Math 4250 Minihomework: The Frenet Frame without an Arclength Parametrization

In the last set of notes (and homework), we learned about the Frenet frame T(s), N(s), B(s), which is an orthonormal frame for \mathbb{R}^3 defined at each point $\vec{\alpha}(s)$ of an arclength parametrized curve. The Frenet frame determines two scalar functions, curvature and torsion, which tell us about the shape of the curve. The most important fact about these is:

Proposition (The Frenet Equations). *The curvature* $\kappa(s)$ *and the torsion* $\tau(s)$ *are defined by*

$$\begin{array}{ll} T'(s) & +\kappa(s)N(s) \\ N'(s) = -\kappa(s)T(s) & +\tau(s)B(s) \\ B'(s) & -\tau(s)N(s) \end{array}$$

In this set of notes, we learned several new ideas about the Frenet frame. Let's summarize:

Definition. ¹ The Frenet frame T(t), N(t) and B(t) at $\vec{\alpha}(t)$ is the orthonormal basis for \mathbb{R}^3 obtained by Gram-Schmidt orthogonalization of the vectors $\vec{\alpha}'(t)$, $\vec{\alpha}''(t)$, and $\vec{\alpha}'(t) \times \vec{\alpha}''(t)$, in this order.² The Frenet frame is defined when all three vectors are defined and nonzero.

Proposition. The Frenet frame at $\vec{\alpha}(t)$ can be written as

$$T(t) = \frac{1}{\|\vec{\alpha}'\|}\vec{\alpha}'$$

$$N(t) = -\frac{\langle \vec{\alpha}', \vec{\alpha}'' \rangle}{\|\vec{\alpha}' \times \vec{\alpha}''\|\|\vec{\alpha}'\|}\vec{\alpha}' + \frac{\|\vec{\alpha}'\|}{\|\vec{\alpha}' \times \vec{\alpha}''\|}\vec{\alpha}''$$

$$B(t) = \frac{1}{\|\vec{\alpha}' \times \vec{\alpha}''\|}\vec{\alpha}' \times \vec{\alpha}''.$$

where all the derivatives on the right hand sides are derivatives with respect to t.

Proposition. If we are given any function $\vec{v}(t)$: $\mathbb{R} \to \mathbb{R}^n$ along a regular curve $\vec{\alpha}(t)$, then

$$\frac{d}{ds}\vec{v}(t(s)) = \vec{v}'(t) \cdot \frac{1}{\|\vec{\alpha}'(t)\|}$$

Here the derivatives on the right hand side are derivatives with respect to t. Notice that this theorem also holds for "vector" functions $v(t) \colon \mathbb{R} \to \mathbb{R}$.

Proposition. The curvature and torsion are given in terms of t derivatives by

$$\kappa(t) = \frac{\|\vec{\alpha}' \times \vec{\alpha}''\|}{\|\vec{\alpha}'\|^3} \quad and \quad \tau(t) = \frac{\langle \vec{\alpha}', \vec{\alpha}'' \times \vec{\alpha}''' \rangle}{\|\vec{\alpha}' \times \vec{\alpha}''\|^2}$$

¹It's basically a matter of taste whether this is the definition of the Frenet frame or a theorem about the Frenet frame.

²One interesting feature of Gram-Schmidt is that it depends on the order in which you present the vectors– for instance, the first vector is always part of the orthonormal basis output from Gram-Schmidt.

1. (20 points) (Signed curvature for non-arclength parametrized plane curves) Recall that in the last homework, we defined tangent and normal vectors for a plane curve $\vec{\alpha} : \mathbb{R} \to \mathbb{R}^2$ with a unit-speed parametrization

$$T(s)=\vec{\alpha}'(s), \quad \text{and} \quad N(s)=T(s)^{\perp}.$$

We also defined the signed curvature by

$$\kappa_{\pm}(s) = \langle T'(s), N(s) \rangle$$

Use the relation between s derivatives and t derivatives on the previous page to find an expression for $\kappa_{\pm}(t)$ when the curve $\vec{\alpha}(t)$ is not parametrized by unit speed.

Page 3

2. (20 points) (Constant Breadth) A closed planar curve $\vec{\alpha}(s)$ is said to have constant breadth if the distance between parallel tangent lines of $\vec{\alpha}(s)$ is always μ . A circle is an example of such a curve, but it's not the only one:

We'll assume that $\vec{\alpha}(t) : [0, L] \to \mathbb{R}^2$ is an arclength parametrization of a curve of constant breadth $\vec{\alpha}(t)$ with $\vec{\alpha}(0) = \vec{\alpha}(L)$ (and all derivatives of $\vec{\alpha}(s)$ equal at 0 and L as well. We'll also assume that the signed curvature $\kappa(s) > 0$.

(1) (10 points) Let's call two points with parallel tangent lines *opposite* points. Suppose that $\vec{\beta}(t)$ is the opposite point to $\vec{\alpha}(t)$. We know that $\|\vec{\alpha}'(t)\| = 1$ because t is an arclength parameter for $\vec{\alpha}$.³ Since the tangent and normal vectors T(t), $N(t) = T(t)^{\perp}$ at $\vec{\alpha}(t)$ are a basis for the plane, there are some coefficients $c_1(t)$ and $c_2(t)$ so that

$$\vec{\beta}(t) - \vec{\alpha}(t) = c_1(t)T(t) + c_2(t)N(t).$$

Prove that $c_2(t) = \mu$ and then prove that $c_1(t) = 0$. Conclude that the chord joining opposite points is normal to the curve at both ends.

³However, there is no reason for t to also be an arclength parameter for the opposite points $\vec{\beta}(t)$, although this is true in the special case where α is the circle.

(2) (10 points) Let $\kappa_{\pm}^{\alpha}(t)$ be the signed curvature of $\vec{\alpha}$ at t, and $\kappa_{\pm}^{\beta}(t)$ be the signed curvature of $\vec{\beta}$ at t. Prove that the signed curvatures

$$\frac{1}{\kappa^{\alpha}_{\pm}(t)} + \frac{1}{\kappa^{\beta}_{\pm}(t)} = \mu$$

Hint: Let $\vec{T}_{\beta}(t)$ and $\vec{N}_{\beta}(t)$ denote the tangent and normal vectors to $\vec{\beta}(t)$. How are they related to $\vec{T}(t)$ and $\vec{N}(t)$? Can you use the results of 1 to compute $\kappa_{\pm}^{\beta}(t)$?

3. (10 points) (Torsion for a curve without an arclength parametrization) Suppose that $\vec{\alpha}(t)$ is a parametrization of a space curve $\vec{\alpha}$ with $\vec{\alpha}'(t) \neq \vec{0}$ and $\vec{\alpha}''(t) \neq 0$. Use the equations for B(t) and N(t) and the equation

$$\tau(t) = -\left\langle \frac{d}{ds}B(t), N(t) \right\rangle$$

to show that the torsion of $\vec{\alpha}(t)$ is given by:

$$\tau(t) = \frac{\langle \vec{\alpha}'(t), \vec{\alpha}''(t) \times \vec{\alpha}'''(t) \rangle}{\|\vec{\alpha}'(t) \times \vec{\alpha}''(t)\|^2}$$

Hint: You might want to review the properties of the *triple product* $\langle \vec{a}, \vec{b} \times \vec{c} \rangle$ from the very first set of notes before you get started.

Page 9