
Math 4250 Minihomework: The Calculus of Variations

In this minihomework, we’ll practice the techniques in our notes on the calculus of variations,
giving proofs of some geometric facts that you’ve probably known for some time (but have never
been able to prove!) and showing how these geometric techniques apply to some other areas of
math. We will give some useful applications of these methods in physics, too. Remember that
geometry is the study of shapes so there’s really no area of math (or science) which is out of
bounds for us as long as it involves shape.

1. (10 points) In the notes, while deriving the solution for the brachistochrone problem, we
claimed that the solution to the (autonomous) differential equation

y′(x) =

√
C − y(x)
y(x)

with boundary conditions y(0) = 0 and y(a) = b has the solution

x(t) = C

(
t− 1

2
sin 2t

)
.

y(t) =
C

2
(1− cos 2t) .

where C is chosen so that the curve passes through (a, b). Prove it by solving the differen-
tial equation using our method for solving autonomous ODEs. (For less credit, check it by
substituting in and differentiating.)
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2. (10 points) You learned in MATH 2700 to solve ordinary differential equations by separation
of variables. Let’s refresh our memory. Suppose we have a differential equation such as

y′(x) =
5x

y
.

This is not an autonomous differential equation1, so we can’t use our previous method (from
the last homework). However, we can rearrange the equation to get all y terms on the left hand
side and all x terms on the right.

y(x)y′(x) = 5x

Now we can integrate both sides with respect to x,∫
y(x)y′(x) dx =

∫
5x dx,

and change variables on the left hand side using dy = y′(x)dx,∫
y dy =

∫
5x dx,

and do the integrals,
y2

2
=

5

2
x2 + C,

and finally solve for y(x),
y(x) = ±

√
5x2 + C,

to get the final answer. This is the most general solution (as we’ve included the constant of
integration). Now practice this method by finding the most general solution to

y′(x) =
2xy

1 + x2
.

1because the right hand side involves x
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3. (10 points) (The multivariable chain rule)

Definition. If f : Rm → Rn, then we can write

f(~x) = (f1(x1, . . . , xm), . . . , fn(x1, . . . , xm)).

The differential or Jacobian Df of f at a point ~x ∈ Rn is the n×m matrix:

Df(~x) =


∂f1
∂x1

(~x) · · · ∂f1
∂xm

(~x)
... . . . ...

∂fn
∂x1

(~x) · · · ∂fn
∂xm

(~x)


A helpful rule for remembering the dimensions of the matrix Df is to remember that since
f : Rm → Rn, the differential Df : Rm → Rn. We can now state:

Theorem (The multivariable chain rule). If f : Rm → Rn and g : Rk → Rm then the differ-
ential of the composition f(g(~x)) can be written2

D(f(g(~x))) = Df(g(~x))Dg(~x)

Here the right hand side is the n × k matrix product of the n ×m matrix Df(g(~x)) with the
m × k matrix Dg(~x). The left hand side is the n × k matrix of partials of the composition
f ◦ g : Rk → Rn.

The case where k = n = 1 is particularly useful for us. Here f : Rm → R1 can be written
f(~x) = f(x1, . . . , xm) while g : R1 → Rm can be written as g(x) = (g1(x), . . . , gm(x)). In
this case,3

d

dx
f(g(x)) = Df(g(x))Dg(x)

=
(

∂f
∂x1

(g(x)) · · · ∂f
∂xm

(g(x))
)

d
dx
g1(x)
...

d
dx
gm(x)


=

∂f

∂x1
(g(x))g′1(x) + · · ·+

∂f

∂xm
(g(x))g′m(x).

(2)

2This looks a lot like the ordinary chain rule d
dxf(g(x)) = f ′(g(x))g′(x) and it reduces to this in the case where

m = n = k = 1.
3Note that we used this equation in the proof of the Euler-Lagrange equation when we computed

d

dε
f(x, y(x) + εv(x), y′(x) + εv′(x)) =

(
∂f

∂y
(x, y(x) + εv(x), y′(x) + εv′(x))

)
v(x)

+

(
∂f

∂y′
(x, y(x) + εv(x), y′(x) + εv′(x))

)
v′(x).

Here we were composing f : R3 → R1 with g(ε) = (x, y(x) + εv(x), y′(x) + εv′(x)) and computing the derivative
d
dεf(g(ε)). We did not include the first term

(
∂f
∂x (x, y(x) + εv(x), y′(x) + εv′(x))

)
d
dεx on the right hand side because

we knew that d
dεx = 0.
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(1) (5 points) Suppose that f : R3 → R1 is given by f(x1, x2, x3) = x21x2 + 7x3 while
g : R1 → R3 is given by g(x) = (cos x, sinx, x). Find the derivative d

dx
f(g(x)) using (2).
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(2) (5 points) Let f : R2 → R3 be f(x1, x2) = (x1, x2,
√

1− x21 − x22) while g : R2 → R2

be g(r, θ) = (r cos θ, r sin θ). Find the differential D(f(g(r, θ))) using the (general)
multivariable chain rule.
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(3) (5 points) Suppose that we have any f : R3 → R1 and another function4 g : R → R3

given by g(x) = (x, y(x), y′(x)) for some function y : R→ R. Find the derivative

d

dx
f(g(x)) =

d

dx
f(x, y(x), y′(x))

using (2). Please explain your work carefully. It’s ok to write the partials of f as ∂f
∂x1

, ∂f
∂x2

and ∂f
∂x3

if you want to.

4Sometimes called the “1-jet” of y at x, because it carries information about y up to the 1st derivative.
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4. (10 points) Fermat’s principle says that a light ray travels along the path requiring the least
time to join endpoints. Further, the speed of light changes with the density of the medium,
slowing as the medium becomes more dense. These observations are combined into the fol-
lowing:

Definition. The optical length of a path ~α(s) taken by a ray of length from ~α(0) to ~α(`) is
given by

F (~α) =

∫ `

0

n( ~α(s)) ds,

where n(~x) is the index of refraction of the medium at the point ~x in space.

and

Theorem. Light follows the path of least optical length between ~α(0) and ~α(`).

(1) (5 points) Suppose that we have a parametrization ~α(t) which is not by arclength. Rewrite
the optical length functional F (~α) as an integral with respect to t using our formula

s(t) =

∫ t

0

‖~α′(x)‖ dx

and the fact that ds = s′(t)dt.
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(2) (5 points) Now suppose that ~α(x) = (x, y(x)) and n(x, y) = 1
y
. Over the next few parts,

we will derive a formula for the path of the light ray from (0, 1) to (1, 1).
Write the optical length functional as an integral in the form

F (y) =

∫ 1

0

f(x, y, y′) dx.

and then write down the Euler-Lagrange equation

∂

∂y
f(x, y, y′)− d

dx

∂

∂y′
f(x, y, y′) = 0

Find a common denominator and simplify carefully (and a lot!). It’s certainly ok to use a
computer algebra system (eg. Mathematica) if you want to.
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(3) (5 points) Solve the Euler-Lagrange equation.
This is a two-step process. You’ll be able to write the Euler-Lagrange equation in the
form d

dx
g(x, y(x), y′(x)) = 0 for some function g.

You then have to solve the first order differential equation g(x, y(x), y′(x)) = C, which
you can do by separation of variables.

Page 12



(4) (5 points) Your solution to the Euler-Lagrange equation should involve two unknown
constants.

• Find values for the constants so that y(0) = 1 and y(1) = 1.
• Write down your final solution and draw a sketch of the path of the light ray.
• An observer located at (0, 1) looking in the direction of (1, 1) will not see an obstacle

located at (0.5, 1). Why not?5

5Physicists use this idea to build “optical cloaking” devices. See https://www.youtube.com/watch?v=
oJb9RnAVDuE for a really great demonstration.
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5. (15 points) (The Hamiltonian) In the last problem, the key step in solving the second-order
Euler-Lagrange equation was to reduce it to a first-order differential equation by realizing that
the Euler-Lagrange equation could be written in the form d

dx
g(x, y, y′) = 0. We’ll now see

that this is a generally useful trick!

Definition. Given a functionalF (y) =
∫
f(x, y, y′) dx, if f(x, y, y′) can be written as f(y, y′)6

then we define the HamiltonianH(y, y′) by

H(y, y′) = f(y, y′)− y′ ∂
∂y′

f(y, y′)

Prove that if y(x) is a solution for the Euler-Lagrange equation

∂

∂y
f(y, y′)− d

dx

∂

∂y′
f(y, y′) = 0

then d
dx
H(y(x), y′(x)) = 0 and hence H(y(x), y′(x)) is equal to some7 constant C for all

values of x. It will help to review question 3 and in particular 3.3 when thinking about how to
do the derivative.

6That is, x does not appear in the integrand for F (y).
7There may be many solutions y(x) to the Euler-Lagrange equation, since it is a differential equation and we

haven’t specified any initial conditions or boundary conditions. The value of C depends on which solution we pick.
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6. (10 points) (The method of Lagrange Multipliers) At some point in your multivariable calcu-
lus course, you should have learned the method of Lagrange multipliers for solving optimiza-
tion problems with constraints with many variables. We’re now going to do a quick review of
the topic in order to help you remember how it works.

Suppose you have a function f(x, y) that you want to maximize along the level curve g(x, y) =
0. That is, you want to find the largest d so that the level curve f(x, y) = d intersects the level
curve g(x, y). As the picture below8 shows, this ought to happen when the two level curves
are tangent to one another and∇f is a scalar multiple of∇g.

Theorem. (Lagrange Multipliers theorem) If f(x0, y0) is a maximum or minimum for f(x, y)
subject to the constraint g(x, y) = 0 and∇g(x0, y0) 6= 0, then there exists some λ0 so that

∇(f(x, y) + λ0g(x, y))|(x0,y0) = 0, or ∇f(x0, y0) = λ0∇g(x0, y0).

The scalar λ0 is called the “Lagrange multiplier” and the function L(x, y) = f(x, y)+λg(x, y)
is called the “Lagrangian”.

(1) (5 points) Suppose that f(x, y) = x+y and g(x, y) = x2+y2−1. Write down a formula
for the Lagrangian L(x, y) and find the gradient9 ∇L.

8Copied from Vadlamani, S.K., Xiao, T.P. and Yablonovitch, E. (2020). PNAS, 117(43), 26639-26650.
9Remember, the gradient of a scalar function f(x1, . . . , xn) is the vector (∂/∂x1f, . . . , ∂/∂xnf).
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(2) (5 points) Now find both solutions to the system of equations

∇L(x0, y0) = (0, 0) and g(x, y) = 0,

for the three unknowns x0, y0 and λ0 and find the points on the circle g(x, y) = 0 which
maximize and minimize the function f(x, y).
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7. (10 points) (Strictly convex and concave functions) If a function f(x) has f ′′(x) > 0, we say
that f(x) is strictly convex (or strictly concave up). If f(x) has f ′′(x) < 0, we say that f(x) is
strictly concave (or strictly concave down).

Suppose that f(x) is smooth and strictly convex or strictly concave. Prove that there do not
exist three distinct points x1 < x2 < x3 so that

f(x1) = f(x2) = f(x3)

Hint: Rolle’s theorem.
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8. (15 points) (The hanging chain) Ever since I was a little kid, I’ve been fascinated by high-
tension towers.10 One of the things that I always admired were the graceful curves the cables
make when stretched from tower to tower. This kind of problem is exactly what we study in
differential geometry. What shape is that curve? And why?

In the right hand picture, you can see the problem more clearly. A cable or chain is suspended
from two fixed anchors, which may as well be located at (−1, 0) and (1, 0). What shape does
the chain make? In this question, we’ll use the calculus of variations (together with Lagrange
multipliers) to answer this question.

We’ll need two ideas from physics:

1. The gravitational potential energy of a mass m is given by mgh, where h is the height of
the mass and g is the (positive) acceleration of gravity.

2. The hanging chain is minimizing gravitational potential energy, subject to the constraint
of fixed length.

The curve that minimizes mgh will also minimize mh, so we can ignore g.11 Now the mass is
the mass of the cable or chain itself, so it’s proportional to length along the curve. This means
that the functional to minimize is given by:

gp(y) =

∫ L

0

y(s) ds =

∫ 1

−1
y(x)

√
1 + (y′(x))2 dx

and there is a constraint functional

len(y) =

∫ 1

−1

√
1 + (y′(x))2 dx = L.

We will now define a Lagrangian:

L(y) = gp(y) + λ len(y)

10There are so many different designs and structures for the towers themselves: why didn’t one “best” design ever
win out over all the others?

11The other thing that mathermaticians tend to say in situations like this is “choose units so that g = 1”. Which
also works, but I never really liked it– after all, it assumes that there are such units. This is true, but unjustified. And
anyway, nobody would want to do that unit conversion.
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In light of Problem 5, because our Lagrangian L(y) = gp(y) + λ len(y) can be written in the
form

L(y) =
∫
y(x)

√
1 + y′(x)2 + λ

√
1 + y′(x)2 dx =

∫
f(y, y′) dx.

instead of solving the second order Euler-Lagrange differential equation for y(x), we can
instead solve the first-order differential equationH(y, y′) = c.

(1) (5 points) Write downH(y, y′) = f(y, y′)− y′ ∂
∂y′
f(y, y′) and solve the equation

H(y, y′) = c

for y′(x) to find a differential equation for the shape of the cable.
Note: You may assume that c 6= 0. (The case c = 0 is a little tricky, but ultimately doesn’t
contribute a meaningful solution.)
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(2) (5 points) Now solve your differential equation for y(x). It will be helpful to remember
that c 6= 0 and so we have the integration formula∫

|c|√
x2 − c2

dx = c arccosh
(x
c

)
+D.
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(3) (5 points) Your solution to the last part should involve three unknown constants: L, C,
and a new constant of integration D. Solve for these constants using the boundary and
constraint equations:

y(−1) = 0, y(1) = 0,

∫ 1

−1

√
1 + y′(x)2 dx = L

Prove that no solutions exist with L ≤ 2.
Notes: It’s a lot easier to apply the first two equations to simplify y(x) as much as you
can before integrating to apply the last one. Remember that c 6= 0. It will help to use the
result of 7.
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9. (20 points) (The isoperimetric inequality, Extra Credit Problem12) Here’s another classical
variation problem. Among all curves joining (−1, 0) and (0, 1) enclosing area π/2 with the
x-axis, which is the shortest? You can probably guess “the semicircle”. Let’s prove it! In this
problem, we have a functional to minimize:

len(y) =

∫ 1

−1

√
1 + (y′(x))2 dx

and a constraint functional

area(y) =

∫ 1

−1
y(x) dx =

π

2
.

Just as we did above, we’ll define a Lagrangian:

L(y) = len(y) + λ area(y).

(1) (10 points) Write down the Euler-Lagrange equation

∂

∂y
f(x, y, y′)− d

dx

∂

∂y′
f(x, y, y′) = 0

and simplify as much as possible.

12This problem is optional, though very cool, and will be graded for bonus points on Gradescope.
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(2) (10 points) The Euler-Lagrange equation involves only y′′(x) and y′(x), so we can solve
for y′(x) either as an autonomous ODE or by separation of variables. Choose a method
and solve, giving us (as usual) another first order ODE for y′(x). Solve that, too, to get a
solution involving λ and two constants of integration C and D. Last, apply the boundary
conditions and the condition that the area under the curve is π/2 to get a final solution for
y(x).
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