Math 4500/6500 Homework #10

This homework assignment covers our notes on the Nelder-Mead algorithm.

- 1. Code Nelder-Mead on your own in *Mathematica*.
- 2. The *isoperimetric ratio* of a curve in the plane is the ratio of the area enclosed by the given curve to the square of the length. Notice that this ratio is scale-invariant, and that maximizing the ratio is the same as maximizing the area of the given curve.
 - (1) Prove directly that the equilateral triangle has the maximal isoperimetric ratio among all triangles. You might find *Heron's formula* for the area of a triangle in terms of its side lengths to be helpful here.
 - (2) Suppose that the first edge of the triangle joins (0,0) and (1,0) and the third vertex of the triangle is at (x, y). Write down the isoperimetric ratio as a function ι(x, y) and use Nelder-Mead in two dimensions to numerically minimize the function -ι(x, y) in *Mathematica*.
 - (3) Create an animation of the search process showing the triangle and its isoperimetric ratio as Nelder-Mead progresses.
- 3. We can continue the story of the isoperimetric ratio by deriving a general formula for the area enclosed by a polygon joining vertices $v_1 = (x_1, y_1), v_2 = (x_2, y_2), \ldots, v_n = (x_n, y_n)$. We do this using multivariable calculus and the divergence theorem. It's a good idea to spend a few minutes reviewing the divergence theorem, perhaps on Wikipedia, before starting this exercise.
 - (1) Verify that the divergence of the vector field w(x, y) = (x, 0) is 1.
 - (2) Use the divergence theorem to prove that the area enclosed by any curve γ is equal to the flux of the vector field w(x, y) over γ .
 - (3) Evaluate the flux of w(x, y) over the line segment joining (x_k, y_k) and (x_{k+1}, y_{k+1}) in terms of numbers $x_k, y_k, x_{k+1}, y_{k+1}$.
 - (4) Use this flux expression to give a general formula for the area enclosed by vertices $v_1 = (x_1, y_1), \ldots, v_n = (x_n, y_n).$
- 4. We continue the story of the isoperimetric ratio as follows.
 - (1) Write a *Mathematica* procedure called Area using the formula from the last exercise to compute the area enclosed by any list of vertices in the form $\{\{x_1, y_1\}, \ldots, \{x_n, y_n\}\}$.
 - (2) Write a *Mathematica* procedure called Length to compute the length of a closed polygon given by a list of vertices in the form $\{\{x_1, y_1\}, \ldots, \{x_n, y_n\}\}$.
 - (3) Combine the two to produce a *Mathematica* procedure Iso which computes the isoperimetric ratio.
 - (4) Use Nelder-Mead in 2n dimensions to find the maximum of the function Iso for n = 3, n = 10, and n = 100. Prepare animations of the polygon changing as Nelder-Mead operates.