Numerical Recipes in C

The Art of Scientific Computing

William H. Press

Harvard-Smithsonian Center for Astrophysics

Brian P. Flannery
EXXON Research and Engineering Company

Saul A. Teukolsky

Department of Physics, Cornell University

William T. Vetterling

Polaroid Corporation

The right of the
Univeryity of Cambridge

¥ grantee
VIt in 1534
e University has printed
wnd peblished vontimnsly

L since 1584
—
CAMBRIDGE UNIVERSITY PRESS
Cambridge

New York New Rochelle
Melbourne Sydney

10.2 Parabolic Interpolation and Brent’s Method 299

ition of Functions '

0.2 Parabolic Interpolation and Brent’s
Method in One-Dimension
1 three or four points

» looking deceptively
s chapter, be advised.

. We already tipped our hand about the desirability of parabolic interpo-
fion in the previous section’s mnbrak routine, but it is now time to be more
plicit. A golden section search is designed to handle, in effect, the worst pos-
case of function minimization, with the uncooperative minimum hunted
and cornered like a scared rabbit. But why assume the worst? If the
metion is nicely parabolic near to the minimum — surely the generic case for
ently smooth functions — then the parabola fitted through any three
s ought to take us in a single leap to the minimum, or at least very near

(see Figure 10.2.1). Since we want to find an abscissa rather than an
i ; the procedure is technically called inverse parabolic interpolation.
”e formula for the abscissa z which is the minimum of a parabola
ough three points f(a), f(b), and f(c) is

rch

- L (b= a)[/() = J(9)] = b = (S (8) ~ /(o)

"2 2 (b=a)[f(b) = f(c)] — (b—c)[F(b) — f(a)] (10.2.1)

. bx, e¢x (such that bx s
. this routine performs 2
=c|51on of about tol. The =
ction value is returned as =

¥
Al
E

U can easily derive. This formula fails only if the three points are
Bear, in which case the denominator is zero (minimum of the parabola
ifinitely far away). Note, however, that (10.2.1) is as happy j jumping to a
¢ maximum as to a minimum. No minimization scheme that depends
(10.2.1) is likely to succeed in practice.
e exacting task is to invent a scheme which relies on a sure-but-slow
e, like golden section search, when the function is not cooperative, but
tches over to (10.2.1) when the function allows. The task is nontriv-
eral reasons, including these: (i) The housekeeping needed to avoid
ry function evaluations in switching between the two methods can be
ed. (i) Careful attention must be given to the “endgame,” where
on is being evaluated very near to the roundoff limit of equation
2). (iii) The scheme for detecting a cooperative versus noncooperative
On must be very robust.
réent’s method (Brent, 1973) is up to the task in all particulars. At any
ar stage, it is keeping track of six function points (not necessarily all
@, b, u, v, w and z, defined as follows: the minimum is bracketed
and b; 7 is the point with the very least function value found so far
€ most recent one in case of a tie); w is the point with the second least
ilue; v is the previous value of w; u is the point at which the function
uated most recently. Also appearing in the algorithm is the point z,,,
point between a and b; however the function is not evaluated there.
4 can read the code below to understand the method’s logical orga-
Mentlon of a few general principles here may, however, be helpful:
ﬁ interpolation is attempted, fitting through the points z, v, and w.
teptable, the parabolic step must (i) fall within the boundmg interval
‘ (ii) imply a movement from the best current value z that is less

-

will keep track of four points; ,* 2
R
13ller segment,

int 1o be tried.

aluations. Note that we
the function at the 0

ipoints.

e,

valuation

evaluation.

t done.
t the best of the two CY

300 Chapter 10. Minimization or Maximization of Functi ..,if-

10.2 Parab

— — — —parabola 1hruugh®@@
................. parabola lhmugh@@ @

§IGN(a,b) ((b)
SHFT(a,b,c,d)

prent (ax,bx,cx,
ax,bx,cx,tol, *xm
(+2)O); /* AN
a function £, and ¢
7 ax and cx, and {
to a fractional §
n is returned as :
4 function value.

iter;

t a,b,d,etemp,f
t e=0.0;
nrerror();

':'(u < cx) 7 ax :
S p=((ax > cx) ? ax :
z b!.

Figure 10.2.1. Convergence to a minimum by inverse parabolic interpolation. A ;
(dashed line) is drawn through the three original points 1,2,3 on the given fun
line). The function is evaluated at the parabola’s minimum, 4, which replaces
new parabola (dotted line) is drawn through points 1,4,2. The minimum of this pa
is at 5, which is close to the minimum of the function. :

than half the movement of the step before last. This second criteri
that the parabolic steps are actually converging to something, rathe
say, bouncing around in some nonconvergent limit cycle. In the worst p
case, where the parabolic steps are acceptable but useless, the meth
approximately alternate between parabolic steps and golden sect
verging in due course by virtue of the latter. The reason for ce
the step before last seems essentially heuristic: experience shows tl
better not to “punish” the algorithm for a single bad step if it can m
up on the next one.
Another principle exemplified in the code is never to evaluate tl

}
if

x=(2) (x) ;

or (iter=1;iter<=T'
i xm=0.5*(a+b) ;

£ t0l12=2.0%(toll=1
. if (fabs(x-xm) <

*xmin=x;
return fx;

(fabas(e) > to
r=(x-w)* (fx-
g=(x-v)*(fx-
p=(x-v)*q-(x
q=2.0%(q-r);
if (q > 0.0)
q=fabs(q);
etemp=e;

e=d;

if (fabs(p) :
The above condit
section step into

less than a distance tol from a point already evaluated (or from & d=CGOLD* (
bracketing point). The reason is that, as we saw in equation (10.1.2 '“‘d{ =1

is simply no information content in doing so: the function will diff 32,3;
the value already evaluated only by an amount of order the ro if (u-a <
Therefore in the code below you will find several tests and modifie B d=51GI
potential new point, imposing this restriction. This restriction also .} else {

subtly with the test for “doneness,” which the method takes into &
A typical ending configuration for Brent’s method is that a
2 x z X tol apart, with z (the best abscissa) at the midpoint of & AT

therefore fractionally accurate to xtol.

Indulge us a final reminder that tol should generally be no sma I
the square root of your machine’s floating point precision.

#include <math.h>

#define ITMAX 100
#define CGOLD 0.3819680
#define ZEPS 1.0e-10

Maximum allowed number of Iterations; golden ratio; and a small number which protects agains
achleve fractional accuracy for a minimum that happens to be exactly zero.

g 'r'l d'CGDLlh(ga(x

u=(fabs(d) >= tol
- fus=(*f) (u);
it (fu <= £x) {
- if (u >= x) a:
SHFT(v,w,x,u)
. BHFT (fv,ftw,fx,
) else {
s - if (u < x) a=u
if (fu <= tw |
vEw;
w=u,
fv=fuw;
fw=tu;
} else if (fu

of Functions ¥ ¢ 10.2 Parabolic Interpolation and Brent’s Method 301
‘4

fdetine SIGN(a,b) ((b) > 0.0 ? fabs(a) : -fabs(a))
Mefine SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d);

float brent (ax,bx,cx,f,tol,xmin)

t ax,bx,cx,tol,*xmin;

at (*£)(); /* ANBI: float (x*f)(float): */

a function £, and given a bracketing triplet of abscissas ax, bx, ¢x (such that bx is
tén ax and cx, and (bx) is less than both f(ax) and £(cx)), this routine isolates the
minimum to a fractional precision of about tol using Brent's method. The abscissa of the

iinimum is returned as xmin, and the minimum function value is returned as brent, the
eturned function value.

/

int iter;
float a.b,d.ctomp.tu.:tv,iu,rx,p,q.r.toli,tolz.u.v.u.x.n;

. float e=0.0; This will be the distance moved on the step before
- void nrerror(); last.

o

. a=((ax < cx) 7 ax : ¢x); a and b must be In ascending order, though the input

] - b=((ax > cx) 7 ax : cx); abscissas need not be.

. l-:ﬁ-u-v-bx; Initializations. ..
= - Tw=fv=fx=(*f) (x);
p;l::;o?ﬁnaigf ?:;‘;]13 . for (iter=1;iter<=ITMAX;iter++) { Main program loop.
: i xm=0.5+*(a+b) ;

h replaten ymnded t012=2.0# (tol1=tol+fabs (x) +ZEPS) ;

i RF if (fabs(x-xm) <= (tol2-0.6+*(b-a))) { Test for done here.
*xmin=x; Arrive here ready to exit with best values.
return fx;

d criterion insures }

hing, rather than, if (faba(e) > toll) { Construct a trial parabolic fit.

r=(x-w)*(fx-fv);
q=(x-v)*(fx-fw) ;
p=(x-v)*q- (x-w)*r;

. the worst possib_le
s, the method will

den sections, con- 2;2io‘£q6r;); o
1 for comparing to q_hg'(q); P = -p;
e shows that it 18 etemp=e;

p if it can make it ond;

it (tabs(p) >= fabs(0.5+qxetemp) || p <= g*(a-x) || p >= g*(b-x))
The above conditions determine the acceptability of the parabolic fit. Here we take the golden
section step Into the larger of the two segments.

d=CGOLD*(e=(x >= xm 7 a-x : b-x));

aluate the function =5
(or from a known

\ i else {
tion (10.1.2), there . d=p/q; Take the parabolic step.
on will differ from usx+d;

if (u-a < tol2 || b-u < to0l2)
d=SIGN(toll,xm-x);

the roundoff error: =

| modifications of & 3 1
ction also interacts) else {

kes into account. "; . 4=CGOLD*(e=(x >= xm ? a-x : b-x));
s that a and b 88 | u=(fabs(d) >= toli 7 x+d : x+SIGN(toll,d)):
»int of @ and b, D& fu=(xf) (u);

This is the one function evaluation per iteration,

P - Af (fu <= fx) { and now we have to decide what to do with our function
: (a if (u >= x) a=x; else b=x: evaluation. Housekeeping follows:
be no smaller ‘3 ki SHFT(v,w,x,u)
1 2 el SHFT(fv,fw,fx,fu)
45 .} else {
g i if (u < x) a=u; else b=u:
!.‘, - if (fu <= tw || w == x) {
ig - v=w;
Y i w=u;
(i q Tv=tv;
| protects against tryin@g 3 fwstn;

} else it (fu<=fv || v==x || v == w) {

302 Chapter 10. Minimization or Maximization of Functi .,f

" 10.3 One-Di

v=u; 3 problems tl
fv=fu;
} g globally close
} Done with housekeeping. Back for another | prICE. So we are
} |
nomiails ca
nrerror("Too many iterations in BRENT"); pOly
*xmin=x; off error
return fx; is leads us to

jvative at the
¢ whether the

nd-best-so-fa

REFERENCES AND FURTHER READING: il e linear interp

Brent, Richard P. 1973, Algorithms for Minimization without Derl he golden iean: ag
(Englewood Cliffs, N.J.: Prentice-Hall), Chapter 5. ,-' grictions on this ne

Forsythe, George E., Malcolm, Michael A., and Moler, Cleve be rejected, we
Computer Methods for Mathematical Computations (we are fudd:
Cliffs, N.J.: Prentice-Hall), §8.2. 5 information

of functions w

value and don

+3

10.3 One-Dimensional Search with First

Derivatives ou will see that

3 ious section.
Here we want to accomplish precisely the same goal as in the p

section, namely to isolate a functional minimum that is bra.cket | ® <math.h>
triplet of abscissas a < b < ¢, but utilizing an additional capability to@ : 'm 100
the function’s first derivative as well as its value. #ine ZEPS 1.0e-10

In principle, we might simply search for a zero of the derivat‘-"mq?- S BIGH(a,b) ((b) >

the function value information, using a root finder like rtflsp
(§9.2). Tt doesn’t take long to reject that idea: How do we distinguis
from minima? Where do we go from initial conditions where the d
on one or both of the outer bracketing points indicate that “dows function £ and its d
the direction out of the bracketed interval? : :
We don’t want to give up our strategy of maintaining a rigo
on the minimum at all times. The only way to keep such a bracket.
it using function (not derivative) information, with the central
bracketing triplet always that with the lowest function value. Thes
role of the derivatives can only be to help us choose new trial poiE
the bracket. %
Omne school of thought is to “use everything you’ve got”:
polynomial of relatively high order (cubic or above) which agrees
number of previous function and derivative evaluations. For exa
is a unique cubic that agrees with function and derivative at tWk
and one can jump to the interpolated minimum of that cubic (if

ent (ax, bx,cx, ¢
bx, cx, tol, *xmin,

Isolates the mini
method that uses
Inimum function v;

- uu- ok, 0k2;

b .bdd1d2du1
fu,fv,fw, fx,o0ldi
id nrerror() ;

Mments following will pain
u‘cx?u;cx);
>cx?'mt Poex);

*'(*f) (x);

dx=(sdt) (x) ;
minimum within the bracket). Suggested by Davidon and others; | I® (iter=1;iter<=ITMA
for this tactic are given in Acton. A S St ash);
e °11't01*£abl(x)+z|

We like to be more conservative than this. Once superlinear col

A ; [B012=2 Ovto11;
sets in, it hardly matters whether its order is moderately lower or 1

S 1 (fabs(x-xm) <= |

10.3 One-Dimensional Search with First Derivatives 303

| of Functions

ractical problems that we have met, most function evaluations are spent in
etting globally close enough to the minimum for superlinear convergence to
pmmence. So we are more worried about all the funny “stiff” things that high
irder polynomials can do (cf. Figure 3.0.1b), and about their sensitivities to
oundoff error.
- This leads us to use derivative information only as follows: The sign of
he derivative at the central point of the bracketing triplet a < b < ¢ indicates
miquely whether the next test point should be taken in the interval (a,b)
in the interval (b,c). The value of this derivative and of the derivative at
he second-best-so-far point are extrapolated to zero by the secant method
inverse linear interpolation), which by itself is superlinear of order 1.618.
golden mean again: see Acton, p. 57.) We impose the same sort of
trictions on this new trial point as in Brent’s method. If the trial point
ust be rejected, we bisect the interval under scrutiny.
. Yes, we are fuddy-duddies when it comes to making flamboyant use of
grivative information in one-dimensional minimization. But we have had a
1] of functions whose computed “derivatives” don’t integrate up to the
iction value and don’t accurately point the way to the minimum, usually be-
of roundoff errors, sometimes because of truncation error in the method
derivative evaluation.

ck for another iteration.

without Derivatives
gr 5.

sler, Cleve B. 1977,
itations (Englewood

F'irst

":You will see that the following routine is closely modeled on brent in
i€ previous section.

_as in the previous = 3
i g clude <math.h>

§ 18
s bracketed by the 1
pability to compute = fine ITMAX 100
pe e ZEPS 1.0e-10
5 e : o © SIGN(a,b) ((b) > 0.0 7 faba(a) : -fabs(a))
derivative, 131::3 4 MOV3(a.b,c, d,e,2) (a)=(d);(b)=(e); (c)=(f):
rtflsp or z : -
distinguish maxima 3 B8t dbrent (ax,bx,cx,f,df,tol,xmin)
i th derivatives 8t ax,bx,cx,tol, *xmin;
1050 19 ™ i€ (*2) (), (+af) (); /* ANSI: float (#f)(float),(*df)(float); #/
hat “downhill” 18 1 e fl @ function £ and its derivative function df, and given a bracketing triplet of abscissas
N 3, €x [such that bx is between ax and cx, and £(bx) is less than both £(ax) and £(ex)],
] us bra;cw Butine isolates the minimum to a fractional precision of about tol using a modification
g & rgory C o €Nt’s method that uses derivatives. The abscissa of the minimum is returned as xmin,
bracket is to UPM 3 the minimum function value is returned as dbrent, the returned function value.

central point in the &

alue. Therefore th' '

. iter,oki,ok2; The oks will be used as fiags for whether proposed steps are
v trial points mt.bin

at a,b,d.d1,d2,du,dv,dw,dx,e=0.0; acceptable or not.
rloat !u.tv.tw.tx.olde.toli.tolQ,u.ui.uZ,v,w.x.m:
¥0id nrerror();
e got”: Compuw,f.' '
ch agrees with SOF=C
For example, hhd. pi

{ ments following will point out only differences from the routine brent. Read that routine first.
=(ax < cx ? ax : cx);
(ax > cx 7 ax : cx);

. 2 v=bx;
ative at two PO 8 b=tv=tfy=(*1) (x)
; cubic (lf there gy dv=dx=(*df) (x) ; All our housekeeping chores are doubled by the necessity of mov-
ind others, formuia= (iter=1;iter<=ITMAX;iter++) { ing derivative values around as well as function
~ - xm=0.6%(a+b) ; values.
toll=tol*fabs(x)+ZEPS;

. $012=2.0%tol1:
if (fabs(x-xm) <= (tol2-0.6%(b-a))) {

erlinear converg
v lower or higher: &8

-

304 Chapter 10. Minimization or Maximization of Functiongr;*-"
*xmin=x,;
return fx; ERENCES AND
} i Acton, Form
if (fabs(e) > toll) { e) Harper
d1=2.0%(b-a); Initialize these d's to an out-of-bracket value. o Brent, Richai
d2=di; T '
if (dw != dx) di=(w-x)*dx/(dx-dw); Secant method, first on one, then (Englev
if (dv != dx) d2=(v-x)#*dx/(dx-dv); the other, paint. 13
Which of these two estimates of d shall we take? We will insist that they be withj
bracket, and on the side pointed to by the derivative at x:
ul=x+di;
ul=x+d2;
oki = (a-ul)#*(ui-b) > 0.0 && dx+d1 <= 0.0;
ok2 = (a-u2)*(u2-b) > 0.0 &k dx*d2 <= 0.0;
olde=e; Movement on the step before last.)
e=d; %
if (oki || ok2) { Take only an acceptable d, and if both are accep)
if (oki && ok2) take the smallest one. ‘4 DOWHI]?]
d=(fabs(d1) < fabs(d2) 7 d1 : d2); MUItIdJI
else if (okl) i
d=d41;
else = LA] .
d=42; y . With this sectio
if (fabe(d) <= fabs(0.b6*olde)) { R 1, that is, finding t
u=x+d; . .
if (u-a < tol2 || b-u < tol2) ,le._Thls BRESOY
d=SIGN(toll,xm-x); algorithms after t
} else { ; " 8 mization algorith
d=0.6%(e=(dx >= 0.0 7 a-x : b-x)); Bisect, not golden sec .
} Decide which segment by the sign of the derivative. ,strategy.. ThlS
} else { n which one-dimensi
d=0.6*(e=(dx >= 0.0 7 a-x : b-x)); rJIA:".,['he downhill sir
} .1];. ¢ hod requires only
d=0.65%(e=(dx >= 0.0 7 a-x : b-x)); nt in terms of tk
} method (§10.5) is
if (fabs(d) >= toll) { d(mnhi]l Slmplex
u=x+d; i
fu=(+2) (0) ; figure of merit is
} else { tomputational burder
u=x+8IGN(toll,d); 5 . The meth
fu=(*f) (u); 8 - Oq has
if (fu > £x) { If the minimum step in the downhill direction takes us t'O describe or
+xmin=x; we are done. A simplez is the |
. return fx; ints (or vertices)
} etc. In two din
du-:*df) (u); Now all the housekeeping, sigh. a tetrahedron, n
if (fu <= £x) { .
if (u >= x) a=x; elase b=x; ¥ Of linear p!"Ogl.
MOV3(v,fv,dv, w,fw, dw) plex. Otherwise |
MOV3(w,fw,dw, x,fx,dx) bing in this secti
MOV3(x,fx,dx, u,fu,dun) -hﬁndegenerame ie
} else { T e
if (u < x) a=u; else b=u; l?Olllt of a nondege
if (fu <; fw || w==x) {) Points define vector di:
MOV3(v,fv.dv, w,fw,dw i In . s
MOV3(w,fw,dw, u,fu,du) _On&dlmensmna
}else if (Fu<tv ||l v=x || v ==w) { t the success of
MOV3(v,fv,dv, u,fu,du) 7 analogous procec
" } zation, the best
} y ti¥-vector of indeper

nrerror("Too many iterations in routine DBRENT");

*IV.“:"'" supposed to m

P

of Functions

value.

‘hod, first on one, then on
point.

: that they be within the

pboth are acceptable, then

jisect, not golden section, =

the derivative.

10.4 Downhill Simplex Method in Multidimensions 305

EFERENCES AND FURTHER READING:

Acton, Forman S. 1970, Numerical Methods That Work (New York:
Harper and Row), p. 55, pp. 454—458.

Brent, Richard P. 1973, Algorithms for Minimization without Derivatives
(Englewood Cliffs, N.J.: Prentice-Hall), p. 78.

0.4 Downhill Simplex Method in
- Multidimensions

With this section we begin consideration of multidimensional minimiza-
hat is, finding the minimum of a function of more than one independent
. This section stands apart from those which follow, however: All of
rithms after this section will make explicit use of the one-dimensional
‘ ation algorithms of §10.1, §10.2, or §10.3 as a part of their computa-
I al strategy. This section implements an entirely self-contained strategy,
158 v lich one-dimensional minimization does not figure.
' ‘The downhill simplex method is due to Nelder and Mead (1965). The
hod requires only function evaluations, not derivatives. It is not very
glent in terms of the number of function evaluations that it requires. Pow-
hod (§10.5) is almost surely faster in all likely applications. However
nhill simplex method may frequently be the best method to use if
ure of merit is “get something working quickly” for a problem whose
putational burden is small.
‘Lhe method has a geometrical naturalness about it which makes it de-
tful to describe or work through:
B . stmplez is the geometrical figure consisting, in N dimensions, of N +
< (or vertices) and all their interconnecting line segments, polygonal
. In two dimensions, a simplex is a triangle. In three dimensions
tetrahedron not necessarily the regular tetrahedron. (The simplez
d of linear programming also makes use of the geometrical concept of
. Otherwise it is completely unrelated to the algorithm that we are
Al Ibing in this section.) In general we are only interested in simplexes that
-8 Adegenerate, i.e. which enclose a finite inner N-dimensional volume. If
3 oi t of a nondegenerate simplex is taken as the origin, then the N other
@ define vector directions that span the N-dimensional vector space.
one-dlmensmnal minimization, it was possible to bracket a minimum,
the success of a subsequent isolation was guaranteed. Alas! There
ogous procedure in multidimensional space. For multidimensional
ation, the best we can do is give our algorithm a starting guess, that is,
“Wector of independent variables as the first point to try. The algorithm
Bupposed to make its own way downhill through the unimaginable

