AH,.
[See § 4, Ex. 5.]

Ex. 3. The conic ABE^E^F touches the quartic at F.

[See § 4, Ex. 1.]

Ex. 4. The points of contact of the tangents from C lie on a conic
through B.

[See § 4, Ex. 2.]

Ex. 5. The pencils B(B
1
B

1
B

s
B

i)
and A(A

l
Ai A,B) have the

same cross-ratio.

Ex. 6. The conic through B, A, Bt and the points of contact of the
bitangent bx

touches AC at A and .BCat B.

[xy + (m — a)z1 = 0.]

Ex. 7. B, 2?!, B2 and the points of contact of 61( 62 lie on a conic.

[qx" + (Zh — m' + am + bm — ab)z'i + 2yz+(a + b) xy + 2xz = 0.]

Ex. 8. The cross-ratio of the pencil formed by the tangents from B is

equal to the cross-ratio of the range formed by the intersections of AB
with the bitangents.

Ex. 9. The conic touching AB, \, 6
2 , 63 , 6

4
touches AB at B, and

touches AC.

[2X 2 + 2^ = 2XF .]

Ex. 10. The diagonals oft the quadrilateral formed by the bitangents
pass respectively through Alt A% , A s .

Ex. 11. Four, two, or-none of the bitangents are real according as

four, two, or none of the tangents from the cusp are real.

Ex. 12. The points of contact of the two real conies through A, B, F
osculating the curve (not at A, B, or F) lie on a line through A.

[In Ch. IX, § 1, take ABF as the triangle ABC] •
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§ 6. Cartesian Curves!

If a quavtic has a cusp at each circular point co, a>\ its

inverse with respect to any point Q has Q as a focus (Ch. V^

§ 4) and is a bicircular quartic (§ 3, Ex. 1), which is self-

inverse for a real circle j through Q. The quartic with co and
co' as cusps is therefore symmetrical about the line which is

the inverse ofj.

Taking the line as axis of x, the equation of the quartic
takes the form

(x2 + y
2
)

2 +p(x2 + y
2)x + ax2 + by2 + 2gx + c = . (i).

The curve is of class 6, and therefore there are three

tangents from co other than the tangent at co. Hence the
curve has one distinct singular focus 0, the intersection of the
tangents at co and co', and three real ordinary foci.

Considerations of symmetry show that there are only two
cases to consider.

(1) The singular focus and the real ordinary foci A, B, G
lie on the axis of x.

(2) The singular focus and one real ordinary focus G lie

on the axis of x, which is the perpendicular bisector of the line

joining the real ordinary foci E, F.

Let us consider case (1).

When we invert with respect to Q, the real foci are Q and
the inverses of A, B, G. These lie on the real circle,/. Hence
the quartic consists of two ovals (§ 3).

Let us take as origin and A, B, G as the points (a, 0),

(|8, 0), (y, 0). Then y = ±ix are asymptotes twice over,

which gives p = and a = b in (i). Also y = i(x— d)

touches the curve (i), if

4gd3 + (4c-a2)d2 -2agd-g2 = 0.

This equation in d has the roots ex, /3, y ; from which it

readily follows that (i) now takes the form

(x2 + y
2 -^y-y0i-txBf + 4cx^y{2x-a-^-y) = . (ii).

The curve is called a ' Cartesian curve '.*

We now show that

:

The locus of a point P whose distancesfrom twofixed points

A, B are connected by a linear relation is a Cartesian curve.

Suppose the relation is .

±m.PA±l.PB = n.AB .... (iii).

* Or 'Cartesian oval'; but it consists of two ovals.
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Take a point on AB such that

0A:0B = P:m2
,

and let G be a point on AB such that

V:rn?:<n? = 0A:0B:0C.

Then the equation of the locus P, when is taken as origin

and A, B, G as (oc, 0), (j8, 0), (y, 0) is

± p
1

s{(x-uf+y2 }i±a.i{(x-l3f + y
2 }i=ys(p-a.),

which when rationalized proves to be the same as (ii).

Pig. 7.

(x* + y*-6iy + UH4x-29).= 0.

Singular focus (0, 0) ; ordinary foci (2, 0), (f , 0), (8, 0).

Conversely, the distances of any point P on a Cartesian

curve from the foci A, B are connected by the linear relation

±0Bz.PA±0A3.PB = 0Cs.BA . . . (iv),

where is the singular focus/and G the third real ordinary
focus.

A quartic with two Cusps has one bitangent. The bitangent

of (ii) is evidently

2x = a + /3 + y.

In Fig. 7 is (0, 0), A is (2, 0), B is (f , 0), C is (8, 0).

The curve meets OABC at points whose distances from
are -13, 1, 5, 7. We have + 3PA ± 2PB = 10, &c.

Case (2), in which the three real foci of (i) are not collinear,

is not so interesting geometrically. The real foci E, F, G may
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be taken as (£, + 77), (0, y), and the singular focus as ovigin.

Then
(| ±it]; 0) are also foci. Hence the equation of the curve

is obtained by replacing a, @ in (ii) by £±ir]. It is

(a? + y*-2£y-e-T,*)* + 4y(? + V*)(2x-2i-y) = 0. (v),

the bitangent being

%x=2£ + y.

The curve consists of a single oval. (See Proc. London Math.
Soc, iii, p. 115, for diagrams of this case.)

Ex. 1. What does the locus of P become, if in (iii) I, m, or n is zero ?

Ex. 2. The distances from a given focus of the intersections of a
Cartesian curve with a variable line have a constant sum.

[Use polar coordinates, taking the focus as pole.]

Ex. 3. The points of contact of (ii) with its bitangent are real if

2 (/3y+ yoc + a/3) > (a2 + /3
2 + /).

Ex. 4. Show that, if

PA +PB = 2u, PB-PA = 2v, AB = 2c,

where A and B are fixed points and P a variable point, then the ortho-

gonal trajectory of the family of curves with differential equation

M du + Ndv = is N («
2 - c

2
) du +M (it

2 - c
2
) dv = 0.

Ex. 5. Find the orthogonal trajectories of Cartesian curves (i) with
given singular focus and two given ordinary foci, (ii) with two given

ordinary foci and passing through a fixed point.

[Use (iv) to obtain M and N in Ex. 4.]

Ex. 6. Two Cartesian curves with the same real ordinary foci cut

orthogonally.

[Invert with respect to an intersection and use Ch. XIV, § 3, Ex. 10.

Inverting with respect to any point, we see that any two bicircular

quartics with the same four real concyclic foci cut orthogonally.]

Ex. 7. What relation connecting the distances of a point on the curve

from two real foci replaces (iv) in the case of the quartic (v) ?

[Use Ch. XIV, § 3, Ex. 25.]

Ex. 8. By inversion of (iv) obtain the results of § 3, Ex. 17.

Ex. 9. Discuss the modifications which must be made in § 3 when the

bicircular quartic is a Cartesian curve.

[§ 3 (ii).becomes any circle with centre on y = touching the curve

at two points only. The roots of § 3 (iv) are

Py+yix + otp, -07 +ya + a/3, /3y—j-a + aft (3y+ 7a-a/3.

The first root makes (ii) become the bitangent, the other three make (ii)

become the circular lines through a focus.

§ 3 (v) becomes the circular lines through or else § 3 (v), (vi)

become the circles

xi + y
i = ^y, (x-a.y + y* = ((X-P)(0t-y), &c.

Hence the Cartesian curve is in three different ways the envelope of

a circle whose centre lies on a fixed circle with centre at the singular

focus, and which cuts orthogonally a fixed circle with its centre at a

focus. The other two foci are the limiting points of the fixed circles.]

2216 Y
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Ex. 10. Show that the locus of P is a quartic with cusps at a and &>', if

. (i) The tangents from P to two fixed circles are connected by a
linear relation.

(ii) The square of the tangent from P to one circle varies as the
tangent from P to another circle.

(iii) The fourth power of the tangent from P to a circle varies as the
distance of P from a line.

Ex. 11. Find the locus of a point whose normal distances from two
fixed circles have a constant ratio.

Ex. 12. A man is in a pond at A, swims to the bank at P, and runs to

a point B on the land. If his time from A to B is the same for all

positions of P, find the shape of the pond.

Ex. 13. Find the surface separating two homogeneous isotropic media,
if rays of light emanating from a point in one medium are brought
accurately to a focus in the other.

Ex. 14. Given one focus and three points of a Cartesian curve, find

the locus of the other foci.

§ 7. Quartics with. Two Real Cusps.

Suppose that in § 4 both A and B were cusps. Then G is

the intersection of the tangents at A and B. We have now
p = 0, q = 0. As explained in § 4, we may suppose /= 1,

g = 1 ; and we shall put
k = h— -|m2

.

The equation (i) of the quartic becomes

(xy + mz2
)

2 + 2(x + y + kz)z3 = . . . . (i)

;

while equations (ii), (iii), (iv), and (v) become

txy + xz+yz + (k + mt— \t2)z2 = . . . (ii),

xy+(m— t)z2 — (iii),

t{ts-2mt2 -2kt + 2} = (iv),

z(x-y) = » (v).

If we take the root t = of (iv), (ii) becomes z = and
thebitangent x + y +kz=0
of the quartic (i). In fact from equation (i) it is obvious that

this line is the bitangent of the quartic, the points of contact
' W

1
and W2

lying on
xy + mz2 = 0.

If we take the other roots t= a,b, c of (iv), (ii) gives the
tangents

z + ay — 0, z + by = 0, z + cy =
from A touching at A

x
, A 2 , A 3 and the tangents

z + ax — Q, z + bx = 0, z + cx =
from B touching at B

}
, B2 , B3

.
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The coordinates of A
t
are (a3—ma2

, 1, -a), and so for the
other points of contact.

The reader may illustrate the properties of the curve by
tracing

9 cc
2
2/
2 + 96x?/ + 1 44 (a; + 1/) + 496 = 0.

The bitangent is

3x+3y+5 = 0;

while the tangents from the cusp (0, co ) are x — 2, x = — §

,

x = — 3 ; and so for the cusp (go , 0).

Ex. 1. The points A, B, E, F, W
x , TT2 lie on a conic.

[Putting z = 1 we see that the quartic can be projected so as to have
an axis of symmetry.
The reader can write down a large number of theorems which follow

from this fact. For instance, A1 ,A 2
,A3,B1 ,Bi , B3

lie on a conic, Sec, &c]

Ex. 2. A, B, A
t , A2 , A 3 , L lie on a conic.

[See § 4, Ex. 3.]

Ex. 3. The conic Wlt Wt , Alt At , A3
touches the quartic at A.

[It is xy+ mz1 = 2y (x + y+ kz).]

Ex. 4. The points of contact of the other four tangents which can be
drawn to the curve from any point of the bitangent lie on a conic

through A and B.

[The polar cubic of the point (x'
t
y', z') on x + y+kz = with respect

to (i) meets (i) on the conic

2z(y'x+ x'y + 2mz'z) = 3s' (xy + mz2
).]

§ 8. Cassinian Curves.

Consider a quartic with a biflecnode at each circular point

a>, oo'. It has two real singular foci F
1 , F%

. We may choose

axes of reference such that these singular foci are ( + c, 0).

Writing down the general equation of a bicircular quartic, and
expressing the fact that the four lines

y = + * (& ± c)

meet the curve only at a> or a/, we see readily (cf. § 3 (i)) that

the quartic has the equation

The left-hand side of (i) is at once proved to be the square

of the product of the distances of the point (oo, y) from ( + c, 0).

Hence, if P is any point on (i),

PF
1
.PF

2
= a2

.

The curve is called a ' Cassinian Curve '.* If c = a, the

curve is a lemniscate of Bernoulli.

* Or ' Cassinian Oval '. But it consists of two ovals if c > a.

Y2
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The shape of the curve is shown on Fig. 8 for the cases

a/c = •*, A, 1. A, A, V2, V|, V3.
The most interesting properties of the Cassinian curve are

given in the following examples.*
In order to keep this chapter within reasonable compass, we

shall confine ourselves to a very brief account of the other

varieties of quartic with unit deficiency. The reader who is

interested will find in the examples their more important

properties.

the

Fig. 8.

Ex. 1. The real ordinary foci Su S2 of (i) are ( + d, 0) where

c2 <2
2 = c

4 -a4
,

if c>a; and are (0, ±d) where c
2 d? = a4 -cl

, if c<a.

Ex. 2. If P is any point of (i) and is the centre of (i), i.e.

middle point of F1F2
and of S^S;, then

c
2

. PS
1

. PS2
= a2

. PO\

Ex. 3. The angle between OP and the normal at P is the difference

of the angles OPF
1
and OPF

2 .

Ex. 4. A family of Cassinian curves has given singular foci Fu F2 .

Show that

(i) Their orthogonal trajectories are rectangular hyperbolas with
F1F2

as diameter.

(ii) The locus of the inflexions is a lemniscate of Bernouilli.

(iii) The locus of the points of contact of tangents parallel to i^Fu is

the circle on F
l
Fl

as diameter and the perpendicular bisector of F
1
Fl .

[The polar and pedal equations of (i) when is pole are

2?Vcos20 = »-4 + c
4 -a4 and 2a?pr = j-* + a4 -c4

,

giving (Sr^ + c
1 — a?)p = 2aV. The inflexions are shown in Fig. 8;

their locus is r2 + c2 cos 2 8 = 0.]

* The reader may extend these results to the ' M-poled Cassinoid ', i.e. the
locus of a point whose distances from the vertices of a regular polygon have
a constant product. See Messenger Math., xlviii (1919), p. 184.
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Ex. 5. Find the orthogonal trajectories and the locus of the inflexions
of Cassinian curves with given ordinary foci.

[The curves are the inverses of the family in Fig. 8 with respect to 0.]

Ex. 6. If ABCD is a parallelogram, find the locus of P when
(i) PA.PC-.PB.PD is constant.

(ii) The sum of the angles made by PA and PC with a fixed line less

the sum of the angles made by PB and PD with the line is constant.

(iii) The Cassinian curve through P with singular foci A, C and the
Cassinian curve through P with singular foci B, D cut at a given angle.

[Each locus is a Cassinian curve.]

Ex. 7. Find the locus of P, if the polar conic of P with respect to

a given Cassinian curve has a constant eccentricity.

[A Cassinian curve with the singular foci of the given curve as

ordinary foci.]

Ex. 8. The locus of the foci of a variable conic concentric with and
having double contact with two given confocal conies is a Cassinian
curve with singular foci at the foci of the given confocals.

[If (x, y) is a focus of A\* + 2H\p + Bfi
2 = 1 which has double contact

with the confocals a\ 2 + 0/i
2 = 1, (OL + k)\2 + (B+k) M

2 = 1, we have

x*-y*=*A-B, xy = H, (a-A) (0-.B) = (Ot + k-A) (P + k-B) = H\
Now eliminate A, B, H.]

Ex. 9. The locus of the intersections of two circles having their

centres at the foci of a given conic and touching any tangent of the

conic is a Cassinian curve.

Ex. 10. The locus of the foci of an ellipse with a given director circle

and passing through a given point is a Cassinian curve.

[If C is the centre and r the radius of the director circle, P the fixed

point and C bisects PQ, while S and S' are the foci of the ellipse,

PS.QS=PS.PS' = r*-CP\]

Ex. 11. What do the results of § 3 become in the case of a Cassinian

curve ?

[§ 3 (iv) gives £ = ±c2
, or ±(ci — ai)i.

The Cassinian curve is the envelope of a circle which cuts orthogonally

the director circle of a hyperbola and whose centre lies on the curve.]

§ 9. Quartics with Two Eeal Biflecnodes.

Ex. 1. A quartic has real biflecnodes A and B. With the notation of

§ 4 its equation is (a:
2 +pz2

) (f + qz1
) + 2 hz* = 0.

Ex. 2. Any line through A is divided harmonically by BC and the curve.

Ex. 3. The intersections of the curve with any line through C form

two pairs of an involution with one double point at Cand the other on AB.

Ex. 4. The tangents from A to the quartic are ALt
and AL^. The

tangents from B are BMX
and BM2 .

Ex. 5. A conic touches the quartic at Llt Lt , M1) M2
having ABC as

self-conjugate triangle.

[qx* + py* + (pq + 2h)z*=0.
Aliter, project the quartic into the curve with double symmetry

obtained by putting 1 for z ; and so for other examples.]
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Ex. 6. The eight inflexions other than those at A and jB lie on a conic

with ABC a,a self-conjugate triangle.

[3qx2 + 3py* + 2 (pq + 2.h) z* = 0.]

Ex. 7. Four of the bitangents of the quartic pass through C. Their

eight points of contact lie on a conic having ABC as self-conjugate

triangle.

[In § 4 we have m=f=g=0. Two roots of § 4 (iv) are

t = ±(pq + 2h)i,

giving the bitangents
qx2 ± 2 (pq + 2 h)i xy +py2 = 0,

which touch the curve where

qx2 +py2 + 2(pq + 2h)z* = 0.]

Ex. 8. The other four bitangents form a quadrilateral of which two
vertices lie on CA, two on CB, and two on AB. The two latter are on

the diagonals of the quadrilateral formed by the tangents at A and B.

The points of contact-of the bitangents lie on a conic having ABC as

self-conjugate triangle.

If 9h — 8pq each of these bitangents meets one bitangent of Ex. 7 on
a tangent at A. and another on a tangent at B.

[Two roots of § 4 (iv) are t = + (pq)i, giving the bitangents

qx* + 2 (pq)ixy+py2 + 2 hz2 =
which touch the curve where qx* +py2 + 2 (pq + h)z2 = 0.

Illustrate by tracing x2
y

2— 9 a;
2 —

y

s + 25 = with bitangents x = y,

9x = y, 3a: + y = 4, &c]

Ex. 9. The conies of Ex. 5, 6, 7, 8 touch at two points on AJ$.

[qx2 +py2 = z = Q.]

Ex. 10. Discuss the conditions under which the inflexions, bitangents,

and points of contact of the bitangents are real.

Ex. 11. A quartic cannot have a biflecnode and a flecnode.

§ 10. Quartics with Two Unreal Flecnodes.

Ex. 1. A quartic has flecnodes at the circular points. If the inter-

section O of the inflexional tangents at the flecnodes is taken as'brigin

and the intersection S of the non-inflexional tangents as (— g, 0), the
equation of the curve takes the form

(x2 + y
2
)
(x2 + y

2 + 2gx + c) = k.

Ex. 2. The quartic has three real ordinary foci A, B, C. If these are

(a, 0), (0, 0), (y, 0), the quartic is

(x2+ y
2
) { (a

2 + 0"+ y
2 - 2 7 - 2 yOL - 2 <X0) (x2 + y

2
) + 8 OLpyX

- 2 a/3y (a + + y)} + a
2 y = 0.

,

The directrices are

2(0 + y-a)a; = 0y+'y_a+a0-a2
, &c.

Ex. 3. If P is any point on the quartic of Ex. 2

BC. AP CA^.BP AB.CP _~
*/OA ± a/OB~ ± y'OC ~

[Rationalizing (0-y)cri (x2 + y
2 -2<Xx + <X

2)i + ... + ... = 0, we get

the equation of Ex. 2.]
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Ex. 4. Discuss the case in which the real foci are (£, +>;), (y, 0).

[Cf. Ch. XIV, § 3, Ex. 25.]

Ex. 5. The quartic of Ex. 1 can be generated as the locus of P in one
of three ways.

(1) The product of PO and the tangent from P to a fixed circle with
centre S is constant.

(2) PO . PS oc the tangent from P to a fixed circle with centre 0.

(3) PO . PS oc the chord through P perpendicular to PS of a fixed
circle with centre S.

[The three cases are given by

(l)k>0,g*>c. {2)k<0,g2 >c. (3)&>0, g
2 <c.

Diagrams will be found in Proc. London Math. Soc, xii, p 22.]

§ 11. Quartics with Two Real Mecnodes.

Ex. 1. A quartic has two real flecnodes A and B. With the notation
of § 4 its equation may be written

(x2 -zt
){y

2 ~z*) + 2mzi (xz + yz + xy) + 2hzi = 0.

[For the following examples seS § 4 or use the symmetry in x and -y.

The non-inflexional tangents at A and B meet the curve again in
E and F, and the inflexional tangents meet at 2'.]

Ex. 2. A, A it At , A s , Llt L2
lie on a conic touching AT at A.

Ex. 3. A, B, E, Plie on a conic touching AT, BT.

Ex. 4. The conic A A1 A 2 As B touches AE, BC.

Ex. 5. Alt Ait A3 , Bj, P2 , Bs
lie on a conic.

Ex. 6. E, F, Llt L2 , M1 , M2 lie on a conic.

Ex. 7. The tangents from C form an involution and their points of
contact lie on a conic.

Ex. 8. The tangents from the intersection of AE and BF form an
involution.

Ex. 9. Three pairs of bitangents intersect on CT and the other pair

on AB.

[Putting p = q = — 1, f=g = m in § 4 (iv), one value of t is — 1.]

§ 12. Quartics with a Node and a Biflecnode.

Ex. 1. A quartic has a node A and a biflecnode B. WiEh the notation

of § 4 its equation may be written

(x2 +pz!

) (v* + qz2
) + 2(x + hz) z3 = 0.

[The quartic may be projected into the symmetrical curve obtained

by putting 2 = 1.]

Ex. 2. Any line throughB is divided harmonically by the curve and AC.

Ex. 3. The two tangents from B touch at the points M
1 , Mt .

Ex. 4. The four tangents from A form an involution pencil whose
double rays are AB, AC. The tangents at A belong to the involution.

The points of contact lie on a pair of lines through B and .on a conic

touching AB at A.
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Ex. 5. B, Elt E2 are collinear.

Ex. 6. The intersections of the bitangents lie on AC or by pairs on
lines through B.

[Putting m = g = 0, /=1 in §4 (iv), the bitangents are

qx 1 +py* + 2txy + 2xz + [pq + 2h-f) z* = 0,

where t
2 — pq +h± (h?+p)§.]

§ 13. Quartics with a Flecnode and another Double Point.

Ex. 1. The quartic has a node A and a flecnode B. With the notation
of § 4 its equation may be written

(x* - z2
) (f + qz*) + 2xyz, + 2(fx + y + %z) 2s = 0.

Ex. 2. The conic ABE
1
EiF touches the inflexional tangent at B.

Es. 3. The points B, Blt Bt
,B

a
,Mlt M2 lie on a conic touching the

inflexional tangent at B.

Ex. 4. The conic B

B

tB2 Bs A touches AC at A and the non-inflexional

tangent at B.

Ex. 5. Transform the curve of Ex. 1 into a cubic by quadratic trans-

formation, and investigate properties 8f the curve by this means.

[Replace x by z (z—x)/x.]

Ex. 6. A quartic cannot have a cusp and a biflecnode.

Ex. 7. The quartic of § 5 has a cusp and a flecnode, if

(ad — be) (bd — ca) (cd— ah) = 0.

The tangents from B form an involution with BA, BC. The bi-

tangents meet AB in two pairs of points forming an involution with A, B.

§ 14. Quartics with a Taenode.

We now consider quartics with a taenode, i.e. a double point

at which two linear branches touch. We take the taenode
as G (0, 0, 1) and the tangent at C as y = O. Then by Newton's
diagram, or otherwise, it is readily seen that the coefficients of

24 , z3 x, z3
y, z2x2

, z2xy, zx3 »

in the equation of the quartic are zero. Hence the equation

takes the form »

22
2/
2 + 202/w2 + m4

= O (i),

where u2
and ui are homogeneous of degree 2 and 4 in x, y.

The polar cubic of G with respect to the quartic is

y(zy + u2)
= 0.

Hence, if u
2
does not contain y as a factor,

The points of contact of the four tangents to a quartic from
a taenode C, other than the tangents at G, lie on a conic

touching the quartic at C.

The conies of closest contact to the two branches of the

quartic at G meet in two points at G and in two other points
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joined by a real line. Let this line meet y = at A (1, 0, 0),and let the point of contact of the second tangent from A to
the conic zy + u2 = be B (0, 1, 0). Then with a proper choice
oi homogeneous coordinates, we have u2

= x2 and equation (i)
becomes v '

(yz + x2
)
2 = (1 _m

)
(as* +Pla*y +Pix

2
y
2 +p3

xy* +Piy*) . (ii),

or, factorizing the right-hand side of (ii),

(yz + x2

f = (1 -m) (
X + ay) (x + by) (x + cy) (x + dy) . (iii),

Fig. 9.

16(3t/ + a;
z
)
2 = 7 (x + 3)(x + 2)(x-l)(x-4).

the lines

x + ay = 0, x + by — 0, x + cy = 0, x + dy =
being the tangents from G to the curve which touch at

G^a, -1, a2
), G2 (b, -1, 62

), C3 (c, -1, c% Ct (d,-l,cP).

The conies

yz + x2 = ± </(l -m) {
x2 + \Plxy + (%pa

- ±p 2
) y

2
}

ai-

e the conies of closest contact with the quartic at 0; for,

squaring this equation and subtracting from (ii), we see that

either conic meets the quartic in seven points at G. Since

these conies have y = and a line through A as a pair of

common chords, we must have

p1
= a + b + c + d = . . . (iv).
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Writing
a = i(lWm), j8 = i(l--/m)

we find that the line b12 (or b21)

{<x(a + b) + l3(c + d)} x+(aab + Pcd)y-2! = . . (v)

is a bitangent, touching where

a (x + ay) (x + by) = @(x + cy) (x + dy).

This may be seen by writing (v) in the' form

yz + x2' = a. (x + ay) (x + by) + /3 (as + cy) (x + dy)

and then squaring this last equation and subtracting from (iii).

Interchanging a and /8 we have another bitangent b3i .

We have thus three pairs of bitangents, excluding the tangent

at G, namely bu and 623 , b2i and b
3l , b3i and 612 .

The bitangents are shown in Fig. 9 for the quartie *

16 (32/ + x2
)
2 = 7 (x + 3) (x + 2) (<c - 1) (<b -4).

Their equations are

Sx +12y + 43 = 0i 12a; + 24j/ + 59 = 0) 15oj+12;s/-17 = 0)

3a;-122/-13 = 0r 12a;-242/-29 = 0)
5

15x -122/ + 23 = 0)"

The points Clt G2 , C3 , Gi are

(-3, -3), (-2, -|), (1, -*), (4, -if-).

Ex. 1. C17 C2 and the points of contact of 6W lie on a conic touching

the 4-ic at C. '

[On yz + a? = 2<X{x + ay) (x+ by).]

Ex. 2. Cs , Ct and the points of contact of 612 lie on a conic touching

the 4-ic at C.

[On yz+x 1 = 2 (# + cj/) (a; + dy).]

Ex. 3. Any pair of bitangents divides CA harmonically.

Ex. 4. Of the vertices of the quadrilateral formed by bn , bsi »nd bu ,

6
2S two are the intersections of Cj C2

and Cs C4 , Cx C4 and C2 Cs . The other

four lie on a conic touching the 4-ic at C and dividing AB harmonically.

[On i(yz+ x2
) = (1-m) {2x + (a + c)y} {2x+(b + d)y}.]

Ex. 5. The bitangent 6^ meets the 4-ic, 6]2 and bu , bu and 6
25

in an
involution with a double point on CA.

Ex. 6. The intersections of each pair of bitangents lie on the same
conic through A touching BC at C.

[On p3 y
i + 2p2

xy = 4zx (Pi = 0).]

Ex. 7. The points of contact of bn) bSi lie on a conic touching the

4-ic at C.

[On yz +mxi+\{m-l){ab + cd)yi = 0.]

* For a more detailed discussion of the tacnodal quartie see Messenger Math.,

xlvii (1917), p. 88. In Fig. 9 the suffixes only of C
a , 6I2 , &c., are given.
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Ex._8. If in § 14 «2 has y as a factor, the curvatures of the branches
touching at C are equal and opposite. In this case the points of contact
of the four tangents from C are collinear. The equation of the quartic
may be put in the form

My^z* + (x + ay) (x+ by) (x + cy) (x + dy) = 0,

and the equation of the bitangent 612 in the form

2a/Mz = (a + b-c-d)x + (ab-cd)y = 0.

[The quartic can be projected into a symmetrical curve, and its

properties deduced from this symmetry or by modification of Ex. 1 to 7.]

Ex. 9. Obtain properties of the tacnodal quartic by quadratic

transformation.

[We can transform § 14 (iii) into the quartic of Ex. 8 by replacing z

by z — x^/y. Or we can transform it into the cubic of Ch. XVI, § 8,

by replacing a; by x (y - ax)/y, y by x*/y, zby z-(y- axf/y.]

Fig. 10.

(5y + x*y = ix {x -3) (as + 5).

§ 15. Quarties with a Rhamphoid Cusp.*

Ex. 1. If a quartic has a rhamphoid cusp C, the points of contact

Cu C
2 , C3

of the tangents from the cusp lie on a conic osculating the

curve at C.

[Write down the polar cubic of C. See Ch v III, § 8, Ex. 2.]

Ex. 2. The equation of a quartic with a rhamphoid cusp can be put in

the form
(yZ + x*y = 4y (x + ay) (x + by) (x + cy).

The bitangents b\, b
2 , b, are (6 + c + l) x + (a + bc)y-z = 0, &c.

;
C, is

(a, -l,a2
), &c

[CA is the tangent at C, and AB touches the conic of Ex. 1 at B.]

* In Fig. 10 G is (0, oo ) and GA the line at infinity. Clt Ca ,
C, are

(3, -i), (0, 0), (5, -5) ; &!, 6a , &8 are 6x = 5y + 3, 3x = 5j/ + 15, 2x + 5y = 5.

The equation of the curve is (6» +^' = 4*(x-8) (a + 6). In the figure

(?,,&!, &c, are represented by their suffixes only.
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Ex. 3. The intersections of AC with 6,, 62 , 6
3
form together with C

a range of the same cross-ratio as the pencil C(C
i
C1
C3 A).

Ex. 4. The points of contact of 6, and CL
lie on a conic osculating the

quartic at C.

[yz+x* = 2y(x + ay).]

Ex. 5. The line joining the intersection of 62 and 6
3 to the intersection

of 6j and AC passes through Cx .

Ex. 6. The points of contact of 62 and 6
3
lie on a conic through C, C2 , Cs .

Ex. 7. There is no loss of generality in taking a = in Ex. 2.

Obtain properties of the curve by transforming it quadratically into
a cubic in this case.

[(i) Take B as C
x
on the conic of Ex. 1. (ii) Replace y by x'jy and

z by z - y.]



CHAPTER XIX

NON-SINGULAK QUARTICS

§ 1. Non-singular Quartics.

In this chapter we consider the non-singular quartic without
double or triple point. It is of class 12, has twenty-eight
bitangents, and twenty-four inflexions.

Of the geometry of the inflexions practically nothing is

known, except such properties as are special cases of theorems
relating to the inflexions of a curve of any degree.

The properties of the twenty-eight bitangents have been
worked out in very great detail. We cannot spare space for

more than the most interesting of these results. The reader

who wishes to pursue the matter further may consult Weber's
Algebra, II, §§ 112-122 ; Miller, Blickfeldt, and Dickson's Finite

Groups, ch. xix ; and the references in Grelle, xcix, p. 275 ; cvii,

p. 1 ; cxxii, p. 209 ; Proc. London Math. Soc, II. ix (1910),

pp. 145, 205 ; &c, &c.

We shall return to the subject in Ch. &X, § 8.

Ex. 1. Find the inflexional tangents and bitangents of

xi +yi +zi = 0.

[y = ( — l)iz, &c, are twelve undulatory tangents, counting as twenty-

four inflexional and twelve bitangents.

The remaining bitangents are x+1? y + X*z = 0, &c]

Ex. 2. The bitangents of

axt + bif + cz* + 2fy'
izi + 2gzixi + 2hxi

y
,i =

are Bz* — 2Fy1
z' + Cy* = and eight similar bitangents,

(F- ^SC)i x±(G- J~CA)\ y + (H- JlB)\z = 0,

and the same -with two of the — \/ changed into + -\A

[The notation is that of Ch. XVII, § 3. See Mathews, Proc. London
Math. Soc, xxii (1891), p. 173.]

Ex. 3. The equation of any non-singular quartic can be put in the form

ax* + by* + czl +fyz (2 y* - 3yz + 2 z2
) + gzx (2 z

2 - 3zx + 2 a?)

+ hxy (^x^-Sxy + Zy^+px1 (3yz-xy-xz) + gy
i (3zx-yz-yx)

+ rz2 (3xy—zx—zy) = 0.

[The polar cubic of (1, 1, 1) is canonical.]
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§ 2. Bitangents of Non-singular Quartics.

Suppose that any two of the twenty-eight bitangents of

a non-singular quartic are taken as x = 0, y = 0. Let its

equation arranged in descending powers of z be

z* + 2z3 (ax + by) + ... = 0.

When we put y = 0, the left-hand side reduces to a perfect

square, say (z
2 + azx + ex2

)

2
; and when we put x = 0, it reduces

to a perfect square, say (z
2 + ~bzy + dy2

)

2
.

The equation must therefore evidently be of the form

s4 + xyu + 2az3x + (a2 + 2c)z2x2 + 2aczx3 + c
2xi

+ 2bz3y + (b
2 + 2d)z2

y
2 + 2bdzy3 + d2

y
l = 0,

where u = is a conic.

This may be written
xyU=V2

(i),

where
U = 2abz2 + 2 (bcx + ady) z + 2cdxy— u,

V= z2 + (ax + by)z + (cx2 + dy2
);

so that U = and V = are conies.

Now (i) may be written

xy(U+2kV+k2xy) = (V+Jcxy) 2
.

Choose k so that H+2kV+k2xy has a pair of factors p, q
linear in x, y, z. The condition that U+2kV+k2xy should
factorize is readily seen to be of degree 5 in k, so that k. may
be chosen in general in five ways. The equation of the quartic

then takes the form
xypq = W2

(ii)»

where W = V+ Jcxy.

It is evident that p = 0, q = are also bitangents, and that

the conic W = passes through the eight points of contact of

the four bitangents x = 0, y = 0, p = 0, q = 0.

Hence

:

Through the four points of contact of two bitangents of
a non-singular quartic pass jive conies each of which passes

through the points of contact of two more bitangents.

Since k can be chosen in five ways, we obtain thus six pairs

of bitangents, namely x = 0, y = and five pairs such as

p = 0, q = 0. Now these six pairs have the property that

the eight points of contact of any two of these pairs lie on
a conic.
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For suppose that any two such pairs are ^ = 0, q = and
r = 0, s = 0. Then the quartLe is / = 0, where

/= xypq—W'2 = xyrs—Z2
;

W = and Z — being conies.

We deduce
xy(pq-rs) = (W-£) (W+Z).

Now we cannot have x a factor of W—Z and y of W+iJ, or

vice versa. For otherwise

W = i(W+Z) + %(W-Z)
will vanish when x = y = 0, and the quartic will go through
the point (0, 0, 1) ; which is impossible, since x = and. 3/ =
only meet the curve in their points of contact.

Hence we must have

xy = n (W+Z) and pq-rs = n~
1 (W±Z),

where ft is a constant.

Now a bitangent is not altered by multiplying its equation
through by a constant. Hence there is no loss of generality in

' supposing fi = 1 and the upper signs taken in the ambiguity.
Then we have

—4/= —4xypq + 4tW2 = —4xypq + (xy+pq— rs) 2

= x2
y

2 +p2
q
2 + r2s

2—2xy pq— 2xy rs— 2pq rs.

The equation of the quartic is therefore

(xy)i + (pq)? + (rs)i = (iii).

The symmetry of this result shows that the eight points of

contact of p = 0, q = and r = 0, s= lie on a conic, which
is the required result.

Three bitangents of a quartic are called syzygetic or asyzy-

getic, according as their six points of contact do or do not lie

on a conic. Similarly four bitangents will be called syzygetic

or asyzygetic according as their eight points of contact do or

do not lie on a conic.

Consider now the pair of bitangents x = 0, p = 0. There
are five pairs of bitangents such that the points of contact of

any pair lie on a conic through the points of contact of x =
and p = 0. One such pair is y = and q = 0. Let another

pair be t = and u = 0.

We have shown that, if W = is any conic through the

points of contact of x = 0, y = 0, p = 0, q = 0, 2W is of the

form xy/fi + fi(pq-rs) ; similarly it is of the form

xp/v + v(yq— tu).
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Comparing these expressions for 2W we get

Therefore the line through the intersections of r = 0, t =
and s = 0, u = passes through the intersection of either

x = 0, q = 0- or j/ = 0, £> = 0.

Hence

:

The 378 intersections of the bitangents lie by threes on
straight lines.

Ex. 1 . A conic through the points of contact of two bitangents meets
the curve again in A, B, C, D. Show that a conic can be drawn touching
the quartic at A, B, C, D.

[If the quartic is xyU= V* and the conic is V+kxy = 0, the required

conic is U+2kV+ k^xy = 0. For the quartic may be written

xy (U+ 2kV+k2xy) = {V+kxy)*.]

Ex. 2. Two conies are drawn through the points of contact of two
bitangents. Show that their eight other intersections with the quartic

lie on a conic.

[Taking the conies as V+k,xy = and V+ktxy = 0, the required

conic is D+ {k
1
+ k

2)
V+k-Jc^xy = 0. The preceding example is a

limiting case of this. See also Ch. XII, § 6, Ex. 5.]

Ex. 3. If ABC is the triangle formed by three real bitangents whose
points of contact are P, and P

2 , Qx
and Qs , Rx

and P
2 , then

BP
1

. PP2 . CQ1 . CQ2
. AR1

.AR2
= + BR, . BR, . AQt

. AQ2 . CPt . CP2 ;

the upper or lower sign being taken according as the bitangents are

syzygetic or asyzygetic. An even or odd number of the involutions

(PC, P1
P

2 ),
(CA, QiQi), (AB, £,£,) are overlapping in the two cases

respectively.

[Use Ch. I, § 6, Ex. 2. Compare Ch. II, § 3, Ex. 19]

Ex. 4. If four bitangents, not all concurrent, are such that any three

are syzygetic, then all four bitangents are syzygetic.

[Project the points of contact of one of the bitangents into the ftircular

points, and remember that a pair of common chords of a circle and conic

are equally inclined to the axes of the conic]

Ex. 5. Three concurrent bitangents are syzygetic.

[By a proper choice of coordinates the bitangents become

x2 + 2hxy + y
2 = and y = 0.

The equation of the quartic is (a;
2 + 2 hxy + y

2
) U = V2

, and, if y =
is a bitangent, we find that

17+ 2kV+ k2 {x2 + 2hxy + y
2
)

will have y as a factor for a suitable value of k.]

Ex. 6. Four concurrent bitangents are syzygetic.

[As in Ex. 5, taking x = as the fourth bitangent.]

Ex. 7. The four common tangents to two ovals of a quartic are

syzygetic.

[Use Ex. 3.]
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Ex. 8. If the sides of the triangle of reference are three bitangents of
a quartic, the equation of the quartic can be put in one of the two forms

p
2 xi + q^yi + r1 z'

1 ±2qryz±2>pzx±2pqxy = xyzw,

where p, q, r, w are linear functions of x, y, z.

If the upper signs are taken, the bitangents are syzygetic and
pdx + qdy + rdz is an exact differential.

If the lower signs are taken, the bitangents are asyzygetic.
If pdx + qdy + rdz is an exact differential in this latter case, the

bitangents are the diagonals of a quadrilateral whose vertices are their
points of contact.

[Suppose that when we put x = 0, y = 0, z — 0, the equation reduces

to (by* + 2jyz + cz'
1

)
1
, ( + cz2 + 2gzx + ax'i

)
1

, ( + axi + 2hxy + byi
f,

respectively. The signs of a, b, c may be changed without loss of

generality ; and we readily obtain in the two possible cases

p = ax + hy + gz, q= hx + by +fz, r = gx +fy + cz,

or p = ax + hy — gz, q = —hx + by+fz, r = gx—fy + cz.

If in the second case pdx + qdy + rdz is an exact differential,

f=g = h=0.
See Humbert, Liouville's Journal, IV. vi (1890), p. 423.]

§ 3. Steiner's Complex.

Six pairs of bitangents such that any two pairs are syzygetic

are said to form a Steiner's Complex*
We shall denote the pairs by a

x
bv a2 b2 , as

b
s , a464 , as b5 , a6

b
6

.

The points of contact of a, will be denoted by A
1
and A(, &c.

Either bitangent of any pair of a complex is met by the other

five pairs in an involution. The points of contact of the given
' bitangent also belong to the involution.

Let a6
be the bitangent. It meets all conies through

A lt A-[, B
x

, Bx
' in an involution. The lines a

x
and b

x , the

conic A^'B^A^A/, and the conic A
X
A-[B

X
B{A

2
A£B

2
B

2

are three such conies. Suppose a
e
meets this last conic in

P and Q, and meets a
x , b

x , at , b
2
in oc

x , /3lt a2 , /?2 . Then

(PQ, a^, A
6
A

6
')

is an involution, and similarly (PQ, a
?
/32 ,

A
6
A/) is an involu-

tion. Hence (A
6
A

6
', a

x (3x , a2 /32)
is an involution, and similarly

for the intersections of a
6
with a3 and b

3 , &c.f

The twelve bitangents ofa complex touch a curve of the third

class.

* Or Steiner's Group or Steiner's Set or Double-six. We shall say ' a complex '.

f Another proof is the following : Take x = 0, y = as a e b e . Then taking

§ 2 (i) as the equation of the quartic, the line-pairs a^, ..., o5 65 are included

among the conies U+2kV+ h?xy = 0. But it is at once proved that these

conies cut x = in an involution.
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For it is readily proved that the envelope of a line divided

by three line-pairs in an involution is a eurve of the third

class* touching the lines in question.

Three bitangents of a complex, no two of which belong to the

same pair, are asyzygetic.

Taking the bitangents as the sides of the triangle of reference,

the equation of the quartic takes the form

(l
t
x2 +m

x
xy + n^zfi + (l

2yx +m2y
2 + n2 yz)~*

+ (l3zx +m3zy + n3
z2)? =

by § 2 (iii).

The intersections of this with the sides of the triangle of

reference are at once found, and can readily be shown not to

lie on a conic.f

The six intersections of each pair of a complex lie on a conic.

This is equivalent to proving that the six centres of the six

line-pairs included in the family of conies

S+21cS' + k2S"=0 (i),

where

8 = ax2 + by2 + cz2 + 2fyz + 2gzx + 2hxy, S' = a'x2 + ...,

S"=a"x2 +...,

lie on a conic.

For the sake of symmetry we have replaced the U, V, and
xy of § 2 by S, 8', 8".

If S = is a line-pair, its centre (x, y, z) is given by the

equations

ax + hy + gz = 0, hx + by+fz — 0, gx+fy + cz = 0,

which give

x2/A =y/B = z2/G = yz/F = zx/0 = xy/H,

where A — bc—f 2
, F= gh— af &c.

Suppose now (i) is a line-pair when h = klt k2 , ... , or 7c
6 ;

and that the quantities A, B, ... become A
t , Bit ... when we

replace S by S+ 2^8" + h^S" (i = 1, 2 6).

The conditions that the centres of the line-pairs lie on a conic

ax2 + by2 + cz2 + 2fyz + 2gzx + 2hxy =
are

&A
i
+ bBi + cCi

+ 2fF
i
+ 2gG

i
+2hH

i
= 0, (i = 1, ... , 6).

* See Ch. XV, § 5, Ex. 2.

t By Carnot's theorem, or otherwise, the points

x = b1y
2 + c1 z

i + 2atyz = 0, y = c2s
2 + a2 a;

z + 2/3sa; = 0, z = a3xi + bs
y'i + 2yxy =

lie on a. conic, if a^t^ = a2 6s c,. In this case we get ;1m2»3
= 0, as the

condition tliat the intersections should lie on a conic, which is excluded.
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Therefore the six centres lie on a conic, if the determinant A
of the sixth order whose rows are

A
t , Bit C., F

t , Qt , H. (i = l,2, ...,6)

vanishes.

But this is the case, for A = considered as an equation in /Cj

is of the fourth degree, and has five roots

/Cj = k
2 , k3 , kt , k6 , and k

6
.

Hence A vanishes identically.*

There are sixty-three complexes of bitangents.

For any two bitangents determine a complex. There are
28

(7
2
= 378 such pairs. Any one of the six pairs of a complex

determines the same complex. Hence the number of complexes
is 378 -J- 6 = 63.

Ex. 1. Any non-singular quartic is the envelope of the polar conic of
any point P on a certain fixed conic with respect to a fixed cubic.

[The quartic is the envelope of the conic U+ 2kV+ l?xy = for varying
h. The cubic is a curve of which the Jacobian of U= 0, V= 0, xy =
is the Hessian.]

Ex. 2. The pairs of bitangents of a complex are the polar conies of P
in Ex. 1, if P is at an intersection of the fixed conic with the Hessian.

The curve of the third class touched by the bitangents of the complex is

the corresponding Cayleyan.

[See Ch. XV, § 4.]

Ex. 3. Use Ch. XVI, § 6, Ex. 25, to deduce from Ex. 2 that the inter-

sections of pairs of bitangents of a complex lie on a conic.

§ 4. Relations between Complexes.

We' have seen in § 2 that from any two bitangents a single

complex may be obtained. In the complex whose pairs are

%&!, a2b2 , a3
b3 , a4&4 , a6

b6 , a6
b6 take any two bitangents not

forming a pair, say 04 and a
2

. These determine a complex

with the pairs ct^a^, b^. The remaining bitangents of this

new complex are not in the original complex. For by the

result that three bitangents of a complex are asyzygetic, if no

two belong to the same pair, no one of as , b3 , ... , a6 , b6 can

be syzygetic to both a
x
a
2
and'&j&g. Similarly a

x
and b2 deter-

mine a complex containing the pair a
2
b
x ; and no two of the

three complexes thus determined by aj)
x , ax

a
2 , a1

b
2
respec-

tively have a bitangent in common other than alt b
x , a2 , b

2

which are common to all three. We call three such complexes

a complex-triple. Between them they contain all the twenty-

eight bitangents ; four of the bitangents lying in all three

.

* This proof is due to Baker, Proc. London Math. Soc, II. ix (1910), p. 148.

z2
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complexes, and the other twenty-four lying in one of the

complexes only.

Two pairs of the given complex such as a,a2 , &,&2
can be

selected in e
2
= 15 ways. Hence each complex is a member

of fifteen complex-triples including in all thirty-one complexes.

Returning now to the given complex with pairs

a^, a2
b
2 , a3

b3> a4 64 , ab
b- , a666 ;

take any bitangent c
1
not in the complex. We get two new

complexes determined by c^Cj and b^. Since c
x
can be

chosen in sixteen ways, we get thus thirty-two more com-

plexes, which with the tbiity-one complexes just mentioned

make up the total of sixty-three.

We shall'show that the complexes determined by a^, b^
have six bitangents in common, i. e. their pairs are of the form

a
i
C
l!
a
2
C2> a3

C3> ai Ci> a6 C5' tt
6
C6'

OjCj, b
2
c2 , b3c3 , bici , b5 c5 , o

6
c
6

.

For the bitangent Cj must lie in the complex determined

by a
x
a2 or in that determined by a

x
b2 . There is no loss of

generality in supposing it to be in the former ; for the given

complex determined by 04 &
x

is not altered by interchange of

a
2
and 62 . Suppose then that a

x
a2 , c

x
c
2
are pairs of a complex,

and consider the three complexes with pairs

<X-yOj
2 , O-y

2 J
C
1
C
2 , ... 5

ttjCj, a2c2 , ... , ...

;

These form a complex-triple and therefore contain all the

bitangents, and in particular a
3
and b3 . Neither of them is in

the first complex of the triple. They cannot both be in the

second (or both in the third) complex. For they are not a pair

of this complex, and three bitangents of the complex no*two
of which are a pair are asyzygetic, whereas av a3 , b

3
are

syzygetic. Since a
3
and b3 are interchangeable in the given

complex, we may without" loss of generality suppose a
3
to be

in the second (and b
3
in the third) complex of the triple. Let

then c^Cj. a
2
c
2 , a3 c3 be three pairs of the second complex.

Now the complex with the pairs a2 a3 , c
2
c3 contains the pair

b2 b3 , since a2 , a3 , b2 , b
3 are syzygetic. Hence the complex

with the pairs b^, b2 c2 contains the pair b3 c3 . This argu-

ment is at once extended, and the result proved.
Summing up we have

Two complexes have either four syzygetic bitangents in
common andform with another complex containing the same
four bitangents a complex-triple including all the twenty-eight
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bitangents; or else they have six bitangents in common no
three of which are asyzygetic, and form a complex-pair of
eighteen bitangents.

The complexes formed by

aiK an°2> asK «A> a5&5 .
a

6
&8 ;

a
i
C
l> *2 C2' a3^3> ai®l> ab C5> ai C6'

OjCj, b
2
c
2 , 6

3
c3 , o4 c4 , o

6
c5 , o

e
ce

are such that any two have six asyzygetic bitangents in
common. The seven bitangents a

x , a2 , a3 , at , as , c
6 , be are

such that no three of them are syzygetic. Such a set of
bitangents is called an * Aronhold Seven '. Another Aronhold
Seven is b

1 , b
2 , b3 , \, b6> <x

6 , c
6

.

§ 5. The Hessian Notation.

In the three complexes at the end of § 4 alter the notation
by interchanging a6 and b

6 , and by writing c for c
6

. They
become

«A, «2 &2> a3°3' aJ>i> ab°s,> a
6
&e!

a
i
C
l! ^2^2' a3

CA> ^4 C4! a6C63 ^6 C '

OjCj, b
2
c
2 , b3c3 , bi ci , o

B c5! a
e
c.

Then a
x , a2 , a3 , a4 , a5 , ae , c is an Aronhold Seven ; and so

is b
x , b2 , b

3 , bt , b
s , b

6 , c.

Denote the bitangents alt a2 , a3 , ait ab , a6 by the symbols
18, 28, 38, 48, 58, 68 or 81, 82, 83, 84, 85, 86, and the bi-

tangents b
1 , b2 , b3 , bv b5 , b6 by 17, 27, 37, 47, 57, 67 or

71, 72, 73, 74, 75, 76. Denote c by 78 or 87.

Now c must occur in one complex of the triple

«A> a
j
bj> •'•> a

i
aj> h

i
hy '> a

i
hj> a

j
b
i> I

i andj being any two of the digits 1, 2, 3, 4, 5, 6.

It does not occur in the first by definition, and cannot occur

in the second as it is asyzygetic to a^-. Hence it must

occur in the third. The bitangent paired to it in this complex

is denoted by ij or ji.

There are 8C
2
= 28 symbols such as ij = ji. Hence we have

a notation which will include all the twenty-eight bitangents.

We note that the bitangents ij and rs cannot be the same.

For, if they were,

cij, a
{
bj, ajbi, arbs , as

br , ...

is a complex ; therefore

ai
ar , bjbs , ajaB , ...

is a complex, contrary to the supposition that ai}
ait ar are

asyzygetic.
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The notation is not symmetrical, but it is perhaps as con-

venient as any we can find.

We may visualize * the notation by considering the quartic

fg + e = 0, where e is a small constant, and /= 0, g = are

equal ellipses of small eccentricity and nearly concentric, the

major axis of one being parallel to the minor axis of the other.

The quartic consists of four portions each lying inside one

ellipse and outside the other; see Fig. 1.

These portions are narrow ovals each touched by one

bitangent, while any two ovals have four tangents in common.
Hence the quartic has twenty-eight real bitangents each

touching the curve in points which lie very close to two of the

points labelled 1, 2, 3, 4, 5, 6, 7, 8 in the figure.

Kg. l.

If we proceed to the limit in which the ovals are indefinitely

narrow, we may consider the bitangents as the twenty-eight
lines joining in pairs the eight points 1, 2, ... , 8 (Fig. 2).

The bitangents are now denoted by the symbols 12 or 21,

13 or 31, &c. We shall show that this is the same notation

for the bitangents as that before derived at the beginning of

this section.

The criterion of § 2, Ex. 3, applied to Fig. 1 will readily

show that three bitangents are syzygetic, if (i) their symbols
in Fig. 2 involve six distinct digits, e.g. 12, 34, 56; (ii) their

symbols involve two digits twice and two digits once, e.g.

12, 23, 34.

It follows from § 2, Ex. 4, that four bitangents are syzygetic,

if their symbols are of one of the two types 12, 34, 56, 78
or 12, 23, 34, 41.

* FontenS, Buil. de la Soc. Math, de France, xxvii, p. 229.
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In Fig. 2 the four bitangenta either join four distinct pairs
of points or else are the sides of a quadrilateral.

It follows at once that we have complexes of the two types

18 17, 28 27, 38 37, 48 47, 58 57, 68 67

;

or 14 23, 24 31, 34 12, 58 67, 68 75, 78 56.

The fost type contains SC
2
= 28 complexes and the second

h •

s
^4 = 35 complexes. Hence we have thus all possible

sixty-three complexes ; and then, retracing our steps, we see
that we have given above every possible set of three or four

Fig. 2.

syzygetic bitangents. Moreover, since we have just shown that

i8j7,i7j8,ij78, ...

is a complex in Fig. 1, we see that the notation for the bi-

tangents obtained at the beginning of the section agrees with
that obtained from Fig. 2.

We can deduce the fact that three bitangents of' the type

pq, qr, rs or three of the type pq, rs, tu are syzygetic, from the
original definition without the use of Fig. 1 *

We begin with the type pq, qr, rs.

First take the case in which two of p, q, r, s are 7 and 8.

We have the possible types f

j7, 78, 8i and 87, 7j,ji and 7j, j8, 8i and 7j,ji, 18.

* The figure only gives a special quartic, and therefore must not be relied

upon for a proof, though it assists us to visualize the results obtained in this

, chapter.

f i, j, k, I, ... denote any of the integers 1, 2, 3, 4, 5, 6.
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These are all syzygetic, for

i8j7, i7j8, ij 78, ...

is a complex by definition.

Now take the cases in which one of p, q, r, s is 7 or 8. We
have the two possible types

i8, 8j,jk and 8i, ik, kj.

For the first type we note that jk is in one of the triple of

complexes

18 17, 28 27, 38 37, 48 47, 58 57, 68 67;

i8j7, i7 j8, ij 78, ... ;

i8j8, i7 j7, ...

It is not in the first. It is not in the second ; for j7, 78, jk
are syzygetic. Therefore it is in the third ; which makes
i8, 8j,jk syzygetic.

_

It follows that i8 is in the complex j8 jk But,
changing the notation, j8, 8i, ik are syzygetic. Hence

j 8 jk, i8 ik, ...

is a complex, for otherwise we should have three bitangents
in different pairs of a complex syzygetic. Therefore for any
value of k

18 Ik, 28 2k, ..., 78 7k
is a complex.

It follows that the other type 8i, ik, kj is also syzygetic;
since this complex is

%8 ik, j8jk, ....

A similar process holds if we interchange 7 and 8.

Now take the type ij, jk, kl. %

We have shown that

18 Ik, 78 7k,j8jk, ... and 17 18, 27 28, 37 38, ..."

are complexes, whence

klkj, 81 8j, 71 7j,...
is a complex.

Repetition of this argument shows that

lZlj, 21 2j, ..., 81 8j

is a complex ; and ij, jk, kl are syzygetic.
This exhausts all trios of the type pq, qr, rs.

We have now shown that there are complexes of the type

Iplq, 2p2q, ... , 8p 8q,

-where p and q are any of the integers 1, 2, 3, 4, 5, 6, 7, 8.
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Now consider three bitangents of the type pq, rs, tu; for
instance, 12, 34, 56. Since 56 is in one complex of the triple

12 14, 32 34, 52 54, 62 64, 72 74, 82 84;

21 23, 41 43, 51 53, 61 63, 71 73, 81 83;

12 34, 14 32, ...,

and is not in the first two, it is in the third. Hence 12, 34, 56
are syzygetic.

This completes the proof that three bitangents of the type

pq, qr, rs or pq, rs, tu are syzygetic. Then the proof that
complexes are of two types ; and that there are only two
types of three or four syzygetic bitangents follows as before.

Ex. 1. Obtain all the 288 Aronhold Sevens of bitangents.

[Lines in Kg. 2 joining one point to the other seven ; or lines forming
a triangle together with the lines joining one of the remaining points to
the other four.]

Ex. 2. How many sets of four syzygetic bitangents exist ?

[105 + 210.]

Ex. 3. The bitangents cu c
2 , c

s , c
4 , c5 of § 5 are 16, 26, 36, 46, 56.

§ 6. Lines on a Cubic Surface.

If we take any point on a cubic surface as the point

(0, 0, 0, 1), the equation of the surface in homogeneous
coordinates is

/ = «,ws + 2u2w + u3
= 0,

where ur is homogeneous of degree r in x, y, z.

The tangent-lines from O to the surface have their points

of contact on

^=2(^u,+w2)
=0.*

dW

Eliminating w between /= and -^- = 0, we have the

equation u
1
u3
= w2

for the intersection of the tangent-lines

with the plane w = 0. This is a plane quartic with the inter-

section Mj = of w = and the tangent-plane at to the

surface as a bitangent. The points of contact of this bitangent

lie on w.j = 0, u2
— 0, i. e. on the inflexional tangents of the

cubic at 0.

Conversely, any non-singular quartic can be derived from
a cubic surface in this manner ; for the equation of any quartic

* The proof is similar to that which Shows that the points of contact of the
tangents from to a plane curve lie on the' first polar curve of 0.
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can be put in the form u-^u^ = u2
2

, where u
t
= is any

bitangent.

This result enables us to deduce properties of the plane

quartic from those of the cubic surface and vice versa.*

For the present let us denote the bitangent w = 0, ux
=

by I. The plane joining to any bitangent of the quartic,

other than I, touches the surface in two points P, Q one on

each of the lines joining to the points of contact of the

bitangent. Hence the curve of intersection of the plane with

the surface has P and Q for nodes. But the curve is of

degree 3, and must therefore degenerate into the line PQ and

a conic.

Hence the projections from on to w = of the lines on
the surface are the bitangents of the quartic other than I.

It follows that there are twenty-seven lines on a cubic

surface.

In Ch. XX we shall show that either 4, 8, 16, or 28 of the

bitangents of a non-singular quartic are real. Hence either

3, 7, 15, or 27 of the lines on a non-singular cubic surface are

real.

There is evidently no loss of generality in supposing that

the plane w = passes through a line of the surface. Take
the line as w — z = 0. The equation of the surface is

u
1
w2 + 2Vw+Uz = 0,

where U and V are homogeneous of degree 2 in x, y, z.

The surface meets the plane w = Icz where

z(U+2kV+k2u
1
z) = 0.

Hence the conies in which planes through the line w = z —
meet the surface again project from into the family of conies

U+ ,2kV + kiu
1
z = 0, »

By choosing k to make such a conic a line-pair, we obtain

five pairs of bitangents of the quartic which together with the

pair w = z = 0,w = u
1
= Q make up a Steiner complex (§ 3).

The plane w = kz for such a value of k meets the surface in

three lines which form a degenerate cubic with three nodes,

at each of which the plane touches the surface. Hence

:

Through any line m of a cubic surface five planes can be

drawn each touching the surface in three points and meeting
it again in a line-pair. The projections of these five line-

pairs form with I and the projection of m a complex of
bitangents of the quartic curve.

* The method is due to Geiser, Math. Annalm, i, p. 129,
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The number of such triple tangent-planes is evidently

27 X 5 -j- 3 = 45.

The above result gives us all the twenty-seven complexes
which contain I. We now proceed to find the other thirty-six
complexes.

§ 7. Sehlafli's Double-six.

Suppose that the line <xe of a cubic surface is met by the five

line-pairs (§ 6)

Vl. &
2
C2> &

3
C3. bi ct> 6

5
c5;

the planes a
6 61

c
1 , &c, behig triple tangent-planes of the

surface.

Ne two of clt c
2 , c

3 can meet. Suppose that ci meets the

Oa cs

Fig. 3 (diagrammatic only).

hyperboloid with elt c
2 , c3 as generators in two points.

Through each of ' them passes a generator of the opposite

family to c
x , c

2 , c3 . One of these is a
e ; let the other be b

a
.

Since b
6
meets c

x
,c2 , c3 , c4 in four points lying on the surface,

6
6
is a line of the surface.

The plane of a
6
cB bB meets the surface in the three lines

ae>
c5> "6- Hence b

6
meets one of these lines. It cannot

meet a
6 ; there is no loss of generality in supposing it to

meet c6 .

Let the planes Z>
6
Cj, be c2 , bB c3 , b6 cit 6

6
c
s
meet the surface

again in the lines alt a% , a3 , at>
a
s

. Then it is at once seen

that the configuration of twelve lines on the surface

( a
x

a
2

a
3

a4 a6 a
6

l

t h b
2 b

3
64 b

5
b
6 J
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is such that any line does not meet each of the lines in the
same row or column in the array { }, hut does meet the other
five lines. For instance, a

x
meets b2 , b

3 , bt , bs , b6 only. Such
a configuration is called a ' Schlafli's double-six'.

Since the triple tangent-planes through a
x
are

«A> »A> «A> aA> aA>
it follows readily that we might have constructed the double-
six starting from the pair a-fi^ instead of a

6
b
e

. In other words,
the double-six is symmetrical as regards its six pairs

«A, «A> «A, «A> as&fi> aeh-
Denoting the bitangents into which the lines a

x , b
x , c15 ...

project by the same symbols, we showed in § 6 that a
x
b
e , aB

b
x

are pairs of the complex determined by I and c
l

. Hence
ai> ae> &i> ^6 are syzygetic, or a

x
bx is a pair of the complex

determined by a
e
b
e

. Similarly for a2
b
2 , a3

bit &c. Hence:

A double-six projects into a complex of bitangents.

We showed that each line on a cubic surface meets ten other

lines, and therefore does not meet sixteen lines. Hence there

are 27 x 16— 2 = 216 non-intersecting pairs of lines on the

surface. Therefore, as each double-six may be determined by
any one of its pairs, the number of double-sixes is 216 -r 6 = 36.

Hence all the complexes of bitangents are projections of

double-sixes or else contain I.

The projections of the generators of a hyperboloid from any
point on to a plane all touch a conic, namely the conic in

which the tangent-lines from to the hyperboloid meet the

plane. For the plane through and a generator touches the

hyperboloid.

Now the lines a
x , a2 , az , 64 , b& , b

6
of a double-six lie on

a hyperboloid, a1; a2 , a3
being generators of one family, and

64 , b
5 , b6 , which meet them, being generators of the other

family. Hence the corresponding bitangents of the quartic

touch a conic. These lines can be chosen out of a1> a2 , ... , ae

in twenty ways. Hence

:

In any complex of bitangents of a quartic there are twenty
sets of six bitangents touching a conic. No two of these six

bitangents belong to the same pair in the complex.

From the theorem that the intersections of each pair of

a complex lie on a conic we obtain

:

The six li/nes drawn through any point of a cubic surface
each intersecting a pair of a given double-six lie on a cone of
the second degree.
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Ex. 1. By taking of § 6 on a line of the cubic surface obtain
properties of the bitangents of a quartic with a node.

Ex. 2. By taking at the intersection of two lines of the surface
obtain properties of a binodal quartic.

Ex. 3. The intersection of any plane with the tangent-lines from a point
to a cubic surface not passing through is a sextic with six cusps.

These cusps are the intersections of a conic with a cubic toughing the
sextic at the cusps ; and the twenty-seven bitangents of the sextic are

the projections from of the twenty-seven lines on the surface.



CHAPTER XX

CIRCUITS

§ 1. Circuit and Branch.

Heretofore, when we have discussed singularities on a

curve, we have not always distinguished real from unreal

singularities. Such a statement as ' the number of inflexions

oo

Pig. 1.

of a non-singular n-ic is 3n(n— 2)' is only true if we include

unreal inflexions. In the present chapter we shall make the

distinction between real and unreal points on a curve, and by
'point', 'inflexion' mean 'real point', 'real inflexion', &c,
unless the contrary is stated.

Suppose a point P starts from any point on a curve, and
travels along the curve, so that the direction of the tangent
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at P varies continuously. Suppose that, if in its journey
P travels outwards to infinity from a very distant point A, it

next travels inwards from infinity to a very distant point B
such that A and B are neighbouring points on any projection

of the curve. This means that in general P jumps from one
end of an asymptote to the other. Eventually P returns to 0.

The part of the curve thus traced out by P is called a circuit

of the curve. The portion of a circuit traced out by P between
two infinitely distant positions of P is sometimes called a

branch of the curve. Thus a hyperbola has one circuit com-
posed of two branches.*

These definitions will apply to any continuous curve with
continuously varying tangent. The curve need not be alge-

braic, though we shall be mainly concerned with algebraic

curves;

Fig. 1 shows a curve with' two circuits, one composed of

three branches, and the other closed and crossing itself.

§ 2. Ovals.

Suppose that a circuit is closed, i. e. all its points are finite.

Suppose, moreover, that it does not

cross itself, i. e. has no crunode. Such
a circuit will be called an oval. An
oval can be reduced to a point by con-

tinuous deformation, as shown in Fig. 2

which gives successive positions of the

oval as it shrinks to a point.

It is to be noticed that an acnode is

not counted as a circuit. A curve loses

one of its circuits, if an oval shrinks

into a point.

§ 3. Odd and Even Circuits.

Suppose that a line is moving in the plane of a circuit. If

the number of its intersections with the Circuit alters, the

number is increased or decreased by two (or some even

number) as is obvious from Fig. 3, which shows three con-

secutive positions of the moving line. It follows at once that

* In German, Zug= circuit, Ast= branch. Some English writers use

'part' for 'circuit', and speak of curves with one, two, three, ... circuits as

' unipartite ', 'bipartite', 'tripartite', ... .

The reader must distinguish between the use of the word branch as

defined above and its use in such a phrase as ' branch of a curve at a multiple

point '-
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circuits can be divided into even circuits which are met by

every straight line in an even number of points, and odd

circuits which are met by every straight line in an odd

number of points.

Any, closed circuit, in particular any oval, is even; for it

meets the line at infinity in an even (zero) number of points.

The oddness or evenness of a circuit is evidently unaltered

by projection.

In general an n-ia has an odd or even number of odd

circuits, as n is odd or even.

The least number of points in which a circuit is met by any

line is called its index. The greatest number of points is

called its order. The index and order are both odd or both

even according as the circuit is odd or even.

Fig. 3.

Two odd circuits meet in an odd number of points; two

even circuits, or an odd and an even circuit, meet in an even

number ofpoints.

To prove this we first notice that, if one of the circuits is

continuously deformed, and the number of its intersections

with the other circuit alters, the number is increased or

diminished by two (or other even number). In fact tRe argu-

ment of Fig. 3 still applies. We now show that the first

circuit can be deformed so that all its points are very distant.

Its intersections with the second (fixed) circuit will then be

practically identical with its intersections with the asymptotes
of the second circuit. But an odd number of lines meets an
odd circuit in an odd number of points, an even number of

lines meets an odd or even circuit in an even number of points,

and any number of lines meets an even circuit in an even
number of points. The theorem will therefore be established

if we show how to deform the first circuit so that all its

points are distant.

First of all deform the circuit so that its crunodes are ' cut '.

This is done by replacing the part near the node by the dotted
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line as shown in Fig. 4 (i). The method of Fig. 4 (ii) is
inferior, for it would necessitate the alteration of the direction
in which a moving point traces out the circuit, as shown by
the arrow-heads.
The cutting of the nodes may really resolve the circuit into

two or more distinct circuits, but for our present purpose we
shall think of these distinct circuits as a single circuit whose

Kg. 4 (i).

Pig. 4 (ii).

oddness or evenness is evidently unaltered by cutting the

nodes.

The circuit now consists of distinct nodeless branches and
ovals, no two of which cut. Keeping the two distant ends of,

each branch fixed, we can evidently withdraw such a branch
continuously to an indefinitely great distance as shown in

Fig. 5.

Also each oval can be deformed into a point ; and we have
achieved our purpose.

A nodeless curve cannot have more than one odd circuit.

2216 -A- a
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For two odd circuits would meet in one or more nodes of the

curve.

A non-singular n-io has therefore one or no odd circuit as

71 is odd or even.

Pig. 5.

Ex. 1. An odd circuit is projected on to any sphere from its centre.

Show that the projection is a closed circuit on the sphere met by any
great circle in ir+2 points, whose points can be divided into dia-

metrically opposite pairs.

Ex. 2. If an even circuit is projected similarly, the projection Is a pair

of diametrically opposite circuits each met by any great circle in an
even number of points.

Ex. 3. Use Ex. 1, 2 to prove the theorem of § 3.

[Project after cutting the crunodes. On the sphere an even circuit is

deformable into a point-pair and an odd circuit into a great circle in

such a way that each pair of diametrically opposite points remains
diametrically opposite.]

Ex. 4. The difference between the order and index of a circuit is even
and greater than zero.

Ex. 5. An odd circuit of a (singular) quartic cannot meet any other
circuit in more than one point. In particular, it cannot meet an even
circuit.

[If it met in two, the line joining them would meet the quartic in

five points.]
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Ex. 6. Two odd circuits of a quintic cannot meet in more than one
point.

A quintic with two intersecting even circuits cannot have more than
one odd circuit.

Ex. 7. A closed circuit has n crunodes. Show that, if a node is cut as

in Fig. 4 (i), the circuit is divided into two closed circuits. Also that, if

all the nodes are cut, the numher of circuits obtained differs from n + 1

by an even number.
What happens if a node is cut the wrong way as in Fig. 4 (ii) ?

[See Landsberg, Math. Annalen, lxx (1911), p. 563.]

Ex. 8. Show that, if the circuit is even, but not closed, the cutting of

a node either divides the circuit into two even circuits or into two odd
circuits. In the latter case it is possible, by cutting a second node, to

reconvert the figure into a single even circuit with two nodes less than
the original.

[See Pig. 4.]

§ 4. Beciproeation of Circuits.

We call now an odd circuit ' point-odd ' and an even circuit

' point-even '. A ' point-odd ' circuit meets any line in an odd
number of points. To its reciprocal with respect to any base

Point-even, tangent-even. Point-even, tangent-odd,

Point-odd, tangent-even. Point-odd, tangent-odd.

Fig. 6.

conic we may therefore draw an odd number of tangents from

any given point. The reciprocal will be called ' tangent-odd '.

Similarly we obtain ' tangent-even ' circuits as the reciprocals

of point-even circuits. Fig. 6 shows the four possible varieties

of circuit.

As a point P travels from a fixed point on a circuit id

a fixed direction, finally returning to (§ 1), the tangent at P
turns through an odd multiple of tt, if the circuit is tangent-

odd. For the tangent at P has passed an odd number of times

Aa2
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through any fixed point A, since the number of tangents from
A to the circuit is odd. Similarly the tangent at P turns

through an even multiple of n, if the circuit is tangent-even.

§ 5. Inflexions and Cusps of Circuits.

A point-odd or point-even circuit contains respectively an
odd or even number of inflexions. A tangent-odd or tangent-

even circuit contains respectively an odd or even number of
cusps.

One of these statements is the reciprocal of the other. We
may confine our attention to the first.

Suppose that the tangent at a point P travelling along the

circuit meets a fixed line I in Q. Let the tangent at a fixed

point of the circuit meet I in A (Fig. 7). As P starts from 0,

Fig. 7.

traverses the circuit, and returns to 0, Q starts from A and
finally returns to A, arriving at A in the same direction as it

left A.
,

Hence a + b + c must be even, a being the number of times

Q passes through A* b the number of times Q jumps from one
end of I to the other, and c the number of times Q travels up
to a certain point of I and then begins to move back again.

Now a is the number of tangents from A to the circuit, and
b is the number of tangents parallel to I. Hence a and 6 are

both odd or both even, according as the circuit is tangent-odd
or tangent-even. Therefore a + b is even ; so that c is even.

But Q reaches a limiting position on I and then moves back
again, if and only if P is an inflexion or an intersection of the

circuit with I, which proves the result.

* The initial starting from A and the final arriving at A taken together
count as passing through A once.
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Ex. 1. If the tangent at P meets the circuit at Q„ Q2 , Qa , ,.,, when
does the product PQ

1 . PQ, . PQa . ... change sign as P travels along the
curve ?

Deduce the theorem of § 5.

Ex. 2. An odd circuit without node or cusp has at least three inflexions.

[Project one inflexion to infinity.]

Ex. 3. A non-singular curve of odd degree has at least three real
inflexions.

Ex. 4. An odd circuit of order three without node or cusp has exactly
three inflexions (Mobius's theorem).

[Project one inflexional tangent to infinity. There is only one other
tangent through the infinite inflexion, since the circuit is of order 3.

Let the tangent at P meet the circuit again at B. As P travels along
the circuit, R travels along it twice in the opposite direction, and there-
fore coincides with P twice. Hence there are two finite inflexions.]

Ex. 5. Denoting the three parts into which the inflexions divide the
circuit of Ex. 4 by llt l2 , l3j show that there are two tangents from any
point of

?i whose points of contact lie on l2 and l
3 ; and that the tangent

from the inflexion at which l
3 and ls meet has its point of contact on l

t
.

Show that if two lines meet the circuit in ABC, A'B'C ; A, A', B, B', C, C
cannot lie in this order on the circuit.

Ex. 6. An odd circuit has 2r+3 inflexional tangents no one of which
meets the circuit at more than three points (coinciding with the point
of contact).' Show that it has r(2»- + 3) bitangents.
Show also that 2r+l tangents can be drawn from any inflexion, and

2r+ 2 tangents t'rom any other point of the circuit.

[Project one inflexion to infinity. The reader may enunciate a theorem
concerning the positions of the points of contact similar to that of Ex. 5.]

Ex. 7. An even (odd) circuit has no node or cusp, but has 2p (2p + 3)
inflexions and q bitangents. Show that 4) — q is even.

[Deform the circuit into some standard position, and notice that during
the deformation p — q is never increased or diminished by an odd number.]

Ex. 8. The inverse of a circuit of r branches with respect to a point

not on the circuit is an even closed circuit with an r-ple point at 0.

If is an r-ple point of the circuit, the inverse circuit is odd or even
as r is odd or even.

Ex. 9. An even number of circles of curvature of a circuit (i) pass

through a given point 0, (ii) cut orthogonally a given circle.

[(i) Invert with respect to 0. (ii) Deform the circle continuously
into its centre.]

Ex. 10. Describe the circuits of the curves in the diagrams contained
in Ch. Ill to XIX.

[State whether point- or tangent-even or odd, give their order and
index, &c]

Ex. 11. Draw a one- or two-circuited cubic and show the portions of its

plane from which 0, 2, 4, or 6 tangents can be drawn. Treat similarly

some non-singular quartic curves.

[The curve and inflexional tangents divide up the plane into these

various portions.]
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Ex. 12. Every tangent to a circuit without node or bitangent meets it

in the same number of points.

Ex. 13. Show that the result of Ex. 12 cannot be true for a circuit with
a bitangent, but may be true for a circuit with a node.

[E.g. vP — y
L = x l

y
i

. Another example is

The theorem is true for each circuit of this quartic, and for the quartic
as a whole.]

Ex. 14. An oval without double point has at least four ' vertices ', i. e.

points at which the circle of curvature has four-point contact, and the
radius of curvature is a maximum or minimum. •

[Invert with respect to a point of the oval and use Ex. 2, remember-
ing that the circles of curvature at two points of the oval lying between
two consecutive vertices cannot both pass through 0.]

Ex. 15. If the oval of Ex. 14 has no inflexion, the sum of the maximum
radii of curvature less the sum of the minimum radii of curvature is half
the perimeter of its evolute.

§ 6. Method of Variation of Coefficients.

We shall require a method enabling us to obtain the equa-

tion of a curve with an assigned degree, number of circuits,

inflexions, &c.

Such a method consists in giving small increments to the

coefficients in the equation of some given curve 0. The new

Fig. 8.

equation thus obtained, represents a curve of the same degree
as C and lying very close to it. This is illustrated in Fig. 8,

where the curve C is shown with a crunode, an acnode, a cusp,
and' two adjacent curves also.

It will be noticed that in general, if has a crunode while
an adjacent curve has none, the adjacent curve has an inflexion

close to each inflexion of C and two more inflexions close to

the crunode of G. Similarly for a cusp.

In general also an adjacent curve on one side of C has
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a small oval enclosing the acnode of G, which is in general
a convex oval without inflexions.*

The adjacent curve on the other side of G has no circuit
near the acnode.
To each tangent from a node of G to G corresponds either

two bitangents of an adjacent curve which are both real with
real points of contact, or no real bitangent.
To each line joining two nodes of & corresponds four real

bitangents of an adjacent curve having real points of contact,
or no real bitangent.

The results for the case of a cusp are at once written down
from Fig. 8.

We shall call a real bitangent with unreal points of contact
an ideal bitangent. The name is due to W. K. Clifford. The
number of ideal bitangents of an adjacent curve is the same
as for G and these bitangents are adjacent to those of G, pro-
vided G has no imaginary nodes or cusps.

If, however, G has a pair of conjugate imaginary nodes or
cusps E, F, an adjacent curve has respectively two or three
ideal bitangents adjacent to EF.
For take the case in which E, F are nodes. Let Q be the

quartic with a real cusp which approximates most closely to C
at E, F ; and as C passes into a consecutive position let Q pass
into a consecutive quartic still approximating to G near E, F.

The quartic in the position in which it has E, F as nodes
consists of one circuit and has two real bitangents tlt t

2 , as

may be readily proved by projecting E, F into the circular

points and inverting with resp*ecfc to the cusp. In the neigh-

bouring position Q will have four bitangents of the first sort,

i. e. bitangents whose points of contact are unreal or lie on the

same circuit. This will be proved in § 8 by reasoning which
does not involve the use of the result we are here establishing.

Two of these bitangents are consecutive to t
x , t2 . The other

two must be consecutive to EF. Now since the quartic Q
approximates to the curve G near EF, a bitangent of C must
approximate to each bitangent of Q near EF.f
A similar argument holds if E, F are cusps.

* Taking the acnode of C as origin, the adjacent curve has an equation of

the form = a + bx + cy i px1 + 2 qxy + ry1 + sx3 + ... , where q
2 < pr and a, 6, c

are small. The approximation near the origin is the ellipse

= a + bx + cy + px1 + 2 qxy + ry2 .

f Zeuthen, Math. Annalen, vii, p. 424, reasons as follows : The line joining

two nodes counts as four bitangents. If the nodes E, F are conjugate

imaginary, the line EF counts as the limiting position of four bitangents.

Two of these must be real bitangents in their final position just before

becoming unreal, and the other two must be unreal becoming real, as C varies.
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As illustrations of the above remarks which will be useful

later on, let us take one or two theorems.

If a non-singular n
x
-ic and n^-ic exist having respectively

^(TOj— 2) and n
2
(n

2
— 2) inflexions and no ideal bitangent,

which, meet in n^n^ real points, there exists a non-singular

(n
l + ni

)-ic with (n
1 + n2)(nl + n2

— 2) inflexions and no ideal

bitangent.

For if/x
= 0,/2 = are the equations of the 71.,-ic and n

2
-ic,

yj/2 = is an (n
t + «2

)-ic with n
x
n 2

crunodes,

%K-2) +%(%- 2)

inflexions, and no ideal bitangent. Then /j/g = e, where e is

any small constant, is a non-singular (n^ + n^-ic with

n
i (
n

i
— 2) + n2 (%— 2) + 2%!%2

= (%! + to2)
(n

t + *n,
2
— 2)

inflexions and no ideal bitangent.

For any given value of n \here exists a non-singular n-ic

with n(n— £) inflexions and no ideal bitangent.

Let us assume that such a curve exists and that moreover

it meets an ellipse in the 2n (real) points. The reader will

readily establish the truth of this statement in the cases

n — 2 and n = 3.

Take n + 2 lines each meeting the ellipse in real points.

Then if / = 0, e = 0, g = are the equations of -n-ic, ellipse,

and lines, ef = eg, where e is a small constant, is an (n+2)-io
meeting the ellipse in the 2 (n + 2) real intersections of

e = 0, g = 0. It has also (n + 2)n inflexions and no ideal

bitangents as in the proof of the preceding theorem.

Now use induction.

Ex. 1. If /= has ~k real branches through a point 0, prove that one
of the adjacent curves /+ e$ = (where q> = does not go through
and e is a small constant) has 2r inflexions near and that the other
has 2 (Ic — r). If h is even, r = \lc ; but, if h is odd, r may have any of
the values 0, 1, 2, ..., Jc.

Ex. 2 Obtain the equations of (i) a unicursal curve, (ii) a non-singular
curve, of degree n consisting of one circuit only which is of index or 1

as n is even or odd.

[(i) x =f(t), y = <f)
(t), z = yjr{t), where /, 0, \jr are polynomials of

degree n and \jr = has not more than one real root.

(ii) (xi +y*—l)f=f or (x-\)f=e, where /= is any unreal non-
singular («— 2)-ic or (» — l)-ic with real equation.]

For we shall see in § 7 that the number of real bitangents of any non-singular
«-ie adjacent to an n-io with nodes at E and F is the same.
Perhaps neither line of argument will appear quite convincing. But the

result is only required in the second part of § 7, and does not affect our dis-
cussion of the circuits of a non-singular curve in §§ 7, 8.
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Ex. 3. A p-ie is cut by a straight line I in p real points, no two of
which are consecutive. Show that an «-ic exists cutting the p-io in
np real points, n being any given integer.

[/= c
i
where /= is the equation of n straight lines each meeting

the curve in p real points. The line I can always be found if p = 2 or 3,
but not if p > 3.]

§ 7. Klein's Theorem.

In any curve of degree n and class m
n + i + 2-t = m + k + 2d,

where i is the number of real inflexions, t is the number of
ideal bitangents (real, with unreal points of contact), k is the
number of real cusps, and d is the number of real acnodes.

I. First consider the case of a non-singular n-ic. Suppose
the coefficients in the equation of the curve to vary con-
tinuously. Then the curve is continuously changing its shape,
and we may thus continuously deform the n-ic till it coincides
with some standard non-siugular n-ic.

Fig. 9.

(The straight line is a bitangent in each case.)

We may suppose that during the deformation there is never
more than one relation between the coefficients. During the
deformation the curve may have one triple tangent, or one
node, &c, but not a quadruple tangent, or flecnode, or pair of

unreal nodes, &c.

Now in the process no two ideal bitangents can coincide,

for this would imply the existence of a quadruple tangent.*

Hence the only way in which i + 2 1 can alter is

(i) by the coincidence of two inflexions at a point of undula-
tion and their subsequent disappearance

;

(ii) by the points of contact of a bitangent becoming real

instead of unreal, or vice versa;

(iii) by the appearance of a node.

Now Fig. 9 shows that cases (i) and (ii) are really the same
and that such an event decreases i by two and increases t by
one, or vice versa. Also we have shown in § 6 that in case (iii)

the numbers i and t are not permanently altered. For instance,

* This would not apply to two bitangents with real points of contact, for

they might coincide to form a triple tangent.
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if a crunode appears, i is diminished by two, and is increased

by two again as the node disappears.

Hence n + i+2t is the same for all non-singular n-ics.

But we have shown in § 6 that an n-ic exists for which

i = n {n- 2), t = 0, k = d = 0, m = n (n—l).

Hence the theorem is established for a non-singular curve.

II. Now suppose the n-ic has nodes and cusps. Let it

have •§/«' pairs of conjugate imaginary cusps, \d' pairs of

conjugate imaginary nodes, and d
1
crunodes, besides its k real

cusps, d acnodes, i real inflexions, and t ideal bitangents.

An adjacent non-singular ?i-ic has by §6 i + 2d
x + 2k in-

flexions and t + d' + %k' ideal bitangents. Therefore by Part I

of the proof

n+(i + 2d
1
+ 2k) + 2(t + d' + ilc') = n(n-l).

Hence

n + i + 2t = n(n-l)-2(d
1 + d + d')-3(k + k') + 2d+ k

= n(n-l)-2$-3 K + 2d + k = m + k+2d,
as required.

The theorem of this section is due to F. Klein (Math.

Annalen, x (1876), p. 199). It may be put in the form

:

'The quantity n + i + 2t is the same for a curve and its

polar reciprocal.'

As a corollary from Klein's theorem we deduce

:

No n-ic has more than n(n— 2) real inflexion.

For a non-singular n-ic

i = m—n— 2t = n(n— 2)~- 2t

by Klein's theorem, which proves the result.

For an n-ic with double points it is sufficient to notice that

we can find an adjacent non-singular n-ic for which v-may be

greater, but cannot be less.

We have already shown that for any assigned value of n
an n-ic with n(n—2) real inflexions exists.

Ex. 1. Klein takes as standard n-io with n(n — 2) inflexions, &c, the
following: For n = 2r, a curve adjacent to the curve consisting of r

equal concentric ellipses with major axes parallel to the r sides of a
regular polygon. For n = 2r+ S, add to the ellipses a cubic whose
odd circuit cuts all the ellipses in six points.

Verify this.

Ex. 2. What property of a curve do we obtain by applying Klein's

theorem to its evolute?

[Use Ch. XI, § 2, Ex. 5, 6, 7.]

Ex. 3. Prove i-Si + 6d = *-3k + 6t.
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Ex - * A curve has no acnode and not more than a third of its cusps
are real. Show that not more than a third of its inflexions are real.

[Use Ex. 3.]

Ex. 5. An w-ic with ^ crunodes cannot have more than »(»-2)-2d,
inflexions.

Ex. 6. What modification must be made in Klein's result, if the curve
has a multiple point with distinct tangents ?

,
[Apply Klein's theorem to an adjacent non-singular curve. Cf. § 6,

Ex. 1. The reader may illustrate on r = a cos 35, which has the line at
infinity as ideal bitangent.]

§ 8. Circuits of a Quartie.

We have already discussed (Ch. XIV, § 1) the possible
circuits of a cubic. We consider here the case of the quartie,

and discuss in detail the non-singular quartie*
Such a quartie cannot have an odd circuit (§ 3). It cannot

have more than four even circuits. For if it had five, the
conic through a point on each circuit would meet the curve in

ten points.

Klein's relation (§ 7) becomes i + It = 8 for the non-singular
quartie. There is some line meeting the curve in no (real)

point. If there is an inflexion, the reader will easily convince
himself of the truth of this statement by projecting the
inflexional tangent to infinity.f If there is no inflexion, there

are four ideal bitangents each meeting the curve in no real

point. The quartie can therefore be projected into a closed

curve, which consists of one, two, three, or four ovals. Each
oval is of order two or four.

If there are two ovals, they may lie one inside the other or

be external to each other. In the former case the inner oval

has no inflexion, for an inflexional tangent to the inner oval

would meet the inner oval in four points and the outer oval in

at least two, which is impossible for a curve of degree four.

If there are three or four ovals, no oval can lie inside

another. For if a quartie had three ovals A, B, G with B
inside A, a line cutting B and C would meet A, B, and G in at

least two points each.

If two ovals are external to each other, it will be readily

seen that they have four and only four common tangents

* See Ex. 6 for the case of quartics with double points.

f There is then a circuit approximating at infinity to a semi-cubical

parabola (ay2 = xs) and with one asymptote also. This will be seen to have
two branches with a common tangent, and a line adjacent to this tangent
will meet the curve in no real point.
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which are bitangents of the quartic* Such bitangents are

called bitangents of the second sort.

Bitangents of the first sort are those whose points of contact

are either unreal or lie on the same oval.

A non-singular quartic has four bitangents of the first sort.

Imagine a string wrapped round an oval of order four. If

AB is a straight portion of the string touching the oval at

A and B, AB is a bitangent subtending a 'bay' AGB of the

quartic with two inflexions (Fig. 10). Hence the quartic has

twice as many inflexions as it has bitangents of tho first sort

with real points of contact.

The relation i + 2t = 8 now proves the result.

Fig. 10.

A non-singular quartic has 4, 8, 16, or 28 real bitangents.

It has four bitangents of the first sort. If it has r ovals

external to each other, it has also |)'(r-l)x4 bitangents of

the second sort; where r is 1, 2, 3, or 4. Hence it has

0, 4, 12, or 24 bitangents of the second sort and four of the

first sort, which proves the theorem.

Non-singular quartics may be classified by means of their

ovals and the nature of their bitangents. We give an example
to show how an equation may be found which shall represent

a quartic belonging to an assigned class. Suppose we require

a quartic with four ovals each with a bitangent. There will,

of course, be also eight real inflexions and twenty-four .bi-

tangents of the second sort. The equation

(9a;
2 + 4'i/

2 -36)(4a;2
-l-92/

2 -36) = e,

* If the curve is of degree higher than five, there might be more than four

such common tangents.
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where e is a small negative constant, will represent a quartic
*

adjacent to the pair of ellipses

9a2 + 42/
2 = 36, 4a;2 + 9f = 36,

and lying inside one ellipse and
outside the other, as shown in

Fig. 11 by the dotted line. It

will evidently be a quartic of the
kind stated.

If we take e a small positive

constant, we obtain a quartic

with two ovals, one inside the

other, as shown by the narrow
line in Fig. 11. The outer oval

has eight inflexions and four

bitangents.

Fig. 11.

Ex. 1. The eight points of contact of the four bitangents of the first

sort lie on a conic.

[Use Ch. XIX, § 2, Ex. 3. Each of the involutions is non-overlapping.
See Ch. XIX, § 2, Ex. 6, for the case of four concurrent bitangents.]

Ex. 2. No triangle formed by three bitangents of the first sort can
enclose two ovals external to one another.

[The argument of Ex. 1 would show that the conic through the points

of contact of the three bitangents passes through the points of contact
of one of the common tangents to the two ovals ; which is impossible.]

Ex. 3. Describe the nature of the ovals and bitangents of the quartics

fg = ±e, where t is a small positive constant, and / = 0, g = are the
curves given below

:

(i)a»« + y' = 1, .
2*s + y» + l = 0.

(ii) ^ + «/
2 + 4a; + 3 = 0. .

(iii) x* + y
2 =4, 2x2 + y* = l.

(iv) x2 + y*±4:X-5 = 0.

(v) j/
2 + 4y2 =4, 4^-^ = 4.

(vi) x*-y2 = 9, x2 + §y"i + 2x = 8.

(vii) x1 + 4y' = 4, x2 - y
2 = 2 x.

Ex, 4. Describe the nature of the quartic fg = +e#, where

/= as* + 4^-5, g = 4x2 + y
2 -5

and <j> is

(i) x+y-2, (ii) (x + y-2){x-y + 2),

(iii) (x-l)(y-l)(x + y), (iv) (x-y)(x + y-2)(x + y + 2).

Ex. 5. Describe the nature ofthe quartic (x2 + y
2—5y)2= + sd>, where rf> is

(i) (y-l)(y-2)(y-3)(*-4), (ii) (y-l)(y-2)(y-S),

(iii) (y-l)(y-2), (iv) (y-1),

(v) x'--y\ (vi) (y-2x){y-4){y + x).
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* Ex. 6. Describe the nature of the circuits of the quartics in

Ch. XVIII, §§ 3-15.

[The nature of the bicircular quartics may be obtained by inversion

from the circular cubic. The nature of their bitangents is given by

§ 3, Ex. 13 and 16.

For § 4 take A and B at infinity and consider the possible positions

of the conic of § 4, Ex. 1, relative to the tangents at A and B.

For §§ 5, 7, 14, 15 we may classify the various types of curve by
considering the cases in which none, two, or four of a, b, c, d are unreal.

For § 9 project the curve into x^y1 + ax1 + by 1 + c = 0, and similarly

for §§ il, 12.]

Ex. 7. To ovals of a quartic external to one another have two external

bitangents (i.e. a bitangent such that the ovals lie on the same side of

it) and two internal bitangents (the ovals lying on opposite sides).

Ex. 8. A quartic with three real cusps has one bitangent which is

ideal. A conic meeting the curve in eight real points intersects the
bitangent.
A quartic with one real and two unreal cusps has one bitangent with

real points of contact. A conic meeting the curve in eight real points

does or does not intersect the bitangent. In the latter case all the six

common tangents of curve and conic are real.

[The quartic can be projected into a three-cusped hypocycloid or

a cardioid.]

Ex. 9. Show that x'y + y'z + z^x = has exactly six real inflexions

and four real bitangents. The real inflexions lie on a conic.

[Drawing the curve, after putting z = 1, we see that the quartic

consists of a single oval touched in real points by three bitangents.
The fourth bitangent is x + y + z = 0.

The real inflexions are (1,0,0), (1 + t, — \(1 — t
2
),
1— *), &c, where

fi + 1 = t' + 9 1. They lie on 1/x + l/y+l/z = 0.]

Ex. 10. To two ovals of a quintic external to one another four common
tangents can be drawn.

Ex. 11. No oval of a quintic can have more than twelve inflexions or

six bitangents.

[Three real inflexions lie on the odd circuit, and no quintic has more
than fifteen real inflexions.]

§ 9. Maximum Number of Circuits.

A curve of deficiency B has at most D + l circuits.

This result, due to Harnack,* is familiar if D = (Ch. X,

§ 4). To prove it in general, suppose the curve to be of

degree n with r odd circuits. These odd circuits meet in at
least fr(r— 1) crunodes, since two odd circuits meet in one or

more crunodes. Let the curve have s other double points,

acnodes, unreal, or lying on odd or even circuits. Then

-D = i(w-l)(TO-2)-fr(r-l)-8.

* Math. Armalen, x (1876), p. 189.
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Suppose that, if possible, the curve had D-f 2 or more
circuits. It will have at least JD— r + 2 even circuits.

First consider the case in which n is even. Then r is even.
Take one point on each of the D— r + 2 even circuits, the
|r(r-l)+s double points, and n + r— 4 more points on one
of the even circuits. The total number of these points is

(D-r+2)+%r(r-l)+8 + {n + r-4) = \(n + l) {n-2).

Hence a (n— 2)-ic can be drawn through them. This
(n— 2)-ic meets each odd circuit of the n-ic at least twice; for

it meets them each once at a crunode, and n— 2 is even. Also
it meets each even circuit in au even number of points-, so
that it meets one of them in at least w+r— 2 points and the
others at least twice. Hence the n-io and (n— 2)-ic meet in at
least

2{%r(r-l) + s}+r + 2(D-r+l) + (n + r-2) =n(n-2) + 2

real points, which is impossible.

For the case of n and r odd, take one point on each of the
even circuits, the Jr(r— l)+s double points, another point
on each of the r odd circuits and n— 4 more points on an even
circuit.

Since n— 2 is odd, the (n— 2)-ic meets each odd circuit in

three points at least, and the n-ic and (n— 2)-ic meet in at

least

2{%r(r-l)+s} + 2r + 2(D-r+l)+(n-3) = n(n-2) + l

real points, which is impossible.

Ex. 1. Show that not every non-singular n-ic can be projected into
a closed curve, if n is a given number greater than 4.

[If n is odd, the curve can never be closed, for it has an odd circuit.

For n = 6 take

(tf-tf-V, (a;
2 + 8^ + 32^ + 28) (a;

2 + 8y2 - 32^ + 28) = e.]

Ex. 2. Let (j> = be the equation of six lines parallel to the line of

inflexions of a two-circuited cubic / = 0, four being on one side and
two on the other side of the line of inflexions, and all meeting the odd
circuit of the cubic in three points. Then / 2 = + ?0 are (1) a sextic

with twenty-four inflexions and eleven ovals, (2) a sextic with eighteen

inflexions and nine ovals (i. e. protectable into such a sextic).

[To find all possible arrangements of the circuits of a non-singular

n-ic is a difficult problem, which ha9 been solved only for re = 3, 4, 6.

For n = 6 we have the result :
' If a sextic has eleven ovals, they consist

of ten ovals all external to each other and an oval enclosing either nine

of them or only one '
; as in the above example. The reader may discuss

the cases in which = represent six or less lines in various positions.]

Ex. 3. Prove that

{2^sin3(0 + S) + 3^-l}{8r! sin30 + llr!}+<r = O,

where f and 8 are small and positive, is a sextic with eleven ovals.
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§ 10. Nested Ovals.

A set of ovals o^, a>
2

wr
such that ooj lies inside <o

2 ,

co^.j inside wr is called a family of r nestedo>2
inside o>

3 ,

ovals.

If an n-ic has r nested ovals, we have :

(i) n even; ?*<£ (n — 2), or r = \n, the nest being the whole

n-w.

(ii) n odd; r^^(n— 3), or r = \(n— 1), the nest and one

odd circuit being the ivhole n-ic.

Suppose n even. Then, if the curve had %n nested ovals

and another circuit as well, a line cutting this other circuit

Fig. 12.

and the innermost oval would cut the -n-ic in mofe than

n points.

Suppose n odd. Then, if the curve had %(n— 1) nested

ovals and also an even or two odd circuits in addition, a line

cutting this even circuit (or two odd circuits) and the inner-

most oval would cut the n-io in more than n points.

It will be noticed that a nest may contain ovals not belong-

ing to the nest, as in Fig. 12. In this diagram we have the

three nests abed, abf, ae.

In the following section we prove the converse of this

theorem, showing that for an assigned value of n it is always
possible to find a non-singular n-ic with its maximum number
of nested ovals and its maximum number of circuits and real

inflexions.
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Ex. Find the equation of an «-ic with \n nested ovals when n is even,
and | (n — 1) nested ovals and an odd circuit when n is odd.

IX^ + ^-l) (a!» + y»-2) ... (a;» + y"-i„) = «,,

(a? + tf-l)(a* + y*-2) ... (a?
s + y»-|{»-l})(3!-») = «=.]

§ 11. Hilbert's Theorem.

.For every assigned value of n greater than 3 there exists an
n-ic tulth the following properties

:

(i) It is non-singular.

(ii) It has the maximum number \n{n% — 3% + 4) of

circuits.

(iii) It has the maximum, number ^(n — 2) or %(n— 3) q/
nested ovals.

(iv) ii A.as the maximum number n(n — 2) of real inflexions.

Fig. 13.

The theorem may be considered to hold even in the cases

n = 2 or 3, if we adopt the convention that a single oval

shall count as a nest of one oval when n > 3 and shall not

count as a nest when n = 2 or 3.

. Suppose that in Fig. 13 we have a circle (shown by the

thick line) with equation e = 0. Suppose we have also a

curve (shown by the thin line) with equation f=0, which
possesses a nest of p ovals, such as is shown at the bottom of

2216 B b
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the diagram, and an oval 12 meeting the circle in 2q points

(only) passed through in the same order whether we traverse

the circle or the oval 12. There is a portion of the plane not

containing the nest, which is bounded by an arc of the circle,

and an arc of 12 lying inside the circle. On this arc of the

circle take 2r points B
t , B2 , ... , B2r ; and let the equation of

the lines B
1
B

2 , BsBi , ... , B2r_ 1
B2r be g = 0.

In the diagram p = 2, q = 3, r = 2.

Then, if e is a small constant of suitable sign,

is a curve such as is showrj by the broken line in Fig. 13.

It has a nest ofp + 1 ovals and has in all 2^—1 more ovals

than the original curve. It has too 4g more inflexions, since

each intersection of the circle and original curve gives rise to

two extra inflexions by § 6.*

It has also an oval of the same nature as the oval 12, meeting
the circle in 2r points passed through in the same order

whether we traverse the circle or the oval.

Supposing now we have an n-io / = satisfying the con-

ditions of the theorem, with §(«2— 3n + 4>) circuits of which
|(ti— 2) or § (n— 3) form a nest as in Fig. 13 and one is an
oval such as 12 meeting a fixed circle e = in 2n points (q = n).

Suppose also the two has n(n— 2) real inflexions. If we
take r = n + 2, the derived curve

is an (% + 2)-ic with a i nest of ^n or ^(n— 1) ovals and an
oval such as 12 meeting the circle in 2 (n + 2) points. The
derived curve has also

n(n— 2) + 4% = (n + 2)n <

real inflexions, and the number of its circuits is

!(7i2 -37i + 4) + 2%-l = -§{(% + 2)
S! -3(7i + 2) + 4}.

We have now only to establish the existence of the n-\e

with the nest, the oval 12, and the n(n— 2) inflexions for the

cases n = 2 and n = 3.

The result will then follow by induction.

For n = 2 it is sufficient to take any ellipse meeting the

circle in four real points. For n — 3 we may take the curve

eh = eg,

where e = is a circle, h = a straight line not meeting the

circle, and g = three straight lines all meeting the circle.

* Fig. 13 is purely diagrammatic, and inflexions are shown in the figure

which do not really exist.
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_
The reader who wishes to pursue further the subject of

circuits may consult

:

•

American Journal Math., xiv, p. 245 ; xxix, p. 305.
Annali di Mat. Pura ed Applicata, III, xxii, p. 117.
Berichte der K. Sachsischen Gesell. der Wiss. zu Leipzig,

lxiii, p. 540.

Bull. New York Math. Soc, i, p. 197.

Crelle, cxiv, p. 170.

Math. Annalen, vii, p. 410; x, p. 189; xxxviii, p. 115;
xli, p. 349; lxvii, p. 126; lxix, p. 218; lxxiii, p. 177; lxxiv,

p. 319 ; lxxvii, p. 416.

Rendiconti del Reale Istituto Lombardo, II, xliii (1910),

pp. 48 and 143; xlvii (1914), pp. 489 and 797; xlviii (1915),
p. 182 ; xlix (1916), pp. 495 and 577.

Trans. American Math. Soc., iii, p. 388.

Ex. 1. A curve /= has a circuit meeting a line e = in q points
(only) which are passed through in the same order whether we traverse
the line or the circuit. The r lines g = meet e = in »• points, such
that the two segments containing the q points and the r points on e =
do not overlap. Prove that ef = tg, where e is a small constant of
suitable sign, has q — 1 more circuits than /= 0, and has a circuit

meeting e = in r points only which are passed through in the same
order whether we traverse the line or the circuit.

Ex. 2. A non-singular ra-ic exists for any given value of n, having its

maximum number of circuits, with a circuit meeting a given line in
n points passed through in the same order whether we traverse the line

or the circuit.

[Take q= n, r = n + l in Ex. 1, and use induction.]

Ex. 3. (xi + y'i)(y-ax)(y-cx) ...(tj-kx) = y {y~bx)(y-dx) ... (y-lx),

where a, b, e, d, ..., k, I are 2n — 4 constants in ascending order of
magnitude, is an n-ic of zero deficiency with a single circuit of index n — 2.
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CHAPTER XXI

CORRESPONDING RANGES AND PENCILS

§ 1. Correspondence of Two Pencils.

Suppose we take two lines PA, PB y = tz, x — Tz respec-

tively through the points A and B of the triangle of reference

ABC, such that t and Tare connected by a relation of the form

Ti(a tP + ahtP-
l + ...+u

p ) + n-'1 (b fP + b
1
tP-l + ...+b

p)

+ ... + (Jc tP + k
1
tP- 1 + ...+k

p)
= . . (i).

To every position of PB correspond p positions of PA, and
to every position of PA correspond q positions of PB. The
lines PA and PB are said to trace out 2^>encils with vertices

A and B having a p:q correspondence.

Eliminating t and T between (i) and y = tz, x = Tz we
obtain the locus of P. It is a (p + q)-ic with multiple points
at A and B of orders p and q respectively. The p tangents
at A are the p lines of the pencil with vertex A which corre-

spond to the line BA with vertex B ; and similarly for the
tangents at B. These facts are obvious either from the equation
of the curve or from simple geometrical considerations.

Pliicker's numbers are at once written down, remembering
that a &-ple point counts as %h(Jc— 1) nodes (Ch. VIII, § 3).

We have *

n=p + q, m=2pq, S = i (p
2 + q

2 -p-q), k — 0,

r = 2 (#V- 5z>q + 2p + 2q), c =3(2pq-p-q),
D = (p-1)(?-1)

The tangents from A to the curve are the p tangents at A
each counted twice and the 2(q— l)p lines given by those
values of t which make (i), considered as an equation in T,
have equal roots. We verify easily from this that m = 2pq.

In (i) we have supposed a ^ 0. If a = 0, the line AB
corresponds to itself in the two pencils. The locus ofP is now

* Assuming that the tangents at A and B are all distinct, and that the
curve lias no multiple point other than A and B. This assumption may not
he valid, if certain relations hold between the coefficients of equation (i).
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the line AB together with a (p + q — l)-ic having a (p— l)-ple

point at A and a (q— 1 )-ple point at B. For this cuvve

n=p + q-l, m=2(pq-l), 5 = i (p
2 + g

2 -3p-3g + 4),]

K = Q, T=2(p2q*-7pq + 2p + 2q + 4!), [.
i = S(2pq-p-q-l), I) = (p-1) (q-1) \

The case p = q = 1 is very well known. We have then
that the intersection of corresponding rays of two homographic
pencils is a conic, or is a straight line if the line joining the
vertices of the pencils corresponds to itself. The reader may
also verify the results obtained by taking p = 2, q = 1 or

p = q = 2.

If a — a
1
= b = 0, the locus ofP is similarly a (p + q — 2)-ic

with (p— 2)-ple and (2 — 2)-ple points at A and B respectively

;

and so on.

We readily show that, conversely, the lines PA and PB
joining any point P on a (p + q)-ic to multiple points A and B
of orders p and "q respectively have a p : q correspondence. In
fact, putting y = tz and x = Tz in the equation of the curve
we have a relation of the form (i).

More generally, any %-ic with an r-ple point A and an
s-ple point B * may be considered as the locus of P, when
the pencils traced out by PA and PB have a (n— s):(n— ?•)

correspondence such that n— r— s of the lines through A
corresponding to BA coincide with AB, and n— r— s of the

lines through B corresponding to AB coincide with BA.
This is evident on putting t for y/z, T for x/z in the equation

of the curve, when we get a relation of the form (i) with

a , a1 , . .. , cin _ r_ s_ 1 ; o , o
1 , ... , on _.,._ s_ 2 ; ...

all zero..

Ex. The quadratic transform of the (p + q)-ic of § 1 with respect to

a conic touching CA and CB at A and B is the intersection of pencils

through A and B having & q:p correspondence.

[The quadratic transform of a line through A is a line through B.]

§ 2. Correspondence of Two Ranges.

The polar reciprocals of two pencils with a p:q corre-

spondence are ranges of points on two lines with a p : q
correspondence. To any point of the first range correspond

2 points of the second, and to any point of the second range

correspond p points of the first. We have a relation such

* r = if A is not on the curve, r = 1 if A is an ordinary point of the
curve ; and so for B.

Bb3
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as (i) of § 1, if t and T are the distances of corresponding

points measured from fixed origins on the two lines.

Two pencils with &p:q correspondence meet any two lines

in ranges with a p : q correspondence, and the pencils formed

by joining any two vertices respectively to the points of

ranges with a p:q correspondence have themselves a p : q
correspondence.

The line joining corresponding points of two ranges with a

p:q correspondence in general envelops a curve of class p + q
having the lines on which the ranges lie as p-ple and g-ple

tangents respectively.
*

Ex. 1. Two ranges on the same line with p : q correspondence have

p + q self corresponding points.

Two pencils with a common -vertex and p : q correspondence have

p + q self-corresponding rays.

Ex. 2. A, B, C are fixed points. Any line through A meets a fixed

conic through B in P and a fixed line in Q. Find the locus of the

intersection of BP and CQ.

[The pencils CQ and BP have a 1 : 2 correspondence. The locus is

therefore a cubic through C with a node at B ]

Ex. 3. Find the locus of the intersection of tangents from two fixed

points A, B to a given family of confocal conies.

[The tangents from A and B have a 2 : 2 correspondence in which AB
is self-corresponding. The locus is a cubic through A and B.]

Ex. 4. Find the locus of the foci of ftrves of the m-th class touching
m— 1 given lines when the line at infinity (i) is not, (ii) is, one of the

given lines.

[(i) A (2w — l)-ic with (m — l)-ple points at the circular points. The
singular foci of the locus lie on the locus.

(ii) A (2m — 2)-ic with (m — l)-ple points at the circular points.

Consider the correspondence of the tangents to the curve from the
circular points.

See also Ch. V, § 2, Ex. 5.]

Ex. 5. A, B, C are fixed points. Through A and C are drawn con-

jugate chords of a fixed conic through A and B meeting the conic in

P and Q respectively. Find the locus of the intersection of AP and BQ.

[The pencils AP and BQ have a 1 : 2 correspondence.]

Ex. 6. A conic is drawn through three fixed points A, B, C to touch
a fixed line I at any point P. The tangent at A meets I at Q. Find the

locus of the intersection of BQ and CP,

[The pencils BQ and CP have a 1 : 2 correspondence.]

Ex. 7. A conic is drawn through four fixed points A, B, C, D and
meets a fixed line through A in P and another fixed line in Q. Find the
locus of the intersection of BP and CQ.

[The pencils BP and CQ have a 1 : 2 correspondence, BC being self-

corresponding.]
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Ex. 8. A, B, C, D, E, F are fixed points. Any conic through A, B, 0, D
meets two fixed lines in P and Q respectively. Find the locus of the
intersection of EP and FQ.

[The pencils EP and FQ have a 2 : 2 correspondence.]

Ex. 9. A, B, C, D are fixed points Tangents are drawn from A and B
to any conic of a given confocal family to meet a given line in P and Q
respectively. Find the locus of the intersection of CP and DQ.

[The pencils CPand DQ have a 2 :2 correspondence.]

Ex. 10. A, B, C, D, E are fixed points. A. fixed conic passes through C.

A variable conic touches fixed lines at A and B, and meets the tangent
at C to the fixed conic in P. A common tangent of the two conies meets
this tangent at C in Q. Find the locus of the intersection of DPa.ndEQ.

[The pencils DP and EQ have a 2 : 4 correspondence.]

Ex. 11. A, B, C, D, E, F, G, H, J are fixed points. Any cubic through
A, B, C, D, E, F, G, H meets a fixed line at P. Find the locus of the
intersection of the tangent at A and the line IP.

[The tangent and IP have a 1 : 3 correspondence.]

Ex. 12. How many solutions are there to the problem :
' Draw a circle

through two given points to meet two given lines in points P, Q collinear

with a given point ' ?

[OP and OQ have a 2 : 2 correspondence. Therefore by Ex. 1 the

answer is 2 + 2=4.]

Ex. 13. How many circles can be drawn through a fixed point A
touching a given line at P such that P and the intersection Q of another

fixed line with the tangent at A are collinear with a fixed point ?

[OQ and OP have a 1 : 2 correspondence. Therefore the answer is

1+2 = 3.]

Ex. 14. How many solutions are there to the problem :
' Draw a circle

through two fixed points A, B meeting a given conic at P and a given

line at Q so that PQ meets the conic again at a given point ' ?

[OP and OQ have a 4 : 2 correspondence. The answer is 6. Discuss

the case in which the given line passes through A.]

Ex. 15. If x is the distance of a point on a given line from a fixed

origin and f(x), <p (x) are polynomials of degree n, the group of n points

given by f(x) — k<p(x) is said to trace out'an involution-range of
degree n as k varies.' A similar definition holds for pencils. Show
that the involution-range has 2(» — 1) double points.

Ex. 16. The two involutions of degree n and N given by the equations

f{x) = k<t>(x) and F(y) = &'*
{y),

are said to be projective, if k and k' are connected by a relation of the

form akk' + bk + ck' + d = 0. Show that two projective involution-ranges

on the same line have n +N self-corresponding points ; and that the line

joining corresponding points of two projective involutions along different

lines envelops a curve of class n +N having the lines containing the

involutions as «-ple and IV-ple tangents respectively. Show also that

a corresponding result holds for pencils.
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Ex. 17. Two families of curves have respectively degree, class,

characteristic n
x , mlt (p1 , Zj) and n2 , m^, (p2 , '»)• Show that, if the

families have a 1 : 1 correspondence, the locus of the intersection of
corresponding curves is in general of degree n

lp 1 + nlp 1
and of class

mjZj + mt l
1

. (See Ch. IV, § 8.)

[Corresponding curves have equations

/x (x, y, k) = and /z
(x, y, k) = 0,

where/! and/2 are of degrees »x
and n

2
in x and y, px

and p2
in k. The

intersections of the locus with y = are found by eliminating k from

/, (x, 0, k) = and /2
(a:, 0, fc) = 0.]

§ 3. Curves with a One-to-One Correspondence.

We may use our knowledge of the locus of the intersection

of corresponding rays of two pencils to establish the theorem :

If the points of two curves have «1:1 correspondence, the

curves have the same deficiency.

This means that, if to each point P with Cartesian coordinates

(x, y) on one curve corresponds a point P' with coordinates* (x\ y')

on the other so that x', y' may be expressed rationally in terms

of x, y and vice versa, then the curves have the same deficiency.

It is at once seen that, if points P, P', P" are taken on
three curves, guch that the coordinates of P can be expressed

rationally in terms of P' and vice versa, while the coordinates

of P' can be expressed rationally in terms of P" and vice

versa, then the coordinates of P can be expressed rationally

in terms of P" and vice versa.

Now we have proved (Ch. IX, §§ 1, 8) that two curves

derived from each other by quadratic transformation have
a 1 : 1 correspondence and have also the same deficiency. It

will suffice therefore to prove the result for any two curves
into which the given curves may be transformed by a series

of quadratic transformations. Now by a series of quadratic
transformations we may transform a given curve successively

into curves with less and less complex singularities, till we
obtain a curve with no singularities other than ordinary
multiple points with distinct tangents. Hence it suffices to

prove the theorem for two curves with ordinary multiple
points with distinct tangents only.

*

Suppose Q, R corresponding points on two such curves of

degrees n, If and classes m, M. Take two fixed vertices A, B,
and let AQ, Bit meet in P- The locus of P is an algebraic
curve ; for we may eliminate the coordinates of Q and R from
the rational equations connecting them, from the equations of
the given curves, and from the equations of the lines BR and
AQ, thus getting an algebraic eliminant which is the equation
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of the locus of P. To eacli position of AQ correspond n posi-

tions of BR, and to each position ofBR correspond impositions

of AQ. Hence AQ and BR have an N:n correspondence,

and the locus of P is an (n + iV)-ic, with A and B as if-ple

and %-ple points.

The tangents from A to the locus of P are the lY tangents
at A each counted twice, together with the m lines through A
touching the locus of Q. For two of the lines BR corre-

sponding to such a position of AQ coincide. Hence the class

of the locus of P is 2N+m. Similarly it is 2n + M. There-
fore in—2n + 2 and M— 2iV+2 are equal. But these are

twice the deficiencies of the curves since they have no cusps

(Ch.VIII, §3, Ex. 1).

For example, we pointed out that the coordinates (f, ?;) of

a point on the evolute corresponding to a point (x, y) of a given

curve f(x, y) = are expressible rationally in terms of x and y
by means of equations (i) of Ch. XI, § 2.

Conversely, when we solve for x in terms of £, 77 by
eliminating- y from these equations, making use oif(x,y) = 0,

we express x rationally in terms of f, ?j. For otherwise (£, 77)

would be the centre of curvature at more than one point of

f(x,y) = 0, which is not in general the case. Similarly for y.

Hence a curve and its evolute have a 1 : 1 correspondence,

and have therefore the same deficiency.

Ex. 1. A curve and its reciprocal have the same deficiency.

[See Ch. VIII, § 1 (vi).]

Ex. 2. The Hessian, Steinerian, and Cayleyan of a curve have the

same deficiency.

Ex. 3. If p and q are relatively prime integers, p being positive, the

deficiency of t t
a* + tf+\ = Q is \{p-l){p-2).

[The transformation x = £
9

, y = ^ establishes a 1 : 1 correspondence

between the given curve and xP-i-yp +l = Q which is non-singular of

degree p. See V. Jamet, Bull, de la Soc. Math, de France, xvi (1888),

p. 132.]

§ 4. Correspondence in Three Dimensions.

Just as in § 1 we had two pencils of lines with p : q corre-

spondence, so we may have two pencils of planes with p : q
correspondence, the planes of each pencil passing through a

given line called the axis of the pencil.

Corresponding planes meet on a ruled surface of degree p + q

having the axes of the pencil as p-ple and g-ple lines respec-

tively. This is evident from the fact that any plane meets

the two pencils of planes in two pencils of lines with a p : q
correspondence; or it may be proved independently as in §1.
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If the axes of the pencil intersect at 0, the ruled surface

becomes a cone with vertex 0.

Reciprocating, the line joiniDg corresponding points of two
ranges on non-intersecting lines with a p:q correspondence

generates a ruled surface 2 such that p + q tangent planes can

be drawn to 2 through any line I. But these tangent planes

are the planes joining I to the generators through the inter-

sections of I with 2; so that these intersections are p + q in

number. Moreover, the reciprocation shows that the lines on

which the ranges lie are g-ple and p-ple lines of 2.

We see then that the line joining corresponding points of

two ranges on non-intersecting lines with a p : q correspondence

generates a ruled surface of degree p + q with the given lines

as g-ple and p-ip\e lines respectively.

The case p = q = 1 is well known.

Ex. If the coordinates of two points P and P, one on each of two
given twisted curves, are connected by rational relations so that p points

P correspond to each position of P and q points P to each position of P,

then the line PP traces out an algebraic ruled surface of degree p + q.

[The planes joining any given line I to, P and P have a, p:q corre-

spondence, and the p + q selt-corresponding planes give the generators of

the surface which meet I.]

§ 5. Curves on a Coniooid.

The (p + q)-ie of § 1 may be employed to study algebraic

curves on a conicoid, that is, the whole or partial intersection

of the conicoid with any algebraic surface.*

Let be a point of the conicoid,;', and let any plane II meet
the generators through in A and B.

Consider the projection from on to IT of any curve on j,

which does not pass through 0. All generators of one family

on j intersect OA ; they therefore project into straight lines

through A. Similarly the other family of generators project

into straight lines through B.

Suppose that the curve on j we are investigating is the

intersection oi' j with a surface of degree n having a generator

of the same family as OA as an (n— <7)-ple line, and a generator

of the same family as OB as an (n— £>)-ple line, these two
generators not being counted as part of the curve of inter-,

section. Then OA meets the curve in p points all projecting

into the point A, and OB meets the curve in q points all

projecting into B. Any generator of the same family as OA

* Every twisted curve of the third or fourth degree is of this nature ; for

a conicoid through nine points of the curve must contain the curve.
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meets the curve in p points, and projects into a line meeting
the projection of the curve q times at B and p times elsewhere.

Similarly for a generator of the other family. Hence the
projection of the curve is a (p + q)-ic with .A as £>-ple point
and B as (/-pie point. The tangents at A to the projection lie

in the planes through A touching the twisted curve where it

meets OA ; and so for B.

Each inflexion of the plane curve is the projection of a point

of the twisted curve at which the osculating plane passes
through 0.

Every property of the plane curve gives a property of the

twisted curve on projecting back on to the conicoid j ; and
vice versa.

A conic on j projects into a conic through A and B ; and
conversely. This is clear on putting^ = q = 1, or otherwise.

Let V be the pole of the plane of a conic on j, which meets

OA and OB in P and Q. Then VP and VQ are the tangent

planes at P and Q to j. Hence the lines VP and VQ project

into the tangents at A and B to the projected conic; i.e. the

pole of the plane of a conic onj projects into the pole of AB
with respect to the projected conic.

If the plane of any other conic on j passes through V, the

polar of V with respect to it is the line of intersection of its

plane with the polar plane of V. Projecting we see that, if

the planes of two conies onj are conjugate, their projections

are two conies through A and B such that the pole of AB for

one conic is the pole of their other common chord for the

second conic ; in other words, the projections are two conies

through A and B with degenerate harmonic locus and
envelope.*

We have so far supposed that the point does not lie on the

given twisted curve. If does lie on this curve, the generators

OA and OB meet the curve respectively in p— 1 and q— 1

points other than 0. If we project on to the plane II, we obtain

a (p + q — l)-ic with J. as (p— l)-ple point and B as (q— l)-ple

point. The projection meets AB again at a point P on the

tangent at to the given twisted curve, and the tangent at P
to the projection lies in the osculating plane of the curve at 0.

A twisted curve on j meeting all generators of one family

in p points and all generators of the other family in q points

* This is obvious on projecting A and B to the circular points, when the

conies become orthogonal circles. The harmonic envelope is the envelope

of a line divided harmonically by the conies, and the harmonic locus is the

locus of a point from which a harmonic pencil of tangents can be drawn to

the conies.
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may be called a curve of type p + q on the conicoid. The
curves of type 2+1, 2 + 2, 3 + 1 are well known.
Any twisted cubic curve is the partial intersection of two

conicoids with a common generator and is of the type 2 + 1.

For since a twisted cubic meets any conicoid not containing

it in six points, it must lie wholly on all conicoids through
any eight points of the curve.

Similarly a twisted quartic lies on the conicoid through any
nine points of the curve. If it lies on a second conicoid, it is

of type 2 + 2 ; otherwise of type 3 + 1.

Ex. 1. The points of contact of the three osculating planes of a twisted
cubic which pass through any point lie on a plane through 0.

[The cubic lies on a conicoid through 0. Projecting from we
have :

' The three inflexions of a plane nodal cubic are collinear.']

Ex. 2. With any point as vertex three cones of the secon&degree can
be drawn having six-point contact with a given twisted cubic. The
tangent planes to the cone at the points of contact pass through the
points of contact of the osculating planes through 0.

Ex. 3. Four tangent lines of a given twisted cubic meet any given
line in space.

[Project from a point on the line.]^

Ex. 4. Through the line joining a fixed point to any point of a
twisted cubic two tangent planes are drawn to the curve touching at

Q and R. Show that the plane OQR envelops a cone of the.second degree.

[See Ch. XIII, § 4, Ex. 13 (iii).]

Ex. 5. The planes joining four given points P, Q, R, S of a twisted
cubic to any chord form a pencil of constant cross-ratio.

[Let AB and CD be two chords. Projecting from A, we see that
the pencils AB{PQRS) and AC(PQRS) have the same cross-ratio.

Similarly project from C for the pencils joining CA and CD to P, Q, R, S.]

Ex. 6. If in Ex. 5 the pencil is harmonic, the tangent at P meets the
osculating plane at R in a point on the plane RQS.

[Project from R.]

Ex. 7. Nine osculating planes of a curve of type 2 + 2 pass through
a given point on the curve. The plane through and any two of the
points of contact passes through a third point of contact.

[Project from 0.]

Ex. 8. Through any variable chord of a curve of type 2 + 2 four
tangent planes can be drawn, and the cross-ratio of the pencil of planes
is constant.

[Let AB and CD be two chords. Projecting from A, we have the fact

that the pencils of tangent planes through AB and AC have the same
cross-ratio. Similarly project from C for the chords CA and CD.]

Ex. 9. The tangent planes through any point to a curve of type
2 + 2 at the points where it meets the generators through of a conicoid
containing the curve meet the curve again in four coplanar points.

[Projecting from we huve Ch. XV11I, § 4, Ex. l.J
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Ex. 10. Obtain properties of a twisted curve of type 3 + 1 by projecting
from any point of the conicoid containing the curve.

[See Ch. XVII, § 8.]

Ex. 11. The three points of contact of the osculating planes of a curve
of type 3 + 1 which pass through a point of the curve lie on a plane
through 0.

Ex. 12. is a fixed point on a curve of type 3 + 1, and Pis any other
point on the curve. The tangent planes through OP to the curve touch
at Q and R. Show that the plane OQR envelops a cone of the second
degree.

Ex. 13. The line of striction of one family of generators of a hyper-
boloid is a curve of type 3 + 1.

§ 6. Curves on a Sphere.

If the conicoid j of § 5 is a sphere, we must have p = q
when the curve onj is real ; and the degree of the curve is even.

If we take n as the diametral plane parallel to the tangent plane
at 0, the projection becomes the well-known stereographic

projection. The generators OA, OB become the circular lines

through in the tangent plane at 0, while A and B become
the circular points a> and a/ in IT. The properties of conies

on j proved in § 5 now become the well-known theorems that

a cirqje on j and the pole of its plane project into a circle and
its centre, and that two circles onj whose planes are conjugate

project into orthogonal circles. In particular, all great circles

project into circles orthogonal to a fixed (unreal) circle which
is the projection of the circle at infinity. We may show
similarly that arjgles are unaltered by stereographic projection.

These results also follow from the fact that a spherical curve

and its stereographic projection from are inverses of each

other with respect to 0.

If the generators through a point F on the sphere,/ touch

a curve on j, F may be called a focus of the curve. The
generators through F project into lines through <o and to'.

Hence the stereographic projections of the foci of a spherical

curve are the foci of the projected curve.

Suppose a spherical curve df even degree n has 8 nodes

and k cusps ; while m great circles can be drawn through any
point to touch the curve, r great circles are bitangent to the

curve, and l great circles osculate it. Then the projected

curve is of degree n and class m ; it has S nodes and k cusps

besides a ^Ti-ple point at each circular point; while it has

t bitangent circles and i osculating circles which are orthogonal

to any fixed circle.
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Looking at the results of Ch. XI, § 11, Ex. 1, we get

m = f™
2 -2<5-3k, i = §n(n-2)-68-$K,

n = m (m— 1) — 2t— 3i.

These may be regarded as Pliicker's equations for a spherical

curve.

Ex. 1. Two points P, P on a sphere are said to be ' inverse with

respect to a circle ' on the sphere, if the line PP passes through the

pole of the plane of.the circle. If P traces out a locus on the sphere, so

does P, and the loci of jP and P are ' inverse ' with respect to the circle.

Show that (i) the stereographic projection of a circle and two inverse

points is a circle and two inverse points, (ii) The angle between two
spherical curves is equal to the angle between their inverses with respect

to any circle of the sphere, (iii) The inverse of a spherical 2m-ic is in

general a spherical 2ra-ic of the same type (with the same Pliicker's

numbers), (iv) A self-inverse spherical 2re-ic is the intersection of the

sphere with a cone of degree n.

[For (i) use the fact that the circle is cut orthogonally by any circle

through the points. It follows that the stereographic projection of a

circle and two inverse curves on the sphere is a circle and two inverse

curves ; whence we get (ii) and (iii).]

Ex. 2. The foci of a spherical 4-ic lie by fours on four circles with

respect to which the 4-ic is self-inverse.

The 4-ic is the intersection of the sphere with four cones of the

second degree.

Ex. 3. Obtain properties of the spherical 4-ic from those of tb^e plane

bicircular 4-ic.

Ex. 4. Show that properties of a plane bicircular quartic whose real

foci are concyclic may be obtained from the properties of a conic as

follows : Project the conic on to a sphere from the centre. Then project

the spherical curve thus obtained (a sphero-conic) stereographically into

a bicircular quartic.

Ex. 5. A bicircular quartic has real concyclic foci A, B, C, D. Show
that the bitangents to the curve from the intersection of AB and CD
make equal angles with OAB, OCD.

[The tangent-arcs to a sphero-conic from a point P make equal angles
with the focal distances of P. Project from the point diametrically

opposite to P. See also Ch. XVIII, § 3, Ex. 5.]

Ex. 6. A chord PQ of a circular cubic subtends a right angle at a fixed

point of the curve. Show that the circle through PQ bisecting the
circumference of a fixed circle with centre passes through two fixed

points.

Ex. 7. Two bicircular quartics with the same four real concyclic foci

cut orthogonally.

[Two confocal sphero-conics cut orthogonally. See also Ch. XVIII,

§ 6, Ex. 6.]

Ex. 8. P and Q are two points on a bicircular quartic with real

concyclic foci A, B, C, D. Show that the four circles APC, AQC, BPD,
BQD are all touched by the same two circles.
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Ex. 9. The locus of a point on the Earth's surface at which a given
place has a given azimuth is a spherical quartic.

Ex. 10. The spherical quartic has a node and foci S, S'. Show that,
if P is any point on the curve,

(sin %SP . cosec | OS± sin ±S'P . cosec \ OS') cosec \ OP
is constant, the plus or minus sign being taken according as is an
acnode or crunode.

[Projecting stereographically from we project the curve into a conic]

Ex. 11. Two spherical quartics with a common node and foci cut
orthogonally.

Ex. 12. Two orthogonal circles are drawn through the node of a
spherical quartic touching the curve. The locus of their second inter-

section is a circle.

Ex. 13. Two circles are drilwn through the cusp of a spherical

quartic touching the curve and cutting each other at a constant angle.

The locus of their second intersection is a spherical quartic with a
node at 0.

[Projecting stereographically from we have :
' The isoptic locus of

a parabola is a hyperbola.']

Ex. 14. A spherical quartic has a node and loci S, S'. A circle

through touching the curve is met again by the orthogonal circles

through and 8, and S' at Y, Y' Show that Y and Y' lie on a fixed

circle, and that

sinJSr. sin 1ST' . cosec \OY . cosec|Or
is constant.

[The reader will find a very interesting discussion of spherical quartics

in Darboux's Sur une classe remarquable de courbes et de surfaces alg4briques

(Paris, 1873), pp. 1-60.]

Ex. 15. A spherical sextic has a triple point 0. Show that three real

circles of curvature of the sextic pass through 0, and that their points of

contact lie on a circle through O.

[Projecting stereographically from we have : 'A cubic has three real

collinear inflexions.']

Ex. 16. Show that the method of Ex. 4 is applicable to any curve

which is self-inverse with respect to a circle.

Ex. 17. Two properties of a plane curve are derived by projecting a

given spherical curve stereographically from two different points of the

sphere. Show that the two properties are obtainable from each other

by ordinary inversion.

Ex. 18. Through a given point of a sphere any great circle OP is

drawn meeting a given spherical 2»-ic in Qlt Q2 , ..., Qin . If

O = 2sinJ0& . sin|O02
sin \OQr .

cosec \ PQi . cosec |P§2 cosec \PQr

(the summation extending over 2n
C,. terms), find the locus of P.

[Project stereographically from the point diametrically opposite to

and use Ch. VII, § 1.]
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Adjoined curve, 128.

Algebraic curve, 8.

Anallagmatic, 218.

Analysis by quadratic transforma-
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Anautotomic curve, 33.

Apolar triangle of cubic, 238.

Areal coordinates, 2.

Aronhold Seven, 341.
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AByzygetic bitangents, 335.

Axial direction, 92, 192.

Axis of pencil of planes, 377.

of perspective, 5.

Base-conic
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of quadratic transformation, 120.

of reciprocation, 62.

Base-point of pencil, 12.

Bay of quartic, 364.

Bicircular curve, 31.

quartic, 304, 382, &c.
Biflecnodal quartic, 299.

Biflecnode, 23.

Bipartite, 215, 351.

Bitangent, 25, 63, 64.

Bitangents of quartic, 25, 270, 283,

305, 313, 316, 320, 322, 326, 328,

330, 331, 332, 333, 334, 363, 364.

Branch, 21, 351.

Cn , 9.

Canonical equation of cubic, 228,

233, 236, 252, 255, 261.

Canonical equation of quartic

:

bicircular, 304.

biflecnodal, 285, 288, 299, 323,

325, 327.

Canonical equation of quartic
(contd.)

:

binodal, 312.

flecnodal, 288, 326, 328.

non-singular, 333, 337.

tacnodal, 289, 329.

tricuspidal, 283.

trinodal, 269.

unicursal with one distinct double
point, 135, 296, 297.

with rhamphoid cusp, 290, 331.
with triple point, 291, 294, 295,

296.

Carbon-point curve, 285.
Cardioid, 75, 171, 266, 284.
Carnot's theorem, 9.

Cartesian coordinates, 1.

curve or oval, 319.

Cassinian curve or oval, 323.
Cayleyan, 107, 248.
Centre of curvature, 21, 161.

Centre of curve, 36, 37, 91.

Ceratoid cusp, 51.

Characteristic, 66, 111, 376.

Circle of curvature, 21. .

Circuit, 215, 351, 363, 366.

Circular cubic, 190, 217.

curve, 31.

lines and points, 8, 61.

Cissoid, 175, 177, 203, 207.

Class, 58, 87, 125.

Coincidence point, 358, 261.

Complex of bitangents, 337.

Complex-triple, 339.

Coordinates, 1.

Conchoid, 177.

Conchoid of Nicomedes, 179.

Conditions determining a curve, 34,

185.

for double point, 26.

Confocal curves, 69, 71, 75.

Conic of closest contact, 53,83, 143,

206.
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Conicoid, 378.

Conjugate point, 22.

points on cubic, 241, 245, 258.

Coresidual groups of points, 197.

Correspondence of pencjjs and
ranges, 372, 373.

Critic centres of cubic, 235.

Cross-curve, 285.

Cross-ratio, 3.

of tangents to a cubic. 220, 226,

228, 235, 236, 248, 254, 262.

Crunodal cubic, 209, 256, 257, 262.

Crunode, 21, 63.

Cubic curve, see ' Contents '.

equation, 16.

surface, 345.

Curvatures of touching curves, 9.

Curve-tracing, 37.

Cusp, 22, 52, 54, 63, 78, 85, 138,

356.

Cuspidal cubic. 204, 262, &c.
quartic, 300.

tangent, 63, 86.

Cutting of a crunode, 352.

Deferent conic, 305.

parabola, 222.

Deficiency, 113, 115, 116, 127, 129.

136, 144, 164. 165, 169, 376.

Degeneracy, 9.

Degree of curve, 8, 139.

Director circle. 61. 325.

Directrix, 70, 164, 224, 308.

Double cusp, 45.

point, 21.

points of involution, 3.

Double-six, 348.

i Bquianharmonic cubic, 229, 238.

pencil and range, 17.

Even circuit, 215, 352.

Evolute, 161.

Expansion near origin, 76, 83.

First polar curve, 88, 96, 109.

Flecnodes, 22.

Focal conic of bicircular quartic,

305.

parabola of circular cubic, 222.
Focus, 68, 69, 164, 169, 173, 181,

182, 299, 300, 374.

Focus

:

of bicircular quartic, 304.

of circular cubic, 220.

of evolute, 164.

Focus (contd.)

:

of inverse curve, 74, 165.

of pedal, 168.

of spherical curve, 381.

Four-cusped hypocycloid, 28.

Genus, 113.

Harmonic cubic, 220, 223, 227, 229,

237.

envelope and locus, 61, 379.

pencil and range, 3.

perspective, 7.

polar of inflexion of cubic, 95,

235.

Harnack's theorem, 366.

Hart triangles of a cubic, 260.

Hesse's notation forbitangents, 341

.

theorem, 245.

Hessian, 89, 98, &c.
of cubic, 101, 208, 209, 229, 237,

244.

Higher plane curve, 8.

singularity, 118, 129.

Hilbert's theorem, 369.

Homogeneous coordinates, 2.

,

Hour-glass-curve, 285.

9

Ideal bitangent, 63, 64, 302, 306,

359, 361.

Index of circuit, 352.

Inflexion, 19, 54, 63, 77, 86, 138,

192 356
of cubic,- 24, 95, 188, 204, 207,

215, 227, 235, 253.

of quartic, 24, 363.

Inflexional tangent, 19, 63, 85, 108.

Intersections of curves, 10, 81, 124.

of curve and adjoined curte, 130.

Invariants of cubic and quartic
equations, 16.

Inversion, 14, 74, 123, 164.

Involution, 3, 375.

Isolated point, 22.

Isoptic locus, 174.

Jacobian, 108, 241.

Klein's theorem, 361.

Lame' curve, 62.

Latent singularity, 127.

Lemniscate, 286, 323, 324,
Limacon, 55, 64, 74, 171, 179.
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Line at infinity, 4.

of inflexions of cubic, 209, 211,
216.

on cubic surface, 346.
Line-singularity, 33.

Linear branch, 76.

branches touching (see 'Tae-
node '), 125, 126, 127, 129.

Loop of nodal cubic, 210.

Menelaus's theorem, 9.

Mobius's theorem, 357.
Multiple point, 23, 115.

Negative pedal, 169.

Nest of ovals, 368.

Newton's diagram, 38.

n-ic, 9.

ra-ic with (n — l)-ple point, 104.

with (« - 3)-ple point, 98.

Nodal quartic, 298.

Node, 22, 137.

Non-singular curve, 33.

Odd circuit, 215, 352.

Opposite point, 190.

Order of circuit, 352.

of multiple point, 23.

of superlinear branch, 76, 87.

Orthoptic locus, 169.

Oscnodal quartic, 135, 296.

Oscnode, 53.

Osculation, 21.

Oval, 215, 336, 351, 363, 366, 367.

Parallel asymptotes, 31.

curves, 179.

Parameter, 13, 53, 137, 252, &c.
Partial superlinear branch, 76.

Pascal's theorem, 188, 193, 259.

Pedal curve, 166.

equation, 73.

Pencil of curves, 12, 59.

Perspective, 5.

Pippian, 107.

Pliicker's numbers, 112, 201, 264.

numbers for spherical curve, 382.

Point-equation, 57.

Point-even and point-odd circuits,

355.

Point of contact, 58.

Points at infinity, 29.

Point-singularity, 33.

Polar conic, 88.

coordinates, 2.

curve, 88.

line, 88.

reciprocation, 62, 86.

Pole, 88, 107.

of quadratic transformation, 120.
Polo-conic, 102, 240.

Projection, 3.

Projective involution, 375.

Quadratic transformation, 120.
Quadruple tangent, 63.

Quartic curve, see ' Contents '.

equation, 16.

Quintic curve, 25. 35, 65, 123, 366.

Radial, 183.

Radius of curvature, 21.

Ramphoid, see ' Rhamphoid

'

Rational curve, see ' Unicursal '.

Reciprocal of circuit, 355.
Reciprocation, 62, 74.

Residual groups, 196.

Reversion of series, 79.

Rhamphoid cusp, 51, 52, 80, 134.
Ruled surface, 377.

Ruler construction, 191, 245.

Schlafli's double-six, 348.
Septimic curve, 25, 65.

Sextactic point, 144, 189, 257, 260,
261.

Sextic curve, 25, 36, 65, 367.

Singular focus, 71.

of orthoptic locus, 173.

of parallel curve, 181.

of pedal curve, 168.

Sort of bitangent, 364.

Species of cusp, 51.

Spherical curve, 381.

Sphero-conic, 382.

Spinode, 22.

Standard equation, see 'Canonical
equation '.

Steiner complex, 337.

pair on a cubic, 259.

Steinerian, 104, 249.

Stereographic projection, 16, 381.

Superlinear branch, 76, 79, 86, 116,

135.

Symmetrical bicircular quartic, 309.

circular cubic, 224, 225.

Symmetry of cubics, 229, 230.
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Syzygetic bitangents, 335.

cubics, 237, 240.

Tacnodal quartio, 289, 328.

Tacnode, 45, 52.

Tangent, 13, 137, &c.
Tangent-even and tangent-odd cir-

cuits, 355.

Tangent of »*-point contact, 20, 77,

92.

Tangential equation, 57, 59, 62.

of point on cubic. 188, 205, 211,

258.

pencil, 59.

Theory of equations, 16.

Three-cusped hypocycloid, 62, 266,

283.

Triangle of reference, 2.

Triangular-symmetric curve, 91,

102, 108.

Triple point, 23, 64, 290.

tangent, 63.

Twisted curves, 378.

Type of curve, 113, 161, 201, 264.

of twisted curve, 380.

Undulation, 20, 64, 86.

of quartic, 24, 333.

Unicursal curve. 146, 201, 264, &c.
Unipartite, 215, 351.

Vanishing line, 4.

Vertex of curve, 163, 358.

of perspective, 5.

of projection, 3.

Weierstrass's function, 157, 263.

Zug, 351.
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