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SUMMARY 

A factorization is given of the residual operator for nonorthogonal analysis of variance. 
It is interpreted geometrically in terms of the critical angles between the subspaces de- 
termined by the factors. The factorization determines a recursive procedure for analysis 
as described by Wilkinson (1970). Canonical components are defined and a method of 
computing them is given together with formulae for their variances, since these would 
be required for combining information, as for instance, in the recovery of interblock 
information. 

1. INTRODUCTION 

Consider a simple randomized block design with t treatments assigned in b blocks of t 
plots, and let B and T be the operators on a vector of observations which replace the observa- 
tions by the corresponding block or treatment means, respectively. The residual operator R 
which produces, from the vector of observations, the vector of deviations from a least 
squares fit of the usual additive model comprising block and treatment effects, can be 
expressed in the factorized form 

R-=(I -T) (I -B) = (I -B) (I -T), (1 1 
in which I denotes the identity operator. 

Similarly, for a balanced incomplete block design, one can deduce from the relationship 
algebra of the design as given by James (1957) the factorization 

R = (I-B) (I-e-l T) (I-B), (1.2) 

where e = (At)/(rk) is the efficiency factor (Yates, 1936) for the design with parameters 
b, k, t, r and A = r(k- 1)/(t- 1). 

A general recursive relation for specifying factorizations of the residual operator of the 
kind illustrated above was derived in an unpublished paper by G. N. Wilkinson and is 
applicable to generally balanced designs, that is, in which each factor of the corre- 
sponding model is characterized by a single efficiency factor. The factorization of the 
residual operator determines a sequence of sweep operations on the data vector, for instance, 
(I - B) and (I -e-1 T) in (1 1) and (1-2) above, in each of whieh a set of effects are calculated 
and subtracted from the input vector as described by Wilkinson (1970). 

t Now at Rothamsted Experimental Station. 
I9 BIM 58 
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280 A. T. JAMES AND G. N. WILKINSON 

The authors independently obtained generalized factorizations applicable to any ex- 
perimental design. These derive from a polynomial relation for the residual operator which 
is stated and proved in this paper. If Ro is the residual operator corresponding to a fit of 
a linear model up to but excluding a current model factor and R is the residual operator 
corresponding to the extended fit including this factor, and if M is the projection operator on 
the subspace spanned by the incidence vectors for the parameters of the current factor, 
then R =P(Q)Ro, (1.3) 

where Q = Ro MRo is termed here the shrinkage operator for the current factor, and P(Q) 
is the reduced minimum polynomial of the operator Q, normalized with constant term I; 
see ? 4. The correspondence with the particular relation (1-2) above is 

Ro=I-B, Q=ROTRO, P(Q)=I-e-1Q. 
The derivation and interpretation of the fundamental relation (1.3), in relation to an 

experimental design, depend on the geometrical interrelations of the vector subspaces 
defined by the incidence vectors for the factors in the corresponding model for analysis, for 
instance, the block and treatment subspaces in the examples cited above. The charac- 
terizing geometrical properties are summarized by a canonical decomposition theorem for 
vector spaces, due essentially to Jordan and to Hotelling (1936). In ? 2 we give a formulation 
and proof of the theorem in terms of projection and shrinkage operators. 

Parallel results have been given by Mann (1960) who obtains them by analysis of the 
relationship algebra of a design with two nonorthogonal factors. 

The significant implication of the decomposition theorem is that the analysis of variance 
for an experimental design is characterized by the canonical correlations between the sub- 
spaces corresponding to factors of the model. The roots of the polynomial P(Q) in (1.3), 
which are the distinct nonzero eigenvalues of the operator Q, are termed the canonical 
efficiency factors for the corresponding factor of the model. The complements (1- ej) of 
the canonical efficiency factors ei are the squares of the canonical correlation coefficients 
between the subspace defined by the current factor and that defined by previous factors in 
the model. 

2. A CANONICAL DECOMPOSITION THEOREM FOR VECTOR SPACES 

The following results are needed. 
A subspace O& in a vector space Rn, uniquely determines the orthogonal projection 

operator Et& upon it. The linear operator Et& is idempotent, E2 = Et, and symmetric, 
E= E. Linear operators can be considered either as matrices with the vectors upon which 
they operate written as column vectors, or as linear mappings of vectors, e.g. the averaging 
operators B and T above. Conversely, an idempotent symmetric linear operator A uniquely 
determines the subspace 0&, upon which it projects as its range, i.e. the set of vectors of the 
form Ax for x E Rn. Hence A and / determine each other, A +-+ 91, 

R(A) = V, A = Eo&. 
The operator A = I -A, which projects orthogonally on the orthogonal complement, 

R(A)L, of R(A) determines 91 as its kernel, 91 = 3(A), i.e. the set of vectors u E Rn such 
that Au = 0. 

The range and kernel of a symmetric operator A are orthogonal and span Rn; 
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Consider orthogonal projection operators A and B in the vector space Rn and the related 
symmetric operators ABA, BAB. We have first 

LEMMA1. The distinct nonzero eigenvalues of ABA and BAB are the same, with the same 
respective multiplicities. 

Proofs of this, the subsequent theorem and its corollaries are given in the appendix. 
Denote the common nonzero eigenvalues of ABA and BAB by A1, . . ., Ar, and let 6?i and 'l(K 

(i = 1, ..., r) denote the corresponding eigenspaces of ABA and BAB respectively; that is 
such that ABAu = Aiu for ue9ti and BABV = Aiv for veYKi. If t4 and 1'o denote the 
orthogonal complements of M(ABA) and I?(BAB) in M(A) and gi?(B) respectively, then 

M(A) = tO&?/0(ABA) = 0&0&1O .. (Or, (2.1) 

M (B) = Ylo- 3 M(B AB) = YIo f3<lD.. ) Y3lr. 
The relationship between the two subspaces M?(A) and i?(B) is summarized by the 

following decomposition theorem. 

THEOREM1. For any two subspaces O& and YFin Rn, let A and B be the respective orthogonal 
projection operators on them. Then with cO& , O?I and <* defined as above, the sum I6 + Y' 

decomposes as follows: 
& + - = M (A) + R (B) = t0 (3<o (D (01 + Yl) (** r + Yr) (2.2) 

and, for i =,..., r, 
AS*-c = i (AY/o = O), B Vi = li' (B o& = O), dim Vi = dim Yi'. (2 3) 

Further, all vectors u E A&i make the same angle, 6i, with the subspace /i, and vice versa. The 
6i are critical angles given by cos2 6, = A,. 

COROLLARY1. The nonzero eigenvalues and the corresponding eigenspaces of the operators AB 
and BA are the same as for ABA and BAB respectively, that is, ABu = Aiu and BAv = Aiv 
for u E &i, v E /i. The respective ranges are also the same, 

M(AB) = M(ABA), g(BA) = M(BAB). 
COROLLARY 2. If Ai and Bi are the orthogonal projection operators on 6i and fi respectively, 

(i = 0, 1, ..., r), they satisfy the relations 

A=AO+Ai+...+Ar, B=BO+Bi+...+Br, (2X4) 
with AOBO-O, andfor i * j = 0,1, ... , r, 

AiAj = O, BiBj = O, AiBj = O, ABiA = AjAi, BAiB = AiBi. (2.5) 
COROLLARY 3. Consider the symmetric operator ABA, where A = I - A. Then 

M (A BA) = / #1 ... D *?* /r, (2.6) 
where #'i = (?ei + 1i') n 01&- (i = 1, .. ., r) is the orthogonal complement of '#i in t?i + 7'i/, and the 
distinct nonzero eigenvalues of ABA are 1, if f0 is nonnull and 1 - Aiif Ai * 1 (i = 1, . ..,r), with 
corresponding eigenspaces '0 and i (i = 1, ..., r) excluding the null space Yi corresponding 
to Ai= 1. 

Note that if the ranges of A and B are the spaces spanned respectively by the column 
vectors of matrices X and Y, which are deviations of variates from their sample means, the 
values Ai = cos2 O are the squares of the canonical correlation coefficients of the two sets 
of variates (Hotelling, 1936). 

19-2 
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The canonical correlations depend only on the subspaces M(X) and R(Y) spanned by the 
columns of X and Y. Moreover, the angular relations between the subspaces are invariant 
under simultaneous orthogonal transformation of X and Y, i.e. for any orthogonal matrix H, 
X -- HX and Y -- HY imply that A -- HAH' and B -- HBH', so that ABA -- HABAH' and 
its roots Ai = cos2 6i are invariant. The critical angles O? are invariant under rotation of Rn. 

3. ILLUSTRATION OF THE DECOMPOSITION THEOREM 

Consider a lattice design with n2 treatments arranged in a square; see Table 2a for the 
case n = 3. Two replicates are set out, the columns of treatments being taken as blocks in 
the first replicate and the rows in the second. Let B and T denote the orthogonal projection 
(averaging) operators for blocks and treatments respectively. The pseudo-factorial structure 
of the treatment grouping, namely rows x columns, suggests the eigenspaces for the operator 
TBT given in Table 1. 

Table 1. Eigenspaces of the operator TBT associated with 
treatments in a lattice design 

Eigenspace of Eigenvalue of Efficiency 
TBT Dimension TBT factor 

Mean 1 1 0 
Pseudo-main effects 2(n- 1) i i 
Pseudo-interactions (n- 1)2 0 1 

Table 2. Transformation of eigenvectors associated with 
treatments in a lattice design 

(a) 
Treatments Design 
rT T2 T3 T, T3] T2 T3 B4 
T4 T5 T6 T4 T5 T6| T4 T5 T6 B5r 

T8 T1 7E T8 T. 4T7 T8 T_ B 
B1 B2 B3 

(b) 
A pseudo-main-effect Corresponding sample-space 

contrast vector 

[-1 -1 -1]= [2 ] [2-1 -1 -1] =Xt. 

(c) Transformation of Xt by TBT 

T B 0 0 0 1 1 T 
Xt Xt 0 O O O I +_ +_ Xt. 

L0 0 oJ L 00 0j o 0 0] [0 0 0? 

(d) Transformation of BXt by Q = BTB 
B _ 1 ~~~1 1 0 0 01 T I I i B 

B3Xt BXt =-1 -1 -1 ? ? 0l >- i-1 - i- 
O% 00] [ 00] 0 0 0] O 0] 

-4-44 _ ii 10 0 0 =IBXt. 
[00 0] [000] 
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Table 2c gives the transformation by TBT of a particular sample-space vector Xt 
(Table 2b) corresponding to a pseudo-main-effect contrast t, and shows that Xt is an 
eigenvector of TBT with eigenvalue 2. Clearly therefore the subspace corresponding to all 
main-effect contrasts is a 2(n- 1)-dimensional eigenspace of TBT. Similarly one can 
readily check that the pseudo-interactions define an (n-1)2-dimensional eigenspace with 
eigenvalue 0. There is also a one-dimensional eigenspace corresponding to the grand mean, 
with eigenvalue 1. 

Corollary 3 of the decomposition theorem is illustrated by projecting the sample space 
vector Xt, corresponding to the pseudo-main-effect contrast t, on the subspace 

-= {J(B) + W(T)} n {J(B)} (3P1) 

to give the vector BXt, where B = I - B. By Corollary 3 it is an eigenvector of the operator 
Q = BTB with eigenvalue 1--1 = as verified in Table 2d. The eigenvalues of Q are the 
efficiency factors for treatments; see ? 4. The zero efficiency factor in Table 1 corresponds to 
the contrast 'mean treatment effect' which is aliased with the grand mean. 

The analysis of the lattice design in Table 2 is discussed in detail by Wilkinson (1970). 

4. A POLYNOMIAL RELATION FOR THE RESIDUAL OPERATOR 

Suppose that a linear model g0(y) = XOTO (4.1) 

has been fitted by least squares to a vector of observations y, and consider the problem of 
fitting an extended model with an additional model factor XT, 

(Y) = X0ro + XT, (4.2) 
where the vectors of expectations are expressed in terms of the parameter vectors 'o and 
'r and the corresponding incidence matrices X0 and X. 

Let Eo and M denote the orthogonal projection operators on the subspaces spanned by 
the column vectors of X0 and X, respectively, and let Ro and R be the residual projection 
operators that produce the vectors of deviations from least squares fits of the models (4. 1) 
and (4.2) respectively. 

The operator Ro is given by R = I-E0, (4.3) 

and Risthe orthogonal projection operator onthe orthogonal complement, {S(Eo) + ,(M)}', 
of the subspace spanned by the column vectors of X0 and X. The relation of R to Ro depends 
on the relationship of the subspaces R(EO) and W(M), which in general will be nonorthogonal. 

To relate R to Ro we introduce the operator 

Q = RoMRO, (4.4) 
termed the shrinkage operator for the current factor X' of the model (4.2). The reason for 
this term will become clear from the geometrical interpretations discussed in ? 5. 

The relevant canonical decomposition of the sample space Rn corresponding to the model 
(4.2) is given by the decomposition theorem in ? 2, with the operators A and B of the theorem 
identified as Eo and M, respectively. Let 

o = R(E0) n p0 (M) (4.5) 
be the eigenspace with eigenvalue 1 of the operator Eo MEO. This is the space corre- 
sponding to aliased contrasts. Suppose otherwise we have r eigenvalues A1,..., Ar of 
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Eo MEo strictly between 0 and 1. Then in the notations of Theorem 1, the sample space Rn 
decomposes as 

Rn = G(/o ED to E 1o ED (t + Y"j) ED * ED (3&r + Yfr) E3(R) 

= #9 ED Io o ED 4 GED G1 ED *1 ED * * *&r ED rG ED(R). (4.6) 
The subspace X0 D 94 E 0'#0 is the orthogonal component of the model, and the mutually 

orthogonal subspaces Oi + Y<j = 9*6DG* (i = 1, ..., r) are the sums of the nonorthogonal 
canonical subspaces O&i and Y#'i which are eigenspaces of Eo MEo and MEo M respectively, 
corresponding to the eigenvalues Ai = cos2 O,. 

The subspace Yi'S = (94 + Yl') n 0&-t (i = ..., r) are eigenspaces of the shrinkage operator 
Q = Ro MRo with eigenvalues e = 1-A = sin2 O. Also '0# = fY is an eigenspace of Q, if 
nonnull, with eigenvalue 1. Note that the terms of the model (4.2) are orthogonal if and 
only if Eo and M commute, implying that r = 0 in (4 6). 

Consider now the reduced minimum polynomial of Q, that is, the minimum degree 
polynomial P(Q) such that QP(Q) = 0. (4.7) 

The roots of the polynomial P(Q) are the nonzero distinct eigenvalues of the operator Q, 
and thus correspond to the component spaces #Ki of decomposition in (4.6). This suggests 
that, for extending the fit of the model (4.1) to that of (4.2), an appropriate analysis will 
be specified by the relation (4.8) in the following 

THEOREM 2. If Eo and M are orthogonal projection operators, then the orthogonal projection 
R on the residual space {f(Eo) + M(M)}L is given by 

R = P(Q) RO, (4.8) 

where RO = I - EO and Q = Ro MRO, and P(Q) is the reduced minimum polynomial of Q 
normalized with constant term equal to I. 

Proof. Since M = Eo M + Ro M, we have 

(Eo) + -(M) = (E0) E3 (Ro M) 
= q(Eo)EG q(Q), (4X9) 

by Corollary 1 of Theorem 1. 
Hence we must prove that 
(i) P(Q) Ro annihilates M(E0) and M(Q), and also that 
(ii) P(Q) Ro acts as an identity operator on 

R(R) = {S(Eo)E3S(Q)} 

On noting that Ro and P(Q) commute, (i) follows since RoEo = 0 and P(Q) Q = 0. Now 

P(Q) Ro = (I + terms in Q) Ro. 

Since Ro acts as an identity operator on M?(R) whereas Q annihilates it, the result (ii) 
follows. Thus P(Q) Ro is the required orthogonal projection operator. 

If the degree K of P(Q) is zero, R = Ro. Otherwise the relation (4.8) gives the following 
factorizations of the residual operator, 

R = (iJ(I-e'Q)} Ro = (]I Ro(I - e 1 M)} Ro, (4.10) 

where the et (i = 1, ..., K) are the roots of the polynomial P. In relation to (4 6) K = r + 1 if 
%0 is nonnull, otherwise K = r. We term K the order of balance of the factor X'r in the model 
(4.2) and the ei are the canonical efficiency factors. 
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The relation (4a 10) provides a recursive specification of the complete factorization of the 
residual operator for a general linear model comprising several terms, and defines the 
appropriate analysis process as a sequence of sweep operations of the form (I -e-e M) on 
the sample vector. A detailed account of this analysis process is given by Wilkinson (1970), 
who also describes an adaptive method of analysis for determining the reduced minimum 
polynomials P(Q) and hence the efficiency factors required for the analysis. The geometrical 
interpretation of the relation (4. 10) is discussed in ? 5. 

We now give an equivalent relation for the matrix of the reduced normal equations. It is 
readily shown that a modified form A of the matrix A = X'ROX of the reduced normal 
equations for the estimates of the parameters ' in (4.2) has the same reduced minimum 
polynomial as Q, that is AP(A) 0 (4.11) 

where P is the polynomial of (4.8). 
THEOREM 3. Let Ro and M denote orthogonal projection operators, with M = XCX', where C 

is the inverse or a symmetric positive semi-definite effective inverse of X'X, satisfying the rela- 
tion X'XCX'X = X'X. Define Q = Ro MRO and A = C&ACi, where A = X'ROX. Then Q 
and A have the same reduced minimum polynomial P, and the same nonzero eigenvalues with 
the same respective multiplicities. 

Proof. Let Proof. Let 
Z = R XCA. (4.12) 

Then 
Q = RoMRO = RoXCX'Ro = ZZ', (4.13) 

A = CG(ROX)' (ROX) Ci = Z'Z. (4.14) 

It follows that Q and A will have the same set of distinct nonzero eigenvalues and multi- 
plicities and hence the same reduced minimum polynomials. 

COROLLARY. The theorem remains valid for A = CA or A = AC. 
The equality of the reduced minimum polynomials of Q and A has useful applications. If 

the reduced minimum polynomial P of Q is known, an effective inverse of A can be found 
as follows. 

LEMMA. Substitution of A for x in x-1{1 - P(x)} yields an effective inverse of A. 

Proof. Put q(x) = x-{1 - P(x)}. Then x - x2q(x) = xP(x) and hence 

_-A2q(A) = AP(A) = 0, (4.15) 

i.e. Aq(A) A = A. Thus q(A) is an effective inverse of A. 
In other situations the eigenvalues of Q can be calculated from A, as illustrated by the 

following example. Consider the cyclic incomplete block design whose 5 blocks have treat- 
ments (1, 2, 3), (2, 3, 4), (3, 4, 5), (4, 5, 1) and (5, 1, 2), respectively. The matrix A of the 
reduced normal equations for treatment effects is given by 

- 6 -2 -1 -1 -2 
-2 6 -2 -1 -1 

A=3 -1 -2 6 -2 -1 (4.16) 
-1 -1 -2 6 -2 
-2 -1 -1 -2 6 
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in which each column comprises the treatment totals of deviations from the block means 
of the corresponding column vector of the 15 x 5 incidence matrix for treatment effects. 
Thus A is a symmetric circulant matrix, which we can represent here in the notation 

A-= "'5(6,-2,-1). (4.17) 
With C = 1I, we readily obtain 

9A = %5(6, - 2, - 1), 

(9A)2 = V5(46, -19, -4), (4.18) 

(9A)3 = %5(360, - 175, - 5). 

Clearly (9A)3 is a linear function A(9A) +lt(9A)2 of A and A2, and it is easily shown that 
A =-55, pC = 15. The polynomial P(A) is therefore 

P(A) =1 7iA+ A2, (4.19) 
with roots 15?+1V5 

el=2 18 (4*20) 

which are the required efficiency factors for the treatment factor. The design thus 
has second order balance, which corresponds to the fact that it is a partially balanced 
incomplete block design with two associate classes of treatment. 

5. GEOMETRICAL INTERPRETATIONS 

The factorization (4. 10), of the residual operator R determines a sequence of operations 
on the sample-space vector, which for convenience we express here as the sequence of 
triplets R = (Ro SK RO) (Ro SK-1 Ro) ... (Ro S2 RO) (Ro S1 RO) 

, 
(5.1) 

where Si = I - e*' M = I -sin-2 Oi M. Note that since Ro is idempotent, the second Ro 
operation of one triplet suffices as the first Ro of the next triplet. The geometrical interpreta- 
tion of each triplet of operations is explained below. 

With reference to the decomposition (4.6) of the sample space, let Yi = Eiy be the 
orthogonal projection of the sample-space vector on the subspace 

I&* + Yi' = I&@i ()#, 

corresponding to the eigenvalue A, = cos2 64. From the decomposition theorem it follows 
that all transforms of RoY* by sequences of the operators Ro and M take place in the two- 
dimensional subspace spanned by RoYi and MROY*. Hence the transformations may be 
drawn in a two-dimensional diagram as in Fig. 1, except for Y* which may lie outside the 
plane. 

This figure shows how the triplet of operators Ro Si Ro annihilates, i.e. maps to zero, the 
corresponding component vector Y*. First, the operator Ro subtracts from Yi the vector 
Xo t(%o), which is the component in the ith subspace O&/ + 1i of the total regression Xot,o) 
on X0. The sweep Si then produces and subtracts the ith component Xti of the partial 
regression Xt on X. Notice that this operation requires more than the subtraction of 
averages as would be done by an operator I - M. In fact I - M would only map the vector 
Ro Y into the vector b in the orthogonal complement Y"'- of YK*, instead of into O*. However, 
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Factorization and canonical decomposition in analysis of variance 287 
dilating the operator M by the reciprocal of the efficiency factor e* = sin2 oi produces the 
required mapping, since, from the similarity of the relevant right-angled triangles in Fig. 1, 

lb-al = lal 
la 51 c-aV' 

so that Ic-al 
lb-al = cosec2 0 (5.2) 

The second Ro operation then annihilates the vector 

c = S%Roy = Xo{tio-t(?o)J (5*3) 
in &il which is the ith component of the difference between the total and partial regressions 
on XO. 

'(I~~~~~~~~~~~~~~~~~~~~~~~~' 

b 

01~~~~~ 

i~~~~~oif 

C 0 i 
Ro 

Fig. 1. The transformation by Ro Si Ro of the orthogonal projection, Yi = Eiy, of y on 
Vi + Y'i =&i ?i; Si = I-sin-2 0i M, b = (I-M) RoYi, c = SRiYRo = Xo{tio-t(o)} 

The efficiency factor ei = sin2 O, whose reciprocal e' is needed as a dilation factor can 
be interpreted as a factor of shrinkage. It is an eigenvalue of Q = Ro MRo with eigenspace 
Yri. The process can again be drawn in a two-dimensional diagram, Fig. 2. 

So far, we have considered the effect of the operator Ro Si Ro acting directly on the 
component Y*. When the factorized form (5.1) of the residual operator is applied, the first 
component Y1 will be annihilated in this way by the first factor Ro S1 Ro, and will remain 
zero under the operation of the subsequent factors. 

Any other component such as Yi will first be subjected to (i - 1) operators of the 
factorization (5.1) before the operator Ro Si Ro is applied. However, the transforms of Yi 
remain within the subspace Oi + Y* during the first (i -1) operations and then the operator 
Ro Si RO, which annihilates the entire subspace, must map the resultant vector on zero. 
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In the next section, we make use of the successive transforms of Y to obtain equations 
for the canonical components ti of t from which they can be calculated. 

x 

Qx 

Fig. 2. Transformation by the shrinkage operator Q of an eigenvector x in the eigenspace "i. 
Here Q = Ro MRO, Qx = sin2' Ox. 

In a multi-stratum analysis, to obtain the analysis of any error stratum other than the 
lowest, residual stratum, it is necessary to substitute in the sequence (5.1) a pivotal sweep 
for the appropriate stratum (Wilkinson, 1970). For an incomplete block design, for instance, 
the pivotal sweep generates a sample space vector comprising estimated block effects, 
Y(b) = Eoy. The mapping operation is illustrated in Fig. 3. The figure also illustrates 
geometrically the relation between the intrablock and interblock component estimates 
of treatment effects. The component estimates t&c) of treatment effects ignoring blocks are 
a weighted combination of the corresponding intra and interblock components, 

t(v) = t Sin2 o, + t&) cos2 0i. (5.4) 

This weighting is statistically appropriate only when the intra and interblock stratum 
variances are the same. Otherwise the two components in equation (5.4) are additionally 
weighted in inverse proportion to the corresponding stratum variances. 

Note that Fig. 3 gives only a projected two-dimensional representation of the essential 
geometry. The vectors Xt%, Xt(b) which are superimposed collinearly in the figure are in 
general noncollinear. 

6. CALCULATION OF THE COMPONENTS OF REGRESSION IN THE CANONICAL SUBSPACES 

The regression vector Xt E c' = Y1 G .0. . I3Kf must decompose into a sum of its orthogonal 
projections Er3Xt on the respective orthogonal subspaces *j for j = 1, ..., K, where E<> 
is the operator which projects orthogonally on '*. The vectors tj such that 

ErXt = Xt, (j= 1,...,K) (6.1) 

are called the canonical components9 of regression. The following argument shows how they 
may be calculated from the successive transforms of y by factors in (5.1) for the residual 
operator. 
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Xt7b) 

<I 

xti - 

/ N Xt,y - Yi 

/ I / Length=jXti sin2' il 

xt (b) cos2O / 

\\ / 
E0Y 

+ (I-M) EoYi 

+ ~/\ 

~~~~~~~5i~~~~~~~~~~~ 
SbEOYL~~~~~~~~~~~~~~~y.L 

I('b,EuYi 

Fig. 3. Interblock analysis for a single treatment factor in a partially balanced incomplete 
block design. Transformation of Yi = Eiy by Eo S(b"Eo; SVb) = I-sin-2qSM = I-cos-20,M, 
Eo = pivotal sweep for block factor, t, = ith component of intrablock treatment estimates, 
t(b) = ith component of interblock treatment estimates and tf') = ith component of treatment 
estimates ignoring blocks = ti sin2 20 + tib) cos2 O. = t, e, + t?0 eb). 

Suppose that the operators S1, ..., Si, ..., SK within the factors Ro S1 Ro, ..., Ro Si Ro, 
Ro SKRo successively subtract Xfl,. *, Xfi, , XfK from y. From them the observed 
components tl, ..., tf, ..., tf of treatments can then be found. Put 

K 
Si I tk. (6.2) 

k=i 

An equation for si in terms of the canonical components tl, ..., ti of treatments can be 
deduced as follows. We consider the successive effect of the operators Sj, ..., Si-, on Xt3 
for j > i. 

The middle operator S1 in the sequence R0S1R0, which annihilates the first canonical 
component Xtl, also subtracts ejey'Xtj from the jth canonical component Xtj leaving 
X(1 - eje1)t. Likewise, the operator S2 in the next sequence, Ro S2 Ro, which annihilates 
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the rest of the second canonical component X(1 - e2 el)t2, subtracts Xe e2l 1 ee)t3 
from the jth canonical component, leaving X( 1- e, e21) (1 - e1 ey1) t,. By the time the (i - 1) 
operators have been applied, the vector tj will be reduced to 

i-l 
I (I-e3e-'1) t3. (6.3) 

h=l 

Hence we have equation (6.4) of the following theorem 

THEOREM 4. If si is the vector defined in (6.2), then the canonical components t3 of t satisfy 
the equations K i - 1I 

jt ill-1 (1 ejeh 1) tj = si (i = 1, ...,K) (6.4) 

whose solution is, for j = 1, ..., K, 
K [k -1\ (k 

k=j [= 1 eh) L=1 (eh ej)I] Sk. (6.5) 
h$j 

Proof. If equation (6.5) is used to substitute for tj in equation (6.4), then the coefficient of 
si in the resulting equation for si is 1, and the coefficient of Sk for k < i is 0. The coefficient 
of Sk in the expression for si when k > i is 

k-1 k~~~ 
(h=k ie) *k 

II (eh -e3) 
h=i 
h*j 

Since the second factor is symmetric in the indices i, i + 1, ..., k, it must be zero, because if 
the denominators in it were brought to a common denominator consisting of the difference 
product fl (el1- e2), 

i<jj<js<k 

which is skew symmetric, the resulting numerator would also have to be skew symmetric, 
but being of less degree, would thus be zero. 

As an example, let us calculate the components t1 and t2 of the intrablock estimate of treat- 
ment effect for the example given by Wilkinson (1970, Table 3). As we are not going to 
perform matrix multiplication on our numerical vectors, we take the liberty of leaving them 
written as arrays. 

From his table, we have K = 2, e =-, e2 =1 

tl = 1-1 ? 1] i2 = I o 0 

L-4 - 1 2j L1 0 - 1- 

Hence I 1 1 1- 
SFr=mtfru+a(25 -1 0 1 )S2=2 

-3 -1 1 
From formula (6 5) 
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7. VARIANCE OF COMPONENTS AND CONTRASTS 

THEOREM 5. The variance V(Xti) of the ith canonical component Xti is given by 

V(Xt%) = o-2e71 E, 

where o2 is the error variance, ei the ith canonical efficiency factor and El the matrix of the 
orthogonal projection on the ith canonical subspace 'i' of R(X). 

Proof. Let Xi be the matrix whose columns are the components of the columns of X in 
the subspace ?i +Yf i = ?i 4 ?1i. Then 

Xi= EwieyriX =EiX2 

and since Xti is a vector in this subspace, 

Xti = E iXti =Xiti 

The partial regression vector ti on Xi is the same as the total regression vector on the 
orthogonalized vectors Xi = RoXi and since Xiti is the orthogonal projection of the sample 
vector y on Yi', we have V(X,t,) = 2Ezr 

From the decomposition theorem, or the geometrical interpretation of the shrinkage 
operator, Xiti = e-1 EiXi ti. 
Hence V(0%-T -2E1,i E,), ey1 Hence~~~~~~~~ V(Xi ti) = e-1 E,),ic2mi<e 

= e-2 e iEyi -2 

= o2e* 1 Eyi. 

COROLLARY. For any estimable contrast y't, 
K 

V(y't) = V(c'Xt) = 0-2E e- c cci, 

where c = XCy, C is an effective inverse of X'X, and ci is the component of c in Y'f, i.e. 

ci = E<iC. 

Proof. Since y E (X') and XCX'X = X, 

V(y't) = V{(XCy)'Xt} = V(c'Xt) = EV(cAXti) = XeTIo2ciE<rci = -2Ze8cc. 

In order to calculate the components ci of c = XCy for a given contrast vector y, we 
introduce vectors t* which are defined modulo the kernel of X, Y(X), by Xt* = ci. 

Since XCy = C = Eci = XEtc 
i i 

their sum t* = Xt* will be given by 

t* = CymodY(X). 

The components t* can be obtained from an analysis of c = XCy in the same way as the 
components ti of t were obtained from y. From them, the ci = Xt* can be calculated or the 
variance of the contrast K 

V(y't) -2 E e*Itt'X'Xt*. 
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For the example treated in the previous section, suppose we wish to calculate V(y't) when 
y is the vector whose elements are given by the array 

-1 0 0 

Y= 0-1 0. 

The calculations for the analysis are given in Table 3. In this case, X'X = 219. 

Table 3. Calculation of the variance of a contrast 
[1 0 01 (X'X)-1 I r 0 0 

Y= 0-1 0I - -- 0 -1 0 
0 00 2 LO 0 0 

2 0 0 0 0 0 0 

R01 2 1 01 2 -1 -11 1 4 0 -11 
> I- - 1-2 ?0 1 -2 I 0 t=- O-4 1 
6 -1 1 O 0 ? O o6 -1 I 0 

sii[ --2 1 1] -[2 -1 0] 
>--1 2 -1 1 2 0 

6 O 0 0 1 -1 0 

R0 1 -1 0 1 -1 0 1 1 0 1 

I 6 0 1 0- I 0 10 1 - 1 *=_ 0 1 _ 

S2 0 0 01 -0 01 

> O ? ? [ 0 0 
s O 0 3 ? O 

63 o0oj 

2 6 
2 1- 2 

1 2 0 1- 
ti 81 + 82*=- 1 -2 ?_ 

6 [_ 0o 

X'X = 219, 
t*lxlt* = i, t2*gglt2*=i 

V(y't) = (72 - = 53C2 

8. CONCLUsION 
Canonical decomposition reveals the structure of an experimental design, in particular 

the order of balance. The canonical efficiency factors measure the extent of the nonortho- 
gonality. The best methods of computation are thereby indicated, and also the degree of 
statistical dependence in the estimates, which affects the statistical interpretation. Designs 
with maximum value for the lowest efficiency factor will usually be advantageous. 

The number of degrees of freedom associated with the ith canonical component is the 
multiplicity of the ith root of the matrix of the reduced normal equations. A simpler method 
of calculating this would be desirable. 
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The use of operators provides a much more convenient treatment of the analysis of 
experimental designs, both for computational as well as for algebraic purposes, than the 
use of the commonly used multiple-subscript notation for totals and means. The abstract 
mathematical operators also provide simple computational operators realized as computer 
subroutines. The addition and multiplication of the operators is given by the relationship 
algebra (James, 1957) which they constitute. 

A thorough treatment of the combination of information from different error strata, as, 
for example, in the recovery of interblock information, will require decomposition of effects 
into their canonical components. It will be discussed in a later paper. 

Part of the research by A. T. James was carried out at Yale University with support from 
the U.S. Army, Navy, Airforce and NASA under a contract administered by the Office of 
Naval Research. Some of the research by G. N. Wilkinson was done at the University of 
Wisconsin, supported by grants from the General Electric Company, the Graduate School 
and the Computing Center of the University of Wisconsin. 

APPENDIX 

Proof of Lemma 1 and Theorem 1. Define A1, ..., A,, first, to be the distinct nonzero eigenvalues of ABA. 
Since this operator is symmetric, the corresponding eigenspaces 9It are orthogonal and 

M(ABA) = 1&1 (3 . . . &)&r. (1) 

We prove now that the Ai are also the nonzero eigenvalues of BAB. If ui E 9i, then from the relations 
B2 = B, ui = Aui and ABAui = Aui, we have 

(BAB) (Bui) = BABui = BABAui = AiBui (2) 

Hence the Ai are eigenvalues of BAB, and the vectors Bui E Bl&i are eigenvectors of BAB. 
Conversely, if A is any nonzero eigenvalue of BAB, and v is an associated eigenvector satisfying the 

relation BABv = Av, then a similar argument to that in (2) gives 

ABA(Av) = ABAv = ABABv = AAv, (3) 

so that A is also an eigenvalue of ABA, A = Ai say. Hence the nonzero eigenvalues of ABA and BAB 
are the same. Since Av is an eigenvector of ABA corresponding to the eigenvalue Ai, it belongs to 9/i, 
i.e. Av c i. 

Furthermore, BAv = BABv = Aiv, so that v = Ay-'B(Av) E B9i. Thus B9/j is the complete eigen- 
space fi of BAB corresponding to Ai, that is, f' = B&i. Likewise, from symmetry considerations, 
Vi = AYi. Since the subspaces 9i and /i map onto each other, their dimensions are the same, 
i.e. dim Ii = dim Yi (i = 1, .. ., r). 

To prove that A%o = 0 (and likewise, by a similar argument, that BBo = 0) note that if vo EY"0, then 
since vo eW(B) n S(BAB) we have BAvo = BABvo =0. Hence Avo0 e S'(B) and is therefore ortho- 
gonal to vo e6q(B), so that 0 = v'Avo = (Avo)' (Avo) which implies that Avo = 0. 

It follows from this that %0 is orthogonal to W(A). Likewise ?0/ is orthogonal to P(B). We now prove 
that 9/i is orthogonal to Y j (i 4tj; i, j = 1, ..., r). 

Let Ai be the operator which projects orthogonally on 4i. Then, since M(Ai) c (A), 

Aifj = AjAY/ = AiO94 = 0. (4) 

Hence Y,j c Y(Ai) and is therefore orthogonal to &i q(Ai). 
This completes the proof for part two of the theorem. Part three is proved as follows: 
Consider u Lie '? such that u'u = 1, and let Oi denote the angle between u and its projection Bu in 

M(B). Then, since Au = u, (cos O,)2 = u'Bu = u'ABAu = Aiu'u, = Ai. 
Corollary 1 follows straightforwardly from the derivations of the theorem. Corollary 2 is a restatement 

of the decomposition theorem in terms of the corresponding matrix operators. 
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The proof of Corollary 3 is as follows: 

M(ABA) = R(AB) 

= AS(B) 

= A(Yo/7- g (3 Y 13r) 

= /"o S0 (3 ...* * * (3Sr * (5) 

Consider any vector wi E 'Yll. Then wi is of the form wi = Avi, where vi e fi. Hence 

ABAwi = ABAvi = ABvi-ABAvi = Avj-A(Aiv ) = (1-Ai)wi. (6) 

Thus wi is an eigenvector of ABA, corresponding to the eigenvalue (1 - Ai). 
Also, if vo cE Y, since R(A) = M(A) v Y'), we have 

ABAvo = ABvo = Avo = vo. (7) 

Hence vo is also an eigenvector of ABA, corresponding to the eigenvalue 1. Clearly, therefore, the eigen. 
spaces of ABA are f-0 and #i (i = 1, . . . ,r), excluding the case Ai = 1, by virtue of the decomposition (5). 
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