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SCHUBERT CALCULUS
S. L. KLEIMAN anp DAN LAKSOV, Massachusetts Institute of Technology

1. Introduction. In 1874, H. Schubert published his celebrated treatise, ‘‘Kalkiil
der Abzdhlenden Geometrie’” (Calculus of Enumerative Geometry [22]). It dealt
with finding the number of points, lines, planes, etc., satisfying certain geometric
conditions, an important problem about a hundred years ago. In the book, Schubert
drew much from the vast literature on the subject and introduced some far-reaching
ideas of his own.

As was often the case in early algebraic geometry, the methods of enumerative
geometry were intuitive and rested on a weak foundation. However, the beauty of
the subject inspired many mathematicians to develop rigorously the foundational
material, such as topological and algebraic intersection theories. This work is of far |
greater importance than the original enumerative problems.

In a brief article, we can only hope to highlight a rigorous development of the
early ideas, but we shall try to illustrate each discussion with an example of lines in
3-space.

Here is a typical enumerative problem: How many lines in 3-space, in general,
intersect four given lines? Schubert would specialize the given four lines so as to
make the first intersect the second and the third intersect the fourth. In this special
case there are obviously two lines intersecting the four: the line joining the two points
of intersection and the line of intersection of the two planes—one determined by the
first two lines and the other by the second two. Now Schubert’s ““principle of
conservation of number’’ asserts that there must be two solutions in the general case
as well. This principle, which grew out of Poncelet’s principle of continuity, is
Schubert’s most important contribution to the subject.

Our first step will be to make the concept of specializing a line more precise. This
we do in section two, where we show more generally that all the d-planes in n-space
can in a natural way be made into a manifold. Then we may interpret specialization
as moving in a continuous way.

Next, we must analyze the condition that a line L intersect a given line A. This
condition means that any two points which determine L and any two points which
determine A are dependent and the latter requirement can be conveniently expressed
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in terms of determinants. Section three is devoted to expressing the more general
condition that a d-plane in n-space intersect in a prescribed way a given nested
sequence (or flag) of linear spaces.

In section four, we interpret and justify the ¢‘principle of conservation of number?’
in the way it was first rigorously done, with the aid of the cohomology theory of
manifolds. Then, having defined all our terms, we present the three main theorems
of the symbolic formalism, known as Schubert calculus, for solving enumerative
problems. We indicate the several different approaches to proving these theorems
and give appropriate references in section five.

In section five, we also mention some generalizations, applications, open questions
and references pertaining to the material in the other sections. We make no claims of
completeness; the choices were made partly out of personal taste. However, we hope
that these things will be of interest to some readers and perhaps inspire them to
pursue matters further.

2. The Grassmann manifold. The space of n-tuples (a(l),--+,a(n)) of complex
numbers is commonly called affine n-space and denoted by A"

If we try to make sense of the ‘‘principle of conservation of number’’ for con-
figurations in affine space we encounter some difficulties. For example, in section
one we found that there are two lines in 3-space which intersect four general lines by
specializing the four. However, if we specialize them so that the first intersects the
second and the third intersects the fourth but so that the plane of the first two lines
is parallel to the plane of the second two, then there will be only one solution. If we
specialize the four so that the first intersects the second but the third is parallel to the
fourth and the plane of the first two is parallel to the plane of the second two, then
there will be no solution. Thus we may obtain 0, 1, or 2 solutions by specializing
appropriately. Of course the missing solutions lie ‘‘at infinity”> and we ought to work
in projective space.

A point P of projective n-space P" is defined by an (n + 1)-tuple (p(0), -+, p(n))
of complex numbers not all zero. The p(i) are called the coordinates of P. Another
(n + 1)-tuple (q(0), :--, g(n)) also defines P if and only if there is a number ¢ satisfying
p(i) = cq(i) for i=0,---,n.

Identifying a point (a(1), -+, a(n)) of A" with the point (1, a(1), ---, a(n)) of P", we
may think of P" as 4" completed by the points (0, b(1),---, b(n)) ““at infinity’” in P".
Then, for example, it is not hard to see that two parallel planes, which do not intersect
in A3, will intersect in a line lying “‘at infinity’’ in P? and that the solutions missing
above do lie ““at infinity’’ in this sense.

A linear space L in P" is defined as the set of points P = (p(0),---, p(n)) of P"
whose coordinates p(j) satisfy a system of linear equations Xj_, b,;p(j)=0
with ¢ =1,---,(n — d). We say that L is d-dimensional if these (n — d) equations are
independent, that is if the (n — d) x (n + 1) matrix of coefficients [b,;] has a nonzero
(n — d) x (n — d)-minor. By linear algebra, there are then (d + 1) points
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P, = (p;(0),---, pi(n)) in L with i =0, ---,d which span L. Of course, we call L a line if
d =1, a plane if d =2 and a hyperplane if d = (n — 1). We also call a d-dimensional
linear space a d-plane for short.

The rest of this section is devoted to representing in a natural way the d-planes in
P" by the points of a certain manifold G,,, lying in a projective space P¥ where we

put once and for all
n+1
N=( ) ~ 1
d+1

For convenience, let us make the following convention. Forany (d + 1) x (n + 1)-
matrix [p;(j)] withi=0,---,d and j =0,---,n, and any sequence of (d + 1) integers
Jo+++jq With 0 < jg < n, let us denote by p(j,---j,) the determinant of the (d + 1)
x (d + 1)-matrix [p;(jg)] with i, =0,---,d. Of course, we have the usual formulas:

pP(jo-+Jja) =0 if any two of the j, are equal;
(A) pUo-jd) = — PUoJpg-1ip+1ipip+2""Ja) for f=0,---,d — 1.
A function p on the set of all sequences j, -+ j, with 0 < j; < n which satisfies the
formulas (A) is called an alternating function. It is evident that an alternating function
is determined by its values on the subset of sequencesj, -+ j, With0 < j, < -- <j,; < n
and that any function on this subset extends to an alternating function on the whole
set. Note that the number of sequences j,---j, with 0 < j, < --- <j, £ n is exactly
(N +1).

Fix a d-plane L in P". Pick (d + 1) points P; = (p;(0), -, pi(n)) with i =0, ---,d
which span L, and form the (d + 1) x (n + 1)-matrix [p;(j)]. By linear algebra at
least one of the (N + 1) determinants p(j,---j,) with0 <j, < -+ <j, £ n must be
nonzero. So, when ordered lexicographically, these determinants define a point
(-, pUo++ja)s+++) of PV

Let Q; = (g;(0),--,q,(n)) for i =0,---,d be another (d + 1) points spanning L.
Then linear algebra yields a nonsingular (d + 1) x (d + 1)-matrix C which carries
the P, into the Q;; in other words, we have [¢,(/)] = C - [ p:(j)] where the dot denotes
matrix multiplication. Clearly we then have q(jo--:j,) = det(C)p(jo -+ js), Where
det(C) denotes the determinant of C. So the points Q; give rise to the same point of
PY as the points P . Therefore L canonically gives rise to a point of P¥, The coordina-
tes p(jo--j,) of this point are called the Pliicker coordinates of L.

Not every point of PV arises from some d-plane in P". In fact, we shall now prove
that the Pliicker coordinates p(j,:--j,) of a d-plane L in P" satisfy the following
quadratic relations:

da+1

(QR) T (= 100 ja-tkdplko -+ Ky kgyy) =0,

A=0

where jo -+ j,—; and kg -+- k441 are any sequences of integers with 0 < jj, k, < n. Here
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I;,l means that the integer k, has been removed from the sequence and the p(j,---j,)
are to be interpreted according to the formulas (A).
Explicitly, we want to establish the relation among determinants,

at1 : : Iso(ka)"'
J§0 (= pi(:o)"'Pi(]:d—l)Pi(!(A) : =0,

I;d(ka)"'

Expanding the first determinants along their last column, we obtain the relation,

de1 4 N i o polky) -
z (- I)A _E (- l)“' pi(.io)"'pi(ja—l) pi(k;) : =0.
4=0 i=0 : : “.pd(k).)“‘
Rearranging the terms, we obtain the relation,
d ) . : , : d+1 ) "'l;o(k,z)"‘
.E (= D' Pi(j:o) o pilJa-1) ; (= D*pilk;) = 0.
i=0 : : A=0 -..pd(k)‘)...

Now this relation can be obtained by expanding the second determinants in the
following relation along the first row:

e pilky) o
. Po(kﬁ)

I
s M=

(= D Billio) -+ pilia-1)

o paky) e
However, these second determinants are zero because two rows are equal. Thus the
quadratic relations (QR) are satisfied by the Pliicker coordinates of a d-plane in P".
Conversely, any point (-, p(jo+*+jo),---) of PV whose coordinates satisfy the
quadratic relations (QR) arises from a unique d-plane L in P". To prove this assertion,
we shall simply “‘solve’” the quadratic relations. First, we assume that p(k, - k,) is
not zero and show that the (N + 1) coordinates p(j, - j,) are already determined by
the [(d + 1)(n — d) + 1] coordinates of the form p(ko-‘-vk,ln-kdja), that is by the
coordinates p(iq---i,) with at most one of iy,---,i; not among kg, -, k.
Let jo---j, be a sequence of integers of which exactly m are not among the
integers ko,-'-,k,; and let j; be one of these m. The quadratic relation (QR) cor-

responding to the sequences jg -+- _Vi,3 -+ jgand ko -+ k,j, obviously yields the equation,

d
pUo g “‘jd.iy)l’(/\'o o ky) = ‘ZO (- l)lp(.l'o g e jak)plko - ky e kdjﬂ)-

A=
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Now if k; is among jg, -+, j,, then p(jg - ]Y,, .-+ j k;) is zero; if k; is not among jo, -*+, j4
then exactly (m — 1) ofj(,,n-,vj,,, «--,js k; are not among ko, --+, k,. Thus if we have
m =2, we can express p(jo---j)p(ke---k,) in terms of the coordinates p(io - is)
with at most (m — 1) of iy, -++,i; not among ko, ---,k,. Continuing this process of
multiplying by p(k, -+ k,) and of using a quadratic relation, we find we can express
p(o-j)p(ko k)"~ as a polynomial in the coordinates p(iy---i,) with at most
one of igy,-+,i; not among ko, -, k,. Since we assumed p(ko---k,) # 0, we have
proved our assertion that these [(d + 1)(n —d) + 1] coordinates determine the
others.

Without loss of generality, we assume p(k, --- k,) = 1. We are going to construct
a d-plane L in P" whose Pliicker coordinates are equal to the coordinates p(j, -+ j,)
of the given point in p¥. For i =0,---,d and j = 0,---,n put

pi(j) = plko -+ ki—1jkis 1 ko).

The vectors (p;(0), -+, p;(n)) for i =0, ---,d are linearly independent because we have
pi(k,) =0 for i # y and p,(k;) = 1. So, these vectors span a d-plane L in P". Now the
Pliicker coordinate p’(j, -+ j,) of L is defined as the determinant of the matrix [ p;(ji)]
with i, f =0,---,d. So, if we have j; = k, for f§ 5 A, this matrix coincides with the
identity matrix outside the A-th column. Hence we have
p'UoJad = pa(a) = pUo " Ja)s

whenever at most one j, of jo, -, Jj, is not among kg, -, k,. Since we proved above
that these coordinates determine the rest, we have p’(jo---j,) = p(jo - j4) for all
sequences jq -+ j;. Thus the point (---, p(jo -+ jg), --+) arises from the d-plane L.

Finally, let L’ be another d-plane in P" whose Pliicker coordinates define the given
point (-, p(jo+jn),++) of PY. Choose (d + 1) points P;= (p;(0),--, pi(n)) with
i=0,---,d which span L. Then the (d + 1) x (d + 1)-matrix [pj(k,)] is invertible
because its determinant is by hypothesis a nonzero multiple of p(kq---k,) = 1.
Altering the P/ by the inverse matrix, we may assume [ p;(k,)] is the identity matrix.
Then for any sequence j,---j, the determinant det[pi(j;)] is obviously equal to
p(jo++jo)- Now fix A and j with 0<A<d and 0 <j<n, and put j; = k; for
B # 4 and j, = j. Then [pi(js)] clearly coincides with the identity matrix outside the
J-th column. So we have '

pa()) = det[ pi(jp)] = pUio***ja) = Pali)s

where the last equation is the definition of p,(j) made above. Thus we have P; = P,
for each A and so L' = L.
We have now reached our goal and proved the following theorem:

THEOREM 1. There is a natural bijective correspondence between the d-planes in
P" and the points of PV with N = (J11) — 1, whose coordinates satisfy the
quadratic relations (QR).
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In the course of the proof, we also established the following result:

PROPOSITION 2. There is a natural bijective correspondence between the set of
points of PY whose coordinates p(j, - j,) satisfy the quadratic relations (QR) and
the requirement p(kq ++- k;) # 0 and the affine (d + 1) (n — d)-space of (d + 1) (n + 1)
matrices [p;(j)] with i=0,---,d and j=0,---,n such that the (d + 1) x (d + 1)-
submatrix [pi(k,)] with i, y=0,---,d is the identity. Moreover, such a matrix
[p:(j)] corresponds to the point of PY with coordinates p(j,---j,) = det[p,(is)] and
such a point (-, p(jo--jz)s*++) of P¥ corresponds to the (d + 1) x (n + 1)-matrix
with entries

pi(j) = plko -+ ki—1jkisq -+ ko) [p(ko -+ k).

By virtue of this proposition, the set of points of PY whose coordinates satisfy
the quadratic relations (QR) is covered by (N + 1) copies of affine (d + 1)(n — d)-
space, so it is a submanifold of P¥ of dimension (d + 1)(n — d). It is called the
Grassmann manifold (of d-planes in n-spaces) and denoted by G, ,. In these terms,
Theorem (1) $ays that the d-planes in P" are represented by the points of the
(d + 1)(n — d)-dimensional Grassmann manifold G, ,.

For example, the lines in P3 are represented by the points of the 4-dimensiona
Grassmann manifold G,,;, which can be described as the points of P° whose coor-
dinates p(joj,).satisfy the single quadratic relation,

p(01)p(23) — p(02)p(13) + p(03)p(12) = 0.

3. Schubert conditions. We are now going to work out a necessary and
sufficient determinantal condition for a d-plane in P" to intersect a given sequence of
linear spaces in P" in a prescribed way.

Let Ay A g S 4y be a strictly increasing sequence (or flag) of (d + 1)
linear spaces in P". A d-plane L in P" is said to satisfy the Schubert condition defined
by this sequence if dim(4; N L) = i for all i. The set of all such d-planes L corresponds
to a subset of G,,, which is denoted by Q(4, - A4,).

For example, fix a line 4, in P* and take A, to be P? itself. Then the subset
Q(A4y A;) of G, 5 represents the set of lines L in P? satisfying dim (LN 4,) = 0 and
dim(LN A4;) = 1. Since the second condition is automatically satisfied, Q(4,4,)
represents the set of lines L intersecting A,.

PROPOSITION 3. Let 0= ao<:-<a;=<n be a sequence of integers and for
i=0,--,d let A; be the a;-dimensional linear space in P" whose points are of the
Jorm (p(0),---, p(a;),0,-:,0). Then Q(A,---A;) consists exactly of those points
¢ 0o o)) in Gy , satisfying p(jo -+ j) = 0 whenever j; > a; holds for some i.

Proof. Consider a d-plane L in P" which satisfies the Schubert condition
dim(4;NL)zi for i=0,-.+,d. By induction on i, we may clearly pick a point
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P; = (p;(0), -+, p;(n)) in A; N L such that Py,--,P; are linearly independent. Then
Py, -+, P, form a basis of L. So, in the construction of section two, L is represented
by the point of G, with coordinates p(j,--j,) = det[p;(js)]. Suppose we have
ji> a, for a certain A. Since P; lies in 4;, we have p;(j) =0 for j = (a; + 1), -+, n,
and hence the matrix [p;(j,)] takes the form,

d—-21+1)

A
[Pi(jp)]= * ’ 0 }

sk *

It is now easy to see that p(j,---j,) = O either by (Laplace) expansion of the deter-
minant along the last (d — A + 1) columns or by induction on (d — 2 + 1), the cases '
(d—=2+1)=1 and (d — A+ 1) =2 being clear.

Conversely consider a point (-, p(jo+-*ja),*++) on G, satisfying p(jo---j,) =0
whenever j; > a; holds for some i. Choose a nonzero coordinate p(k, ---k,;) which
maximizes the sum Z;’=0 k,. Replacing each p(jo -+ jo) by p(jo - *ja) [p(ko - ka), we
may assume p(ko---k;)=1. Now, in section two, we saw that the point
(-++,P(jo *** ja), ---) represents the d-plane L spanned by the points P;= (p;(0), -+, pi(n))
with pi(j) = p(++- k;—1jk;q+-+) for j=0,---,n and for i =0,--,d.

Fix j > a;, we shall show that p,(j) is zero. Since p(k, --- k,) is not zero, we have
k; < a; and so k; < j. Consequently, the sum X._, k, is strictly less than the sum
(j+ X,zik,). Hence p,(j)=p(--ki—ijkis,-+) is zero by the maximality of
ok,

Therefore P, lies in A;. Hence the (i + 1) linearly independent points P, ---, P; lie
in (4; NL). So L satisfies the Schubert condition dim(4; L)z i for i =0,---,d.
Thus (-++, p(jo - ja),--+) lies in Q(Aq -+ 4y).

PROPOSITION 4. Let Ay g A, and Bog - ¢ By be two strictly increasing
sequences of linear spaces in P* and assume dim(4;) = dim(B;) for i=0,---,d.
Then there is an invertible linear transformation of P" into itself which carries
G,,, into itself and Q(By - By) into Q(Ag -+ Ay).

Proof. Since we have dim(4;) = dim(B;) for each i, there obviously is an in-
vertible (n + 1) x (n + 1)-matrix [a;;] such that the linear transformation T of P" into
itself defined by the formula

TGO, o) = (£ pan -, E ploa

carries B; onto A; for each i. Clearly, T carries a d-plane L in P" into another one
T(L), and if L satisfies the Schubert condition dim(B; N L) Z i for all i, then T(L)
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satisfies the Schubert condition dim(4; NT(L)) =i for all i because we have
T(B;) = A;.

Choose (d + 1) points P; = (p,(0), -+, p;(n)) with i = 0,---,d which span L. Then
the (d + 1) points T(P;) span T(L). Now, T(P;) is of the form (g;(0), -, q;(n)) with

ql(]) = 2 p(“)aaj for ] = 0’-..,n,
a=0

and a straightforward computation shows that the Pliicker coordinates g(j,---j,)
= det[q;(jp)] of T(L) are certain fixed linear combinations of the Pliicker coordinates
P(o - ja) = det[p;(jp)] of L.

In other words, there is a linear transformation A[a;;] of PV into itself which
carries G , into itself and Q(B, --- B,) into Q(4, - A,). Since [a;;] is nonsingular, it is
evident that A[a,;] is invertible and A([a;;]~?) is its inverse.

COROLLARY 5. Let Bog EB“ be a strictly increasing sequence of linear spaces
in P". Then (B, -+ By) consists of those points in G,,, whose coordinates q(jo -+ j,)
satisfy certain linear equations; in other words, Q(B,--- B,) is the intersection of
Gy, and a certain linear space in PY. Moreover, the linear space is a hyperplane
if and only if we have dim(By) =(n—d —1) and dim(B;))=(n —d + i) for
i=1,-,d.

Proof. For i=0,---,d put a; =dim(B;) and let 4; be the a;-dimensional linear
space in P" whose points are of the form (p(0), -, p(a;),0, ---,0). By Proposition 4,
there is a linear transformation S of P into itself such that a point P of G,,, lies in
Q(B, -+ B,) if and only if S(P) lies in Q(A4, --- 4,). By virtue of Proposition 3, S(P) lies
in Q(4, - A,) if and only if each of its coordinates g(j, -+ j,) is zero whenever j; > a;
holds for some i. Since each g(j, --- j,) is a certain linear combination of the coordina-
tes p(jo -+ ja) of P, we conclude that P lies in Q(B, --- B,) if and only if the p(j, -+ j,)
satisfy certain linear equations. Moreover, the number of linearly independent
equations is obviously the number of sequences j, - j; such that j; > a; holds for
some i, and it is evident that there is only one such sequence if and only if we have
ap=Mm—-d—-1)and a;=(@n —d+ i) fori=1,--,d. Thus, the Corollary is proved.

We are now in a good position to determine the number of lines L in P3 which
(simultaneously) intersect four given lines L,, L,, L;, L,. In section two, we saw
that the lines L are represented by the set Gy,5 of points (p(01), p(02), p(03), p(12),
p(13), p(23)) of P which satisfy the single quadratic relation

p(01)p(23) — p(02)p(13) + p(03)p(12) = 0.

At the beginning of this section, we noted that the lines L intersecting a given line A
are represented by the points of the subset Q(AP?) of G,5; hence, the lines L inter-
secting the four given lines L;, L,, L;, L, are represented by the points of the
intersection
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4
Q = ﬂl Q(L,P3).

Now, by Corollary 5, for each i we have Q(L;P3) = G{,; N H, for a suitable hyperplane
H; of P5. Put M = N, H;; then we have Q = G, ; N M. If the H; are linearly
independent, then M is a line. Then, by using the quadratic relation defining G, ; to
express Q as the zeros of a certain quadratic polynomial in a parameter of M, it is
easy to see that Q consists of two points, which may coincide. (They coincide exactly
when M is tangent to G, 3.) If the H; are linearly dependent, then M is a linear space
of dimension two or more and it is easy to see that Q must be infinite. Thus, the
number of lines L which intersect L, L,, L3, and L, is either infinity or two or one
(counted twice).

It is not hard to choose the lines L, L,, L, L, in such a way that Q consists of
only one point. Consequently, the ‘‘principle of conservation of number’’ will not be
valid unless multiplicities are taken into account. For example, take L,, L,, and L,
to be three skew lines. Fix a point P, on L,. Let ©, be the plane of P, and L, and let
75 be the plane of P, and L;. Since L, and L; do not intersect, the planes n, and n3
are distinct. Take L, to be the line of intersection of these two planes. Then L, passes
through P, and it intersects L, in a point P, and L; in a point P;. The points P, P,,
and P, are distinct because the lines L,, L, and L; are skew, so any two of the
points determine L,. Now let L be any line intersecting L, L,, L; and L,. If L passes
through P, and P,, then L coincides with L, because P, and P; determine L,.
Suppose L does not pass through P,. Since L intersects L, and L,, it must then lie in
the plane of L, and L,, which is ©,. So L passes through the point of intersection of
n, and L, which is P,. Similarly L must also pass through P;. Then L coincides with
L, because P, and P; determine L,. Thus L, is the only line intersecting L,, L,, L3,
and L.

In the above example we saw that for any three skew lines L,, L,, Ly in P3 there
is a unique line which passes through a given point P; of L, and intersects L, and
L,. Hence, if we had chosen L, to be L, itself, then there would be an infinite number
of lines intersecting L,, L,, L;, and L,, one for each point of L;. Of course, the
number of lines intersecting four given lines is also infinite if the four all pass through
the same point or if they all lie in the same plane.

Since an infinite number of solutions do appear in some special cases of an
enumerative problem, the ‘‘principle of conservation of number’’ must be stated in
the following way: If the number of solutions is finite in a given special case, then the
number of solutions is the same in the general case as well, multiplicities, of course,
being taken into account. In some problems, as in determining the lines in 3-space
which intersect three given lines, the number of solutions is infinite. In these problems,
the “‘principle of conservation of number’’ does not strictly apply. However, as
Schubert himself realized, something is conserved under specialization. In the next
section, we shall see that what is conserved is a cohomology class.
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4. The Schubert calculus. In this section we explain the symbolic formalism,
known as Schubert calculus, for solving enumerative problems. The foundational
material here is far deeper than before and the main proofs are far more difficult, so
we shall not go into them. However, we shall indicate the various ways to approach
them and give references in the next section.

We shall base our development upon algebraic topology. In section two, we saw
that G,,, is a complex manifold of dimension (d + 1) (n — d). From algebraic topology,
we know that the cohomology group with the integers as coefficients H(G,,,; Z) is
zero when i is not in the interval [0,2(d + 1) (n — d)] and that the direct sum

H*(Gd,n; Z) = @ Hi(Gd,n;Z)

is a graded ring under cup-product. Moreover, G,,, is oriented, so there is a natural
isomorphism of the 2(d + 1) (n — d)-th cohomology group with Z; the image in Z
of an element u is called the degree of u and denoted by deg(u).

A harder result is that we can assign a natural cohomology class (that is, an
element of H*(G, ,; Z)) to each subset of G,,, defined by a system of polynomial
equations. Such a subset is called a subvariety of G,,,. If two subvarieties are members
of the same continuous system of subvarieties, then both are assigned the same
cohomology class. (Intuitively, the two are homotopic.)

The subsets Q(A, -+ A,) are subvarieties of G, , by Corollary 5; they are called
Schubert varieties and their cohomology classes are called Schubert cycles. We are
now going to prove that the cohomology class of Q(4, -+ 4;) depends only on the
integers a; = dim(4;) for i =0,---,d. Indeed, consider the continuous system of
subvarieties (AM)Q(A4, --- A;) parametrized by the nonsingular (n + 1) x (n + 1)-
matrices M, where AM denotes the linear transformation of P into itself induced
by the matrix M, (see the proof of Proposition 4). This system clearly includes
Q(4, - A7) and by Proposition 4 it includes every subvariety Q(B,---B,;) with
dim (B;) = a; for i =0,---,d. Since all the subvarieties in a continuous system are
assigned the same cohomology class, the cohomology class of Q(A4, -+ A,;) depends
only on the a;. We are now justified in denoting this Schubert cycle by Q(a, - a,).

Perhaps the most important result in the theory of cohomology classes is this:
When several subvarieties intersect properly in a finite set of points, then the number
of points, counted with multiplicity, is equal to the degree of the product of the
corresponding cohomology classes. Roughly put, the theorem holds because passing
to cohomology classes turns intersection into cup-product. For example, suppose
each subvariety represents the d-planes in P" which satisfy certain geometric condi-
tions. Then the number of d-planes which simultaneously satisfy all the conditions,
multiplicities being taken into account, can be determined by formally computing
with the corresponding cohomology classes. Since the cohomology classes all remain
the same when the subvarieties vary in a continuous system, this number will remain



1972] SCHUBERT CALCULUS 1071

constant when the geometric conditions are varied (or specialized) in a continuous
way. This conclusion is an interpretation of Schubert’s ‘‘principle of conservation
of number.”

We now state the first main theorem of Schubert calculus. It asserts that the
Schubert cycles completely determine the cohomology of G, ,.

THEOREM (The basis theorem). Considered additively H*(G,,,;Z) is a free
abelian group and the Schubert cycles Q(aq - a;) form a basis.

By construction, the cohomology class of a subvariety X of G,, lies in
H?*(G,,,; Z) when X is irreducible of dimension [(d + 1) (n — d) — p]. Irreducibility
means that X is not the union of two smaller subvarieties in a nontrivial way. The
dimension of X is then r if an open subset of X is canonically a manifold of dimension
r.

We now prove that Q(4, - 4,) is irreducible of dimension X¢_, (a; — i) with
a; = dim(4;). First, suppose A; consists of the points (p(0),--, p(n)) with p(j)=0
when j > a; and consider the space S of all (d + 1) x (n + 1)-matrices [p;(j)] with
p:(j) =0 when j > a; for i =0,-.-,d. Let S, be the open subset of S of matrices
whose maximal minors p(jo -+ j,) = det[p,(jg)] are not all zero. In the course of
proving Proposition 3 we saw that sending a matrix [p,(j)] to the point
(s p(o+ja)s ) Of PY defines a map 7 of S, onto Q(4, -+ 4,). Since S is an affine
space, it follows by an elementary argument that S, is irreducible and consequently
that Q(A4, - 4,) is irreducible. Now, let S; be the subset of S of matrices [p,(j)]
whose submatrix [p;(a;)] is the (d + 1) x (d + 1) identity. Then S, lies in S, and as
we saw when proving Proposition 3, n(S) is the open subset of Q(A4, - 4,) of points
G+, 0o +rja)s ) with p(ag---az)#0. However, Proposition 2 implies that =
induces an analytic isomorphism of S; with n(S,). Since S; is obviously an affine
space of dimension 2¢_o (a;— 1), the dimension of Q(A, -+ A,) is therefore this
number.

We may now rephrase the basis theorem in the following way:

TueoreM (The basis theorem). Each even dimensional integral cohomology
group H**(G, ,; Z) is a free abelian group and the Schubert cycles Q(a, -+~ a,) with
[(d+1)(n—d) — Z{_o (a;— )] = p form a basis. Each odd dimensional group is
zero.

For example, consider the Grassmann manifold G, , of points in P". The Pliicker
coordinates of a point are obviously its ordinary coordinates; hence, we have
Go.q = P"and Q(4,) = Ao. Now, the basis theorem says that H*?(P"; Z)for0 S p<n
is a free cyclic group generated by the class Q(n — p) of an (n — p)-dimensional
linear space. The other groups are zero.

For a second example, consider the Grassmann manifold G, 3 of lines in P3.
Here, the basis theorem says that there are exactly five nonzero cohomology groups:
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the middle one H4(G1,3; Z) is free abelian on two generators (0.3) and Q(1.2)
and the others H**(G, 5; Z) for p = 0,1,3,4 are free cyclic on generators re-
spectively Q(2.3), Q(1.3), ©(0.2), Q(0.1). Moreover, it is evident that Q(0.1) is the
class of a point, that Q(2.3) is the class of G ; and that in view of Corollary 5,
Q(1.3) is the class of a hyperplane section.

The following proposition complements the basis theorem with some very useful
information.

PROPOSITION. The basis {---,Q(ao - a,),"-} of the group H**(G,,,; Z) and the
basis {--,Q(n—ag,--,n—ay), -} of the group HX@*V@=D=rYG - 7Y are dual
under the pairing v,w+ deg(v-w) of Poincaré duality.

In other words, the proposition says that an arbitrary element v of H 2”(G,,,,,; Z)
can be written uniquely in the form ‘

v= X dn—ag-,n—ag)Qay-ay),
where the integers 6(n—ay,---,n—a,) can be found by using the formula
d(n—ay,---,n—ae) = deg(v-Q(n—a,, M= dg)).

In particular, if v is the cohomology class of an irreducible subvariety X of G, ,,
then each integer é(n — a,, -+, n — a,) is nonnegative because it is the number of
points with multiplicity in the intersection of X and Q(B,--- B,) for suitably chosen
linear spaces B;. Schubert called these integers the degrees (Gradzahlen) of X.

Let Y be an irreducible subvariety of G,,, of dimension p and let the integers
&(ag -+~ a,) be its degrees. If the intersection X N Y is a finite set of points, then the
number i(X N'Y) of points counted with multiplicity is, as we know, the degree of the
product of

25(n —ag, -+, n —ag)ag-+-ay) and Te(ag - a)Q(n — ag, -+, n — a,).
Therefore, by the proposition we have
(X NY)=28(n—ay ,n—aye(ay - ay).

This formula constitutes a generalization of Bézout’s theorem. Bézout’s theorem
deals with the case G,,, = P". We saw above that the cohomology class v of an
(n — p)-dimensional irreducible subvariety X of P” is of the form v = §(p)Q(n — p)
and by the proposition d(p) is the number of points with multiplicity in the intersec-
tion of X and a suitably chosen p-dimensional linear space. Thus §(p) is the degree
of X in the usual sense. Let Y be a p-dimensional irreducible subvariety of P" and let
g(n — p) be its degree. Suppose X and Y intersect in a finite set of points. Then the
formula above becomes i(X NY) = d(p)e(n — p); in other words, the number of
points counted with multiplicity in X MY is the product of the degree of X and the
degree of Y. This result is known as Bézout’s theorem.
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The basis theorem implies that the product of any two Schubert cycles can be
uniquely expressed as a linear combination of other Schubert cycles with integers as
coefficients. The second and third main theorems allow us to compute such ex-
pressions explicitly. The second expresses an arbitrary Schubert cycle as a determinant
in the following (n — d + 1) special Schubert cycles:

ah)=Qh,n—d+1,---,n) for h=0,---,(n = d).

THEOREM (The determinantal formula). For all sequences of integers
0<ay<--<a;=<n the following formula holds in the cohomology ring
H*(Gy,n3 2):

a(ag) - a(ag —d)
Qag -+ ay) = : :

o(ay) -+ a(ag—d)
where we agreeto put a(h) =0 for h ¢[0,(n — d)].

This theorem, together with the basis theorem, implies that the special Schubert
cycles generate the cohomology ring as a Z-algebra. Moreover, it reduces the problem
of determining the product of two arbitrary Schubert cycles to the case where one
(or for that matter, each) is a special Schubert cycle. This case is handled by the
third main theorem, which follows.

TueoreM (Pieri’s formula). For all sequences of integers 0<a,<--<a,;<h
and for h=0,---,(n — d), the following formula holds in the cohomology ring
H*(Gd,n; Z)

Q(aq - ay) - o(h) = LQ(boy -+ by),

where the sum ranges over all sequences of integers by <--- < b, satisfying
0<by<as<b; <a, < <by<a,and T!_ob;=X!_ga,—(n—d—h).

Let us use these results to determine the number of lines L in P3 which
(simultaneously) intersect four given lines L,, L,, L;, L,. In section three, we saw
that such lines L are represented by the points of the intersection

4
Q = ) QL P

So, we want to compute the degree of Q(1.3)4. By definition we have Q(1.3) = o(1)
and Pieri’s formula gives Q(1.3) - ¢(1) = XQ(b,y - b)) with 0 < by <1 < b; £3 and
by + by = 3. Hence we obtain Q(1.3)* = Q(0.3) + Q(1.2). Now, the proposition yields
0(0.3)2 =0, Q(1.2)> =0 and deg(Q(0.3) - Q(1.2)) = 1. Hence we find deg(Q(1.3)*)
= 2. Alternately, a second application of Pieri’s formula yields Q(1.3)® = 2Q(0.2) and
a third yields Q(1.3)* = 2Q(0.1). Since ©(0.1) is the class of a single point, its degree
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is one. Thus, we again find deg(Q(1.3)*) = 2. Therefore, if Q is a finite set of points,
then the number of points with multiplicity in Q is two. Thus the number of lines is
either infinity or two or one (counted twice).

In the preceding example we obtained the formula Q(1.3)3 = 20Q(0.2). Since the
various subvarieties in a continuous system are all assigned the same cohomology
class, this formula suggests that the set of lines which simultaneously intersect three
skew lines can be continuously deformed into the union of two sets of lines which
lie in a plane and pass through a fixed point. In fact, we shall now see that this is the
case.

Specialize the three lines L,, L,, Ly so that L, and L, intersect in a point P and so
that L; intersects the plane F of L, and L, in a point Q not equal to P. Then a line
intersecting L, and L, must either lie in F or pass through P, and conversely a line
lying in F or passing through P intersects L, and L,. So a line intersecting L, L,
and L, must either lie in F and pass through Q or pass through P and lie in the plane
F’ of P and L, and conversely a line lying in F and passing through Q or lying in F’
and passing through P intersects L,, L, and L,. In other words, we have

ﬁ QL;* PH=QQ-F)+ QP F').
=1

When the subvarieties of G,,, defined by more general geometric conditions are
considered, the power of the calculus becomes staggering. Schubert’s book contains
many examples and we now give two.

Let us compute the number of lines L in P3 which simultaneously intersect four
given curves C,, C,, C;, C,. Let ¢;€ H*(P3; Z) be the cohomology class of C; and ¢
the class of a line. We have c; = §,7, where J; is the degree of C,, (see the discussion of
Bezout’s theorem after the proposition). So it is not surprising (and is justified below)
that the lines L which intersect a given C; are represented by the points of a subvariety
X, of G,,; and that the cohomology class x; of X is of the form x; = §,Q(1.3). Hence
we have

X1X,X3X, = 2010,03040(0.1)

in view of the computations in the example above. So when the number of lines
intersecting C,, C,, Cs, C, is finite and multiple solutions are taken into account,
the number of lines is 26,8,0,8,. This result is indicated geometrically by specializing
each C; so that it becomes a union of J; lines, then the number of lines (simul-
taneously) intersecting C,, C,, C;3, C, is obviously 0;6,0;0, times the number of
lines intersecting four lines and the latter number, we know, is 2.

To analyze each X; rigorously, we need to consider the subset Z of the product
P3 x G,,; consisting of the pairs (P, Q) such that the point P of P3 lies on the line
represented by Q. With a certain amount of elementary computations like those in
sections one and two, one can show that Z is a complex manifold of dimension 5
which can be described by a system of (bihomogenous quadratic) polynomial
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equations. Let p: P3 x G;,;— P3 and q: P? x G,,3 — G,3 be the projections. Then
we clearly have X; = q(Z Np~'C,) set-theoretically and it is easy to show that
x; = q «(z - p¥c;), where z is the cohomology class of Z, where p* is the natural
operation on cohomology induced by p and where g . is the Poincaré dual of g*.
Similarly we have Q(1.3)=gq.(z - p*¢). Consequently the relation c;=9,7 implies the
relation x; = 6;g,(z - p*/) = 6,Q(1.3) as asserted.

Finally, we sketch a proof that two quadrics in P* have, in general, sixteen lines
in common. A quadric Q in P" is defined as the set of zeros of a single homogeneous
polynomial F of degree two and the m = (*}?) coefficients of F may be used to
represent Q by a point g of P™~* First, we observe that the lines L in P* which lie on
a general quadric are represented by the points ¢ of a 3-dimensional irreducible
subvariety of G,,,. Indeed, let W be the subset of P14 x G,,, consisting of the pairs
(g,¢) where q represents a quadric Q in P# and ¢ represents a line L lying in Q. Let
p: W— P and r: W — G,,, be the projections. A fiber of r represents the quadrics
Q which contain a given line L. Let F,, F,, F5 be independent homogeneous linear
equations defining L. Then the polynomial F defining Q is obviously of the form

F=G1F1 +G2F2+G3F3,

where G, is a suitable homogeneous linear equation. Hence all such polynomials F
form a vector space of dimension (5 + 4 + 3) = 12, so the fiber of r is P!!. Therefore
W is an irreducible subvariety of dimension [11 + dim (G,,,)] = 17. A general fiber
of p, which represents the lines lying on a general quadric Q, is therefore irreducible
of dimension (17 — 14) =3.

Let Q be a general quadric in P4, let X be the 3-dimensional irreducible subvariety
of G,, representing the lines lying in Q, and let x be the cohomology class of X. By
the basis theorem, we have x = 1Q(0.4) + uQ(1.3) and by the proposition, we have
A =deg(x - ©(0.4)) and u = deg(x - Q(1.3)). Now, no line lying in Q can pass through
a point P of P* not in Q. Hence X NQ(P, P*) is empty, so we have A = 0. On the
other hand, a general 3-dimensional linear space A, intersects Q in a quadric Q, in
this copy of P3 and exactly four lines lying in Q; meet a general line 4, lying in 4,
because A, intersects Q; in two distinct points and therefore meets a line of each
ruling at each point. Hence X NQ(A4, * 4;) consists of four points, so we have
u=4. Let Q’ be another general quadric in P*. Then the number of lines common
to Q and Q’, multiplicities being taken into account, is therefore equal to
deg (x?) = 42deg (Q(1.3)%) = 16.

5. Some comments, references and open questions. — Nearly everything discussed so
far remains valid in characteristic p. The cohomology theory used in section four has
been completely algebrized, and the material of sections two and three generalizes
virtually without change over any ground field. In what follows, we shall work over an
arbitrary ground field k£ and discuss restrictions on k as needed.

The work of Hodge and Pedoe [8] is by far the most complete reference. Their
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treatment is purely algebraic and largely independent of the blanket assumption of
characteristic zero.

Concerning section two.—Proceeding as in the first part of the proof of Theorem 1,
however, using (Laplace) expansion of the determinants along several columns, one
proves that the Pliicker coordinates of a d-plane in P" satisfy more quadratic
relations, namely

% sgn(0) pio - ir-10iz+ 6ig)p(djo -+ Tiare1 " Ja) =0,

o
where the sum ranges over all permutations ¢ of (ij:--izjo:--j;) such that
oi, < - <oiz and gj, < --- < gj;. The quadratic relations (QR) occur when we
take A =d.

For each sequence of integers i, - i, satisfying 0 < iy < i; < :-- < i; < n take an
indeterminate X(iy--- i;) and then, by using the formulas (A), define X(iy--- i) for
any sequence of integers i, --- i, satisfying 0 < i; < n for j = 0,---,d. In these terms,
we can now say that G,,, is contained in the set of zeros of all the homogeneous
quadratic polynomials of the form

(QP) 2 sgn(0)X(ig - iz— 100+ 01)X(Gjo " Ofajas1 " Ja)s

where the sum ranges over the same permutations as above. Now, Theorem 1 says
that G,,,, can be expressed as the set of zeros of the particular such polynomials with
A = d. Consequently, G, , can be expressed as the set of zeros of all the polynomials
of the form (GP) as well. It can be shown formally (by a proof like that of (9) on page
379 of Vol. IT of [8]) that each polynomial of the form (QP) is a linear combination
with rational numbers as coefficients of the particular ones with A =d and it is an
open question whether integers may be used as coefficients.

Let I be the ideal in the polynomial ring R = k[ -+, X (i, :** i), ---] generated by
the polynomials of the form (QP) and let J be the subideal generated by the particular
ones with 4 = d. It can be shown that [ is a prime ideal.

It then follows from the fact that I and J have the same zeros, that I is the
radical of J. An interesting open question is whether I is always equal to J. They are
equal in characteristic zero and would always be equal if the integers could be used
as coefficients above.

The ring R/I is called the homogeneous coordinate ring of G;, and plays an
important role in the study of its geometry. The ring is naturally graded and the m-th
graded piece consists of the residue classes of the homogeneous polynomials of
degree m. Hodge and Littlewood (see [8], vol. II, chap. XIV, §9) have proved an
explicit formula, known as the postulation formula, which expresses the dimension
of m-th graded piece, for every m, as the value of a certain polynomial.

Igusa [9] (Theorem 1, p. 310) proved that R/I is a normal domain and derived
several important results in invariant theory from this fact. The ring R/I is in fact a
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unique factorization domain (see Samuel [21], Proposition 8.5, p. 38); this fact
easily yields Severi’s result that every [(d + 1) (n — d) — 1]-dimensional irreducible
subvariety of G, , is the intersection of G,,, and the set of zeros of a single homo-
geneous polynomial.

More recently, it has been proved (see Hochster [6] and Laksov [16]) that R /I
is a Cohen-Macaulay ring. It follows by general principles that there is an exact
sequence

O-F,—»F,_,—>-->F ->R->R[/[->0,

where the F; are free R-modules and r is equal to [N — (d + 1) (n — d)]. It is an
interesting open problem to give an explicit natural such sequence, or in other words
to find the syzygies of the ideal I of R.

Concerning section three.—For each Schubert subvariety Q(A4, --- 4,) of G, let.
I(A, -+ A;) be the ideal of R generated by the quadratic polynomials of the form
(QP) and the linear polynomials corresponding to the linear equations of Corollary 5.
An important method for proving a result about the ring R/I is to prove more
generally a corresponding result for each ring R/I(4,-:- A;) by induction on the
dimension of Q(A,:-- A,). For example, this method is used to establish the pos-
tulation formula and the Cohen-Macaulay nature of R/I.

Another reason for interest in the rings R/I(Aq-:- A,) is that locally each
Q(Ag -+ A,) can be described as the zeros of certain minors in the affine space of
(d + 1) x (n — d)-matrices. For example, suppose that A; consists of the points in
P" of the form (p(0), -+, p(a;), 0, :-+,0) and that for some s < d we have a; = (d — s + i)
for i =0,---,s. Then Proposition 3 asserts that a point (---, p(jo ***ja),--) of G, , lies
in Q(Aq - A,) if and only if p(j,-:-j,) is zero whenever we have a; < j; for some i
At the end of section two, we noted that the points (:+-, p(jo - ja),-+*) of G,,, with
p(0---d)# 0 are in natural bijective correspondence with the space of (d + 1)
x (n + 1) matrices [p,(j)] such that the (d + 1) x (d + 1) submatrix consisting of
the first (d + 1) columns is the identity. Now, suppose that p(j, - j,) is zero whenever
we have a; < j; for some i. Fixing i =s and considering all sequences

0Zjo< - <ji-1fd=a;<ji<-<j,=n

we easily conclude that all (d — i + 1) x (d — i + 1)-minors of the (d + 1) x (n — a;)-
submatrix of [p,(j)] consisting of the last (n — a;) columns are zero. Conversely,
suppose that all such minors are zero whenever we have i = s. Consider a determinant
p(jo ++ ja) = det[p,(j)] with a; < j; for some i. Since i < s clearly implies a, < j,, we
may assume i=s. Then (Laplace) expansion of the determinant along the last
(d — i+ 1) columns shows that it is zero. Thus the points (-, p(jo--jg),:--) of
Q(Ay -+ Ay) with p(0---d) 7 0 can be described as the zeros of all the (d —i + 1)
x (d — i + 1)-minors from the last (n — a;) columns for all i = s in the affine space of
(d + 1) x (n — d)-matrices.
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The zeros of determinantal equations are called determinantal varieties and have
been studied for a long time (see Room [19]). Many of their properties can be easily
deduced from corresponding properties of Schubert varieties. For example, let I’ be
the ideal of k[ X;] generated by the corresponding determinantal polynomials. The
ring k[ X;;]/I', known as the coordinate ring of the determinantal variety, is Cohen-
Macaulay because a corresponding ring R/I(A4,--- A,) is. Particular cases of this
result were proved by Macaulay [17]; however, the general result was first established
by Hochster and Eagon [7] without reference to the Grassmann manifold.

The syzygies of the ideal I’ would be known if the syzygies of the corresponding
ideal I(A4, -+ A;) were known, but in both cases it is an open problem to find the
syzygies. In special cases they have been determined by Macaulay and Eagon—
Northcott [3]. Recently, Kempf [10] has found a powerful way of determining
syzygies, which gives an elegant treatment of some of the known cases and leads to
the solution of new cases; (recently this was proved by Svanes [24]). '

The Schubert varieties are, in general, singular. (Over the complex numbers, a
singularity is a point where a subvariety is not a complex submanifold.) In fact, a
point of Q = Q(A4, -+ A4,) is singular if and only if the corresponding d-plane L in
P satisfies dim(4; NE) =i for all i, as usual, and also dim(4; "L) =j + 1 for
some j. Hence, the singular locus of Q is a union of other Schubert varieties, and so the
stratification Q = Qy 5 Q; o -+ o Q,, = ¢, where Q; is the singular locus of Q;_,, is
exceedingly well-behaved. Moreover, as we noted above, Q is locally Cohen-Macaulay
and so, since its singular locus is sufficiently small (of codimension at least two), Q
is also normal. Thus, the singularities are very nice. However, it remains to be
proved that (trivial exceptions aside) these singularities are rigid—that any infini-
tesmal family varying an open piece of Q must be analytically isomorphic to the
trivial or product family. The rigidity is known in a very special case and it has
applications to the theory of smoothing singularities (see Kleiman-Landolfi [14]).

Concerning section four.—Let us work over the complex numbers for a while.
Most of the results of cohomology theory we used have become standard algebraic
topology, but the assignment of a cohomology class to an algebraic subvariety of an
algebraic manifold has not become standard. While early triangulations of such
subvarieties have more recently been found unsatisfactory, today it is relatively easy
to define the cohomology class either by using integration or relative (or local)
cohomology and the difficulty lies in establishing the desired properties. A recent
account of the theory is found in the article [2] of Borel and Haefliger.

The basis theorem was first proved by Ehresmann (see [4] §10, pp. 416-418).
He observed that the Schubert varieties furnish a cellular decomposition of the
Grassmann manifold because each Schubert variety contains an open subset which
is an affine space (as we noted on the way to reformulating the basis theorem) and
because the complement of this open set in the Schubert variety is the union of certain
smaller Schubert varieties. The basis theorem then follows from some general results
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about cell complexes which were included for this purpose and which have become
standard. Ehresmann (see [4] §11, pp. 418-422) also proved the proposition
complementing the basis theorem by a simple direct computation involving suitably
chosen Schubert varieties to represent the Schubert cycles in question. He did not
mention either the determinantal formula or Pieri’s formula.

Another approach to Schubert calculus is by way of algebraic groups. When
proving Proposition 4 in section three, we saw that the group GL(n + 1) of invertible
(n +1) x (n + 1)-matrices acts on the Grassmann manifold G,,,. It is easy to see
that the action is transitive and that the d-plane in P" whose points are of the form
(p(0), ---, p(d), 0, ---,0) is left fixed by the matrices of the form

d+1

—~—
d+1 {[ + |o ]

* *

These matrices form a (parabolic) subgroup of GL(n + 1) and G,,, can obviously be
considered as the quotient of GL(n + 1) by this subgroup. This observation suggests
looking more generally at any quotient of a semi-simple algebraic group by a para-
bolic subgroup. The decomposition into Schubert cells can be correspondingly
generalized by means of the Bruhat decomposition (see Borel [ 1], Theorem, page 347),
and Kostant [15] has discovered a close connection between the (generalized)
Schubert calculus and representation theory. In the case of the Grassmann manifold,
the explicit formulas of (ordinary) Schubert calculus result from classical formulas
of representation theory. In the general case, the situation is not fully understood.

Over an algebraically closed field of any characteristic, there are several purely
algebraic theories which can take the place of classical cohomology. By far the most
difficult to develop are the so called ‘“Weil cohomologies’’ such as Z-adic cohomology.
Over the complex numbers these theories are equivalent to classical cohomology and
in any characteristic they have properties like the Kiinneth formula, Poincaré duality
and classes for subvarieties. There are several less sophisticated theories (see Samuel
[20]) which formally resemble the part of cohomology generated by the classes of
subvarieties, but which may be weaker, that is, contain more information. The most
popular of these is the weakest and is known as the Chow ring (see [23] and [25]).
These theories constitute the topological and algebraic intersection theories (mentioned
in section one), and we shall refer to any one of them as a generalized cohomology
theory. At any rate, they are all equivalent for the Grassmann manifolds and the
other varieties with cellular decompositions.

In Hodge-Pedoe [8], a generalized cohomology theory is developed in charac-
teristic zero and the basis theorem for the Grassmann manifold G, , is proved by
induction on n. Then, the proposition complementing the basis theorem is proved
by the same direct computation Ehresmann used. Next, Pieri’s formula is deduced
from the basis theorem and the proposition by another direct computation of the
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same type. Finally, the determinantal formula is deduced formally from Pieri’s
formula. In fact, with a generalized cohomology theory and the basis theorem given,
the remaining three results can always be derived without difficulty in this way in any
characteristic.

The Grassmann manifold G, , can obviously be thought of as representing the
(d + 1)-dimensional (vector) subspaces of an (n + 1)-dimensional vector space.
From this point of view, it is natural to consider the trivial vector bundle of rank
(n + 1) on G, , and its canonical subbundle E whose fiber over a point of G, is the
(d + 1)-dimensional (vector) subspace of the (n + 1)-dimensional vector space rep-
resented by the point. This subbundle E is universal in the sense that for any variety
X and for any subbundle of rank (d + 1) of the trivial bundle of rank (n + 1) on X,
there is a unique map of X into G, , such that the subbundle E on G,,, induces the
given subbundle on X.

A general theory of Chern classes with values in any generalized cohomology
theory has been worked out (see Grothendieck [5]), and the special Schubert cycle
o(h) is exactly the (n — d — h)-th Chern class of the quotient of the trivial bundle of
rank (n + 1) on G,,, by the universal subbundle (see Kleiman [12], p. 297). The
results of Schubert calculus now yield a description of the generalized cohomology
of G, , as the ring generated by these Chern classes. Grothendieck (see [23], Théoréme
1, p. 4-19) has given a formal derivation of this description, without any mention of
Schubert varieties or cycles.

The determinantal formula is related to a very useful formula of Porteous in
differential geometry and it appears in the study of the singularities of a map (see
[18]). The determinantal formula is also the key to proving the existence of certain
special divisors on curves (see Kempf [11] and Kleiman-Laksov [13]), and in his
article [11], Kempf gives a nice direct proof of the formula.

Another source of interest in Schubert varieties is the problem of smoothing
cycles. The problem is to show that the class of any subvariety Z of a nonsingular
algebraic variety V is the difference of two classes each the class of a nonsingular
subvariety. When dim (Z) < (dim (V) + 2)/2 holds, then some multiple of the class
of Z is such a difference and the proof involves a careful study of the geometry of
certain Schubert varieties (see Kleiman [12]). However, it is suspected that the
general problem has a negative solution and in fact that the Schubert cycle o(1) on the
Grassmann manifold G, 5 is not the difference of two cycles each the class of a
nonsingular subvariety, nor is any multiple of a(1).

The examples from enumerative geometry we considered, while simple, illustrate
fairly well the use of Schubert calculus. Classically relatively complicated geometric
situations were studied. They often involved tangency conditions such as requiring a
line to be an n-fold tangent to a given curve or requiring a line to intersect a given
surface and lie in the tangent plane of the surface at the point of intersection. In
principle, the method is always the same: describe the problem in terms of sub-
varieties of a Grassmann manifold; find the degrees of each subvariety; and use the
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formulas of Schubert calculus to compute the product of the classes of the sub-
varieties. Moreover, each degree is the number of points of intersection of a subvariety
with a certain Schubert variety, or in other words, it is the number of solutions to a
certain simpler enumerative problem. In practice, finding the degrees can be dif-
ficult and may, as in the case of tangency conditions, involve more sophisticated
algebraic geometry.

Although we have given the ‘“‘principle of conservation of number’’ a rigorous
mathematical interpretation, it is usually difficult to use it because it is difficult to
know what the correct multiplicities are. For example, consider the lines in P3
intersecting lines L,, L,, L, L,; how can we tell by direct geometric means that if
L,, L, and L; are skew and L, intersects each of them, then the one solution (found
at the end of section three) should be counted with multiplicity two, or, for that
matter, how can we tell that if L, intersects L, and L; intersects L,, then the two
solutions (found in section one) should each be counted with multiplicity one? In the
general case of an enumerative problem, it is possible to prove, in characteristic zero
and often in characteristic p, that the solutions all appear with multiplicity one.
Thus, for example, we may assert that the number of distinct lines in P® meeting four
curves C,, C,,C;,C, of degree 6,,0,,03,9, is, in general, 26,0,0;0, and that two
quadrics in P* have, in general, sixteen lines in common. In analyzing the latter
example, we used geometric means to see that there are four lines which simultaneously
lie on a general quadric, lie on a general 3-plane and intersect a general line in
this 3-plane. Here we are able to say that each solution appears with multiplicity
one because the quadric, the 3-plane and the line in the 3-plane satisfy no
special conditions.

In more abstract terms, we can assert in characteristic zero (see [8], p. 338) that
for any two irreducible subvarieties X and Y of G,,,, the components all appear with
multiplicity one in the intersection of X and the image of Y under the linear trans-
formation of G, , into itself induced by any sufficiently general invertible (d + 1)
x (n + 1)-matrix. It would be interesting to know what happens in characteristic p.
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PRIME FACTORS OF CONSECUTIVE INTEGERS

E. F. ECKLUND, Jr., Northern Illinois University,
and R. B. EGGLETON, The University of Calgary

For each positive integer k, there exists a corresponding positive integer m
such that in any sequence of m consecutive integers greater than k there is at least
one having a prime factor greater than k. A simple demonstration of this fact comes
from a modification of Euclid’s proof that there are infinitely many primes. Let P
be the product of all primes not larger than k, and let a; < a, <--- < ayp be the
positive integers not greater than P which are prime relative to P. For any a; and
any integer r, the number rP + a; is prime relative to P so, if greater than 1, has



	Cover Page
	Article Contents
	p. 1061
	p. 1062
	p. 1063
	p. 1064
	p. 1065
	p. 1066
	p. 1067
	p. 1068
	p. 1069
	p. 1070
	p. 1071
	p. 1072
	p. 1073
	p. 1074
	p. 1075
	p. 1076
	p. 1077
	p. 1078
	p. 1079
	p. 1080
	p. 1081
	p. 1082

	Issue Table of Contents
	American Mathematical Monthly, Vol. 79, No. 10 (Dec., 1972), pp. 1061-1201
	Volume Information [pp. 1171-1201]
	Front Matter
	Schubert Calculus [pp. 1061-1082]
	Prime Factors of Consecutive Integers [pp. 1082-1089]
	The Tangent Bundle of a Topological Manifold [pp. 1090-1096]
	More on the Superparticular Ratios in Music [pp. 1096-1100]
	Correction to "Reconstructing an Evolutionary Tree" [p. 1100]
	Mathematical Notes
	Complements and Comments [pp. 1100-1103]
	Divergence Criteria for Positive Series [pp. 1104-1106]
	Differentiability at a Corner for a Solution of Laplace's Equation [p. 1107]
	On the Existence of Periodic and Unbounded Solutions of Linear Differential Equations with Non-Negative Damping [pp. 1107-1111]
	A Lemma on Partitions [pp. 1111-1112]
	Acquaintance Graph Party Problem [pp. 1113-1117]

	Research Problems
	Problems on the Density of Arithmetic Sequences [pp. 1118-1119]

	Classroom Notes
	Decomposing Modules Over a Principal Ideal Domain [pp. 1119-1121]
	Every Convex Function is Locally Lipschitz [pp. 1121-1124]
	The Derivative of a Determinant [pp. 1124-1126]

	Mathematical Education
	A Modular Approach to Preparatory Mathematics [pp. 1126-1131]
	Mathematics Curricula for Developing Countries: Some Comments [pp. 1131-1133]

	Problems and Solutions
	Elementary Problems: E2385-E2390 [pp. 1134-1135]
	Solutions of Elementary Problems
	E2324 [pp. 1135-1136]
	E2325 [p. 1136]
	E2326 [p. 1137]
	E2327 [p. 1138]
	E2328 [pp. 1138-1139]
	E2329 [pp. 1139-1140]

	Advanced Problems: 5884-5888 [pp. 1140-1141]
	Solutions of Advanced Problems
	5807 [p. 1141]
	5809 [p. 1142]
	5810 [pp. 1142-1143]
	5811 [pp. 1143-1144]
	5812 [pp. 1144-1146]
	5813 [pp. 1146-1147]


	Reviews
	Review: untitled [pp. 1147-1148]
	Review: untitled [pp. 1148-1149]
	Telegraphic Reviews [pp. 1150-1151]

	News and Notices [p. 1152]
	Mathematical Association of America: Official Reports and Communications
	The Fifty-Third Summer Meeting of the Association [p. 1153]
	First Session of the Association [pp. 1153-1154]
	Second Session of the Association [pp. 1154-1155]
	Third Session of the Association [p. 1155]
	Fourth Session of the Association [p. 1155]
	Special Sessions of the Association [pp. 1155-1156]
	Meeting of the Board of Governors [pp. 1156-1157]
	Business Meeting of the Association [pp. 1157-1159]
	Meeting of Section Officers [pp. 1159-1162]
	Meetings of Other Organizations [p. 1162]
	Arrangements, Entertainment, and Recreation [p. 1163]
	Academic Members Elected Into the Association [p. 1163]
	April Meeting of the Maryland-District of Columbia-Virginia Section [pp. 1163-1164]
	April Meeting of the Ohio Section [pp. 1164-1165]
	May Meeting of the Allegheny Mountain Section [pp. 1165-1166]
	May Meeting of the Michigan Section [pp. 1166-1167]
	May Meeting of the North Central Section [p. 1167]
	May Meeting of the Upper New York State Section [pp. 1167-1168]
	June Meeting of the Pacific Northwest Section [p. 1168]
	Acknowledgement [p. 1169]
	Calendar of Future Meetings [p. 1170]
	Future Meetins of Other Organizations [p. 1170]

	Back Matter



