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ABSTRACT

It is almost a quarter of a century since Chandler Davis and William Kahan
brought together the key ideas of what Stewart later completed and defined to be
the CS decomposition (CSD) of a partitioned unitary matrix. This paper outlines
some germane points in the history of the CSD, pointing out the contributions of
Jordan, of Davis and Kahan, and of Stewart, and the relationship of the CSD to
the “direct rotation” of Davis and Kato. The paper provides an easy to memorize
constructive proof of the CSD, reviews one of its important uses, and suggests
a motivation for the CSD which emphasizes how generally useful it is. It shows
the relation between the CSD and generalized singular value decompositions, and
points out some useful nullity properties one form of the CSD trivially reveals.
Finally it shows how via the QR factorization, the CSD can be used to obtain
interesting results for partitioned nonsingular matrices. We suggest the CSD be
taught in its most general form with no restrictions on the two by two partition,
and initially with no mention of angles between subspaces.
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1. INTRODUCTION

In 1875 Jordan [14] published a remarkably advanced and thorough analysis
of the angles between two subspaces in R"™. Here we discuss this briefly, but
concentrate mainly on the period when this very geometric understanding
of angles between subspaces developed into the closely related but more
general algebraic concept of the CS decomposition (CSD) of a two-block
by two-block partitioned unitary matrix.

In 1969 Chandler Davis and William Kahan [5] published a concise
overview of their paper [6]. In the overview they emphasized in a finite
dimensional setting the essentials of what we now know as the CSD. Today
it is slowly being recognized as one of the major tools of matrix analysis.
Davis and Kahan’s subsequently published paper [6] used the ideas in the
context of infinite-dimensional Hilbert spaces, but here we consider only
C" with vector norm ||u|| = (u”u)'/? and subordinate matrix norm || A||.

The simplest useful example of a CSD is a 2 x 2 real orthogonal matrix
partitioned into elements, since it already exhibits the CSD as one of the

e s
give the CSD its name. There is at present no universally accepted form for
the CSD in general, but all forms effectively diagonalize the four subblocks
of the unitary matrix, and are trivial variants of each other corresponding
to permutations and sign changes, so in Section 2 we state a general form
which encompasses all possibilities. In Section 3 we show to what extent
in [5] and [6] Davis and Kahan derived the CSD, and summarize some of
their other contributions to the topic, including emphasizing the very close
relation of the direct rotation of Davis [2] (see also Kato [16]) with the CSD
in the context of angles between subspaces. In Section 4 we briefly outline
some of the history following Davis and Kahan’s work, in particular indi-
cating Stewart’s key contribution [23], and the relevance of the approach
of Paige and Saunders [17]. Section 5 summarizes the superb contribution
of Jordan [14] in analyzing the angles between subspaces problem so thor-
oughly, while Section 6 indicates the historical development of the direct
rotation. Section 7 discusses some significant work by statisticians on an-
gles between subspaces. In Section 8 we give a simple proof of the general
form of the CSD stated in Section 2, in Section 9 we discuss other variants
of the CSD, and in Section 10 we consider how the direct rotation of Davis
and Kato may be relevant to the CSD even if we are not initially dealing
with angles between subspaces.

forms [ g 5 or [ ¢ _i ] , where the abbreviations for cos # and sin 6



We then move from history to illustrating the power and generality of
the CSD. In Section 11 we start by giving a simple but convincing algebraic
motivation for learning and using the CSD, then discuss some of its uses
to give an idea of its generality and importance. Section 12 shows how
the CSD provides the generalized singular value decompositions (GSVD) of
collections of subblocks of the partitioned unitary matrix. Section 13 shows
an apparently new use of the CSD for analyzing relationships between
submatrices of a nonsingular matrix and of its inverse. Section 14 shows
how the form of the CSD given in Section 8 trivially reveals some useful
relationships between the nullities of the subblocks of @), and how via the
technique in Section 13 these relationships are immediately seen to hold
between the subblocks of a nonsingular matrix and its inverse. This is a new
use of the CSD, showing how it easily provides proofs of some interesting
recent results on nullities. We conclude by summarizing our historical
findings and discussing what would be the most desirable form for the CSD
in general. We suggest that for pedagogical reasons the CSD be presented
as a decomposition of subblocks of unitary matrices with no initial mention
of the angles between subspaces problem. This encourages use of the simple
and fully general proof in Section 8 here. The angles between subspaces
problem can then be treated as one very important use of the CSD. We
suggest some simple answers to the question as to when we should try to use
the CSD. Briefly, this powerful theoretical tool is worth trying whenever it
might even remotely be applicable — it brings such clarity and simplicity.

2. THE GENERAL FORM OF THE CSD

The most general form of the CSD is as follows (we give a proof in Sec-
tion 8). For any 2 x 2 partitioning

C1 (6]
o[ G] n amnanara

of a unitary matrix Q (Q7 Q = QQY = I), there exist unitary Uy, Us, Vi, Vo
such that (here and elsewhere unnamed blocks are always zero)

H _ Ut Q1 | @i2| |V = | D1 | Do
vrev= [ UzH] [Qu sz] [ Vz] =D= [D21 Dzz] (2)

with each r; x¢; Dj; = UZ»HQMV]' being real and essentially diagonal (that is,
each row and each column having at most one nonzero element). Thus the
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four unitary Uy, Us, V1, V5 essentially give the singular value decompositions

(SVD) of all four subblocks
Qij = UiDyVH, ij =12,

whereas eight different unitary matrices would be required if ) was a gen-
eral matrix. This double use of each of Uy, Us, Vi, Vo in these “SVDs” is
the key to the wide applicability of the CSD. We will discuss precise forms
of possible D;; in later sections.

3. THE CONTRIBUTIONS OF DAVIS AND KAHAN

Davis and Kahan [5, 6] were concerned with distances (in terms of angles)
between subspaces. For our simplified description let & of dimension rq
and F; of dimension ¢; be any two subspaces of C". For simplicity in [5,
pp. 864—5] they assumed

r1 <eci, r1+e <, (3)

and in our terms effectively showed that for any unitary matrices I/ =
[E1, Fa], F = [F1, Fo] such that R(FE,) = & and R(Fy) = Fi, where R()
denotes range, there exist unitary Uy, Uy and Vi so that

@]
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C = diag(cos by, ... ,cosb,,), S = diag(sinfy,...,sinf,), 0<6; <w/2,

pointing out of the #; that “These angles, ‘the angles between the sub-
spaces’, are the invariants that characterize the separation between the
given subspaces”. If in (2) we define @ = FHF we can see Davis and
Kahan derived the structure of Dy; and Dsy in the CSD, subject only to
the innocuous restriction (3).

Davis and Kahan did not give the structure of Dys and Das in (2) in
either [5] or [6], but instead showed that if

W = EUDUYEH, (5)
C C é —g 1
1 2 2 2

. 1 Dyy | Dis I,

D = [Dy, D))= |—= - =1 . . 6
[Dr. D] [ Dsy | Do ] S C ry (6)

I
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then unitary W is the “direct rotation” of R(E}) into R(Fy). They pointed
out in [6, p.18] that the direct rotation was introduced by Davis [2] and
Kato [16, First Edition, Ch. 1 §4.6 & §6.8], both influenced by Sz.-Nagy [19,
§136], (this book was written in two parts, Sz.-Nagy writing the second part
of §§64-155). They also mentioned that “Most of the novelty of the present
treatment” (of distances between subspaces) “is in matters concerning the
direct rotation”. They emphasized the geometric significance of the direct
rotation and in [6], for 71 = ¢1, proved several important properties, in
particular that of all unitary matrices taking R(F1) onto R(Fy), the direct
rotation differs least from the identity [6, p.10 & §4]. We will refer to D as
the “core” of the direct rotation W. To touch briefly on these properties,
note that

W =1l =D -1, (7)

and no unitary transformations restricted to individual subblocks of D will
decrease the norm of this difference, and this is clearly true in (6) for 71 < ¢1
as well as ry = ¢;.

By finding this detailed structure of the direct rotation, Davis and Ka-
han did everything but prove the rest of the CSD, because as is now well
known, this D does in fact correspond to one form of D in the CSD (2) of
Q = EPF. We will show this here for the special case of r; = ¢;, and in
Section 9 for the general case. But before this, note from (4) that

F\Vy = EUD;,
so from the definition of W, and since r; < ¢,
WE U, = EUDUYEHEU,

- 17‘1 - 17‘1 17‘1
EUD|: 0 :|:EUD1|: 0 :|IF1V1|: 0 :|, (8)

showing R(W Ey) C R(Fy), as required of the direct rotation. In [6] only
the case r1 = ¢; was considered, and then clearly WEU; = F;V; and
R(WEy) = R(Fy). In this case it is easy for us to show the correspondence
between D and the CSD of FH F. Since EU = [E Uy, ExUs), F = [Fy, Fs)

and W EU are unitary matrices,
R(W Eolls) = RIWE U Y = R(F1Vi)E = R(F),
and we see

WEU = [WE\Uy, WElh) = [ Vi, FaVa] = FV
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for some unitary Vs, and so WEU = EUDU"EHEU = FV gives
UTET RV = D, (9)

which from the structure in (6), see (2), is clearly the CSD of Q = EH F
with 7y = ¢;.

So although Davis and Kahan did not prove the full CSD, under the
mild restriction (3) they did prove half of it (the form of Dy and Daj)
and give the form of the rest of it. We see also that the core of the direct
rotation between subspaces gives one important form for the CSD, and
Davis and Kahan proved valuable properties of this, properties which apply
immediately to this form of the CSD.

4. SUBSEQUENT CONTRIBUTIONS OF STEWART AND OTHERS

The overview [5] was received on February 4, 1969, two months after the
main paper [6] (received December 9, 1968), and as it was written later,
was not referenced by that main paper. The contributions of the main pa-
per were quickly recognized, see for example [21, 30, 1, 22] (none of which
cited [5]), and it became a key paper in matrix analysis. In particular
Bjorck and Golub [1, equation (15)] derived the direct rotation and, re-
ferring to [6], emphasized several of its properties and its importance for
angles between subspaces and canonical correlations. They also proved
that the cosines of the principle angles and the principle vectors associated
with these subspaces came from the SVD of (in our notation) E¥ Fy in (4),
see [1, Theorem 1], but unlike [5] did not explicitly point out the SVD of
EIFy in (4), or the other subblocks of EH F. Tt was left to Stewart [23] to
recognize the greater generality of this angles between subspaces tool that
Davis and Kahan in [6] and Bjérck and Golub in [1] had used so effectively.
Unaware of [5], Stewart in an appendix to [23] gave a proof of the CSD for
the case of r1 = ¢; < n/2, pointing out that the result was implicit in [6]
and in [1]. This contribution was extremely important, not so much be-
cause it appears to be the first complete proof given for a CSD, but because
it simply stated the CSD as a general decomposition of unitary matrices,
rather than just a tool for analyzing angles between subspaces — this was
something [5] had not quite done. This elegant and unequivocal statement
brought the CSD to the notice of a wider audience, as well as emphasizing
its broader usefulness. Stewart widely advocated the use of the CSD, and
came up with this appropriate name. He first used the name in the early
1982 presentation of [25], and it first appeared in print in [24].

Van Loan, see for example [28], was another champion of the CSD, and
it was partly as a result of his enthusiasm for it that the CSD became the
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crucial tool in the formulation of the generalized (now quotient) singular
value decomposition (QSVD) proposed in [17] (a reformulation and minor
generalization of Van Loan’s BSVD in [27]). For that paper the authors
were aware of [6] and [23], but not of [5], and finding it necessary for their
theory of the QSVD they proved the CSD (2) with no restrictions on the
dimensions of the subblocks of (). In retrospect one small contribution
of that proof compared with [5] and [23] is that it has no distinct cases
to deal with, and so its CSD statement is a little more general and the
proof a little more simple. This CSD statement also makes more obvious
some previously unnoticed rank relations, see Section 14. The paper gave
another important application of the CSD, to the theory of the QSVD of
general 71 x m A; and m X ro As. Section 12 follows those ideas to reveal
how the CSD gives the generalized SVDs (GSVD, see [7]) of collections of
subblocks of @ in (1).

The CSD was stated in the first (1983, §2.4) and second editions of
the high level text by Golub and Van Loan, see [9, §2.6], in the context of
distances between subspaces, and distances between orthogonal projectors.
A proof of the CSD was given in the monograph by Stewart and Sun
[26, §1.5] which used it in the context of distances between subspaces, and
showed how it gives useful results on the singular values of products and
differences of orthogonal projectors. On page 46 Stewart and Sun gave the
direct rotation W and stated the optimality of [|W — T|| (see (7) here),
leaving the proofs as exercises. Both these books referenced [6, 23, 17], but
not [5]. The ideas of the CSD were used in the undergraduate text [29,
§7.5], in the context of angles and distances between subspaces, but the
actual CSD was not stated — this book referenced none of the papers, but
gave an introduction to the basic ideas.

In all these books only the case r; = ¢; was considered, even though
the original work in [5] did not have this restriction, and [17] showed the
CSD with no restrictions at all on the dimensions of subblocks is required
in general problems, and gave a brief proof of this general formulation.

5. THE ORIGINAL CONTRIBUTION OF JORDAN

G. W. Stewart informed the authors that Jordan dealt with angles between
subspaces in 1875 [14], and [6] also referenced Jordan’s paper. Jordan’s
work was so advanced and complete it is worth summarizing some of the
details here. He dealt with R™ and used the terminology that a linear
equation defined a plane, k simultaneous (independent and not incompat-
ible) linear equations defined a k-plane (which we see is a linear variety or
affine subspace of dimension n— k), n—1 a line and n a point. For these he



used “le nom générique de multiplans”. In parts IV and V he studied those
relations between two “multiplanes” that were independent of the choice
of (rectangular) axes, and stated on page 104:

Our main results can be stated as the following propositions:

e A system made of a k-plane Py and an [-plane P, having a
common point has r distinct invariants, » being the mini-
mum of k, I, n—k, n—1. One can consider these invariants
as defining the angles of the two multiplanes.

e The various planes perpendicular to Py and to P; form
respectively by their intersections an n — k plane P,_g
and an n — ! plane P,_;, having between them the same
angles as P and P).

e If P, and P, do not have a common point, we will have
one invariant more, that is their shortest distance. This
invariant is expressed by a fraction whose numerator and
denominator are sums of squares of determinants.

It is clear from the first proposition that Jordan obtained and under-
stood angles between subspaces just as we know them today. In fact in
[14, p.138, (78)&(79)] for the case k = he obtained the now well known
equations (later essentially given by Hotelling [10]) for v = cos @

e 1= e 1)

where k x n A gave Py as the null space of A and k& x n B gave P; as the
null space of B. Here we have shifted to spaces and written the equations
in matrix form for clarity.

Jordan’s second proposition is less clearly stated (or our translation
of 19th century scientific French is inadequate), but from the rest of the
paper it is clear it means (again using subspaces and modern terminology
for clarity): Tf Py and P, are two subspaces of R™, then the angles between
Plj‘ and PlJ‘ are the same as those between P, and P;.

6. HISTORY OF THE DIRECT ROTATION

In his papers [2, 3, 4] Davis was unaware of [14], but did for example cite
[20] which discussed only rudimentary ideas of angles between subspaces.
Tt was not until the collaboration with Kahan [6] that they cited Jordan’s
work. So instead of working directly from Jordan’s ideas, it is apparent
that Davis developed the direct rotation as an original way of treating the



9

separation of subspaces. Since the direct rotation led to the CSD, we will
indicate its history here, as usual restricting ourselves to C™. In doing so,
we will reveal the structure of the predecessors of the direct rotation in the
notation of Section 3.

Thus E = [Fy, Bo), F = [Fi, Fs] and Q = E¥ F are unitary matrices
with 7; X ¢; Qi = EZHFj, and again we assume 71 < ¢; and 1 + ¢; < n.
For clarity we will also define the projectors A = EEf, A = EyEH
B = FyFf and B = FyFff. We can use the distance between projectors
[|[A — BJ|| as a measure of distance between R(F;) and R(Fy), and the
results we mention here will require

A B|| < 1. (10)

Now from (4) we can show A — B = EyEf — FyFH has ry — ¢y zero
eigenvalues and ¢; — r1 unit eigenvalues, with the rest being +siné;, ¢ =
1,...,71. Thus to satisfy (10) we need r; = ¢y, meaning R(F1) and R(F})
have the same dimension, and |sin ;| < 1, so that Dy; in (6) is nonsingular
C’ I, 1s nonexistent and Dzz 18 nonsmgular

For the case (10) Sz.-Nagy [19, §136] introduced
W = B[l + A(B — A)A]"Y/%4 (11)

to map R(Fy) onto R(Fy), with WH mapping R(Fy) onto R(E1), see
below. The term in square brackets is from (4)

A+ ABA = E,EY + E\EF R FFE,EY = E diag(U,C*UF | 1,,)E"

and the nonsingularity of C' gives

w

B FEE diag(v,C~'UH 1, ) ER B, EE
mFEEB U, CTWUEER = FviUE EE.

We see W is singular but neither Hermitian nor idempotent, while
WE, = WU,  wiR =0, vE.

Thus W preserves norms and inner products of elements in R(F7), and
maps any element of R(Fs) to zero. Clearly WH treats R(Fl) and R(F»)
analogously. Sz.-Nagy called W and WH “partially isometric”
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Davis wanted a wunitary mapping, and influenced by this work of Sz.-

Nagy defined for [|A — BJ| < 1 (see [2, (2.11)-(3.12)])

H = ABA+ ABA = (AB+ AB)(BA + BA)
= I-A-B+4+AB+BA=BA+AB (12)
= BAB+ BAB = (BA+ BA)(AB + AB),

W = H-Y?(BA+ BA), (13)

since in this case he showed H is nonsingular. Tt followed that WW#H =
H-Y2HH~12 = I so W is unitary, and Davis showed W takes R(F4)
onto R(F1) and R(F3) onto R(F2). Thus for R(E;) and R(Fy), W is the
unitary version of (11).

While one of the lasting contributions of Davis; and then of Davis and
Kahan, was to develop and understand W and its importance for the angles
between subspaces problem, leading to the direct rotation in (5) and the
partial CSD in (4), here we use their results to travel swiftly in reverse and
show W is a special case of the direct rotation W in (5). This will also
reveal the interesting structure of H.

First we note from (12)

(EfHE)" = E¥YHE, =0,

and from (4) remembering Dy =C
EfHE, = EFBE, = EF R, FEE, = U, DL UR.
But since 71 = ¢; we have shown there exists unitary Vs giving (9), so
EYHEy = B BEy = By FyFy' By = Uy D3, UST,
and these results combine to give
H = FU diag(D11, Dao)?UH EH = EUD*UTEH | say, (14)
where H is clearly positive definite giving H-Y? = EUD-'U¥ EH

To obtain the structure of W we see (BA + BA)El = BE,, while
(BA+ BA)FEy = BFE5, so from (13), (4) and (9)

WE, = EUD'WWHERRFFE, = EUD' DD\ WUI = EUDUE,

WEy, = EBUD'WHEHR,FIE, = EUD™ ' DyDyUF = EUD, UL,
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where we have used the structure of P and D in (14) and (6) with I
nonexistent. Combining these gives

WE=FEUDUY =WFE

for W in (5), so W is the special case of the direct rotation W when
[|[A-B| < 1.

Again following Sz.-Nagy [19, §136], Kato [15], see [16, Ch.1 §4.6 &
§6.8], introduced the direct rotation (13), but did not develop the ideas
significantly.

7. SOME CONTRIBUTIONS BY STATISTICTANS

The angles between subspaces problem is also of great interest to statis-
ticians, and in 1936 Hotelling [10] rederived some of Jordan’s results and
showed their importance in that area. Around the time Davis and Kahan
were writing [5, 6], two statisticians were exploring some similar ideas. In

1970 James and Wilkinson [11] stated:

The characterizing geometrical properties are summarized by
a canonical decomposition theorem for vector spaces, due es-
sentially to Jordan and to Hotelling (1936). In §2 we give a
formulation and proof of the theorem in terms of projection
and shrinkage operators.

If & and F; are any two subspaces of R™, A is the orthogonal projector onto
&, and B is the orthogonal projector onto Fi, they showed that the nonzero
eigenvalues \; of ABA and BAB are identical, and \; = cos?#;, the #; being
the angles between the subspaces. Tf the corresponding (orthonormal sets
of) eigenvectors are given by ABAw#; = Ai; and BABo; = A\#; they
showed these are biorthogonal sets, that is ﬁZ»Tf)j =0,i#j,and @ ¥ =
cos 0;.

With a little imagination (and abbreviation for simplicity) we can see
such geometric results imply part of the CSD, although James and Wilkin-
son did not formulate any part of the algebraic CSD. Thus if we use the
notation of Section 3, we have A = F1Eff, B = 1 FJ7, and

ABA = E\QuQfiEf,  BAB=FRQfQuF/, Qu=EF.

The nonzero eigenvalues are clearly identical, and equal to the squares of
the nonzero singular values of )11, the cos 8; as stated. If D is the diagonal
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matrix of these nonzero singular values, and [71 and ‘N/l the matrices of
corresponding orthonormal eigenvectors of ABA and BAB, we have

EQuQEERU, = U, D?, FQEQ.FEV, = VD%

But clearly [71 is orthogonal to Fy and ‘71 is orthogonal to Fy, so we may
write [71 = F1Uq1 and ‘N/l = F1Vi1 where U1 and Vi1 may not be square
but UﬁUll =1, VﬂIVH = I. We can now see that their biorthogonality
results imply

viv, =UEEE RV, = UEQ Vi = D,

which is part of the Dq; block of the CSD. James and Wilkinson also
showed if A =1 — A then ABA has eigenvalues sin” ;. Note that ABA =
F2Q21QY EH | 50 they also obtained knowledge pertinent to the Ds; block
of the CSD.

8. A PROOF OF THE CSD

Since the D;; are essentially diagonal, and D is real and unitary in (2),
its elements are severely restricted. Different statements of the CSD corre-
spond to different allowable matrices D within these restrictions. Perhaps
the simplest formulation and proof when there are no restrictions on the
partitioning (1) is the following [17].

THEOREM 1. The CSD. For any partitioning of unitary Q as in (1)
there exist unitary Uy, Uq, V1, Vo such that

C1 Co
THQV = U Quvi | U Q1aVs ] :[ Dia | Dis ] 1
U7 QuVi | UFQaaVs Doy | Doy | 7o
I of

C S

0. I
= [D1|D2]:D: Os T , (15)

S —C

I of

C =diag(y1,...,7s), 1>m2>...27 >0,
S = diag(oy,...,04), 0<o1<...<oy<1, C*+8*=1.
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The Oy and O, are matrices of zeros, and, depending on @) and the parti-
tion, possibly having no rows and or no columns. Some of the unit matrices
could be nonexistent, and no two of them need be equal. The four C' and S
matrices are square with the same dimensions, and could be noneristent.

Proof. Choose Uy and V; to give the usual SVD of @11, resulting in
Dy1. Note [|d;|| = 1 for any column (or row) of D, so no singular value of
Dy1 can exceed unity. Choose unitary Us and V5 to make U2HQ21 Vi lower,
and UFQ5V5 upper, triangular with real nonnegative elements on their
diagonals ending in the bottom right hand corners. The orthonormality of
the columns of D shows D57 must have the stated form. The orthonormal-
ity of rows gives Dq9 except for the dimensions of the zero block denoted
OSH. Unit length of columns and rows also shows the form of Dss in

1 01
C S
O, T
D= O, K L
S M N
1 019

Orthogonality of the second and fourth blocks of columns shows SM = 0,
and so M = 0 since S is nonsingular. Similarly from the second and fourth
blocks of rows I = 0. Next from the fifth and second blocks of rows
SC+NS=0,s0 N=—C. Then we see KK? =T and KFK =1, s0 K
is unitary and can be transformed to I without altering the rest of D by
for example replacing U by diag(K I, [)UX . Finally the unit matrices
in the (1,1) and (4,4) blocks show O15 = O and similarly O, = OF . m

E]

The form in (15) is reasonably easy to remember on noting the nonzero
elements of D1y and Do are on their main diagonals, and are nonincreasing
in absolute value going down these diagonals. The nonzero elements of Dsy
and D5 are nonincreasing going up the diagonals starting in the bottom
right hand corners. These “diagonal forms” of what are essentially SVDs
are about as close as we can get to the usual form of SVDs.

9. VARIANTS OF THE CSD

To obtain other variants of the CSD we note it is possible to permute the
first 71 or last ro rows of D in (15), or the first ¢; or last ¢ columns, in any
fashion, and to change the sign of any row or column. Beyond that any
allowable unitary transformation that alters D would destroy the real and
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essentially diagonal form of some block of D, and so D is unique except for
these variations.

The main variant we will consider apart from (15) is that in which D
in (2) is D, the core of the direct rotation (5). Because of its analogy with
a rotation matrix, this is easier to remember than (15), but to obtain this
precise form we see we have to assume in (1) and (6) that

r < < v, (16)

which can be seen to be equivalent to (3). This can always be satisfied if we
are free to reorder and transpose blocks, for suppose 7,4, 18 the maximum
of 71 and ry ete., then we can either obtain (16) by permuting blocks, or

Cmin S Tmin S Tmagx S Cmax,

in which case we transpose @ (exchanging r and ¢) and then permute
blocks if necessary. Then from (15) we can then write O, = [Oc, Oc] and
Of =[0F  0,] with O, and O, square, and we can multiply the last two
blocks of columns of the rightmost matrix in (15) by —T and rewrite it as

7 of | o, 1T ]
C =S C -
0. | O. I
O, I. _ I.
O, T -
S C S C
T O.
L Is Of- L Is _

where C' = diag(1, C, Oc) and S = diag(Os,S, I) are square. Permuting

rows and columns within the main blocks gives the “direct rotation version”

¢ |-S

D1 | Do I,
D= = . . 17
[ Day | Das ] S C (17)

I

of (2), which is the form of the CSD partly proven by Davis and Kahan
[6], and fully proven by Stewart [23] for the case r1 = ¢;.
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10. THE DIRECT ROTATION AND THE GENERAL CSD

Section 9 showed that one form of the CSD of Q@ = E¥ F does give the
core D of the direct rotation (5), even when ry < ¢1. The point of D here
is that, unlike D in (15), it is closest to 7 among all CSDs of (). Thus the
equivalent to (17) for any partitioning can easily be found from (15) by
making allowable changes to (15) till it is as close to I as possible. This
means leaving D, alone, moving the elements on the diagonal of Dys to
be on the diagonal of D, and ensuring the part of the diagonal of D which
passes through Day (or Dis) becomes I (e.g. the I, in (17)). Tt follows
that (15) is a satisfactory starting point for finding the corresponding direct
rotation version for any partitioning of Q.

It is useful to consider the geometric meaning and relevance of direct
rotations W when we are given () rather than two subspaces. We can
arbitrarily factor @ = FfF = FH(EQ) using any unitary E, and if the
direct rotation version (17) of the CSD of @ with vy < ¢ is

UfQv =D,
then the corresponding direct rotation is from (5)
Wg = EUDUR EH (18)

where if £ = [Fy, Es], @ = [Q1,Q2], F = EQ, with n x ry Ey and n x ¢;
Q1, (8) shows
R(WgFEy1) CR(EQ1). (19)

Clearly every direct rotation corresponding to @ with this partitioning
has the same core D, which is the right hand side of the direct rotation
version of the CSD of @. Also paraphrasing [5, p.866], of all unitary W
satisfying (19), the one which minimizes each unitary-invariant norm of
(I-WHYH (I —W), including in particular ||I —W|| and the Frobenius norm
[|I — W||F, is the direct rotation (18).

The most relevant choices of F are I and Q¥ = [QM), Q] nxr Q).
We see the direct rotation Wi corresponding to £ = I maps the subspace
R([ 161 ]) into R(Q1), while Wor maps R(QM) into R([ 161 ]), and
these are the unitary transformations that differ least from the identity
in doing this. Thus the idea of the direct rotation of Davis and Kato is
relevant for general unitary ), in that certain particular direct rotations
among those possible for a given partitioning of () have geometric meaning
and useful optimality properties.
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11. MOTIVATION FOR AND USE OF THE CSD

A brief discussion of why the CSD is so powerful and a particular example
of its use will start to show how general and useful it is, and give some
feeling for how to use it in novel situations.

Perhaps one of the most convincing motivations for using the CSD
is the realization it provides an extremely simple and practical algebraic
characterization of the subblocks of a unitary matrix @. A matrix @ is
unitary if and only if @ is square and Q7 Q = I, but it is awkward to
include the squareness when dealing with subblocks. Thus a popular way
of characterizing the four subblocks r; X ¢; @y, ¢, 7 = 1,2, of unitary @
used to be via the eight equations arising from the subblocks of

HnA ICl 0 H _ Im 0
Q Q — |: 0 162 ) QQ — 0 Irg ) (20)
but these are remarkably awkward to manipulate. However if we write
Qi; = U;Di; V¥, Ui and V; unitary, i,j=1,2, (21)

with the D;; having the form in (15), then we not only immediately satisfy
the eight equations (20), but we have some remarkable additional structure
to use: the essential SVDs of the @Q);; and the repeated appearance of the U
and V;. The four decompositions (21) are far easier to work with than the
eight equations (20), and the structure leads to short and simple proofs.

As an example, let AT denote the pseudo-inverse of A, and suppose we
suspect

Q12Ql, + (@) ki =o0.

This is clearly true from Q¥ Q12 + Q¥ Q25 = 0 if Q11 and Q12 are square
and nonsingular, but prior to the CSD it would not have been obvious how
to prove it in general. Using the CSD we can just replace each @Q);; by its
essential SVD (21), use (UZ'DZ']'VJ»JLI)]L = VjDJjUZ»H for unitary U; and Vj,
and appeal to the structure of the D;; in (15):

U100l + (%),
= UfI[(UlDquH)(VlezU{I)+(Ul(Dﬁ)TWH)(VngU{I)]Uz
= [DisDl, + (D) DH]

of T for fron
S e + C S
I o o I
= diag(0 —sc~! 0,) + diag(0O,C~'5,0,) = 0.



17

This illustrates how the repeated appearances of the U; and V; in (21)
lead to simple proofs. But beyond showing the effectiveness of the CSD,
both the particular example and the general principle (that is, that the
CSD elegantly characterizes the subblocks of a unitary matrix) present
convincing evidence for giving the fully general CSD in textbooks, and not
just the restricted case of r1 = ¢y.

We have already seen [b, 6, 1] that the direct rotation and the closely
related CSD are the correct tools for dealing with angles between subspaces.
In that setting both are important — in the notation of Section 3 the CSD
gives the structure of the partitioned unitary matrix £ F', while the direct
rotation is the unitary matrix closest to the identity which takes R(FE;)
into R(Fy) when 71 < ¢1. The core of the direct rotation is the D in the
direct rotation version of the CSD, and this gives cosines and sines of the
principal angles between the subspaces. When ry = ¢ the CSD is used very
effectively in the excellent advanced texts [9, 26] to examine such problems,
as well as the related problem of distance between orthogonal projectors
and many related perturbation problems, and we need go no further into
this here.

12. THE CSD AND GENERALIZED SVDS

We have pointed out that the CSD gives the SVDs of the subblocks of
unitary ¢, but here we show that it also gives the generalized SVDs
(GSVD) of combinations of subblocks. To understand this, note that if
Ay € (" %72 and Ay € C™2%"2 is nonsingular, and we have the standard
SVD AlAZ_H = UlEUZH (we use terms like AZ_H rather than Az_l since we
will later be looking at A; Ay, and if for example Ay = USVH is an SVD,
AZ_H = US™'VH is too, with U on the same side in each SVD), then for
j=1,...,min{r, ro}, the jth row of U Ay is a multiple of that of U A,
since

UF Ay = SUF AF. (22)

The quotient SVD (QSVD) of general 7y x m Ay and m x rq9 Ag is designed
to correspond to the SVD of AlAZ_H when m = 75 and A, is nonsingular.
In line with (22) we seek unitary U; and Us; so that UH Ay and UF A
have, as far as is possible, corresponding rows parallel. Fortunately the
CSD can be used in theory to give this U; and Us, see [17]. Consider the
reduction via unitary @ and W

Q7 [ 544}[ ]W = [ ]g 8 ] , ¢1 x ¢y R nonsingular. (23)
2
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Note we cannot assume 71 < ¢y, much less ry = ¢; here. Let UHQV =D

in (15) be the CSD of @, then

UH[j}I]W:DVH[g 8]:D1[V1HR 0].  (24)
2

Applying DI Dy = 0 we obtain DEUH A; + DEUH A = 0, or equivalently

O, I
S Ul A = C Ul Al (25)
I O.

our desired analogy with (22), except here A; and AZ have been treated
equally. D, and DI, have identical row partitions, so the rows of U{ A;
and UH Al corresponding to the S and C blocks are the desired parallel
rows. If Al is nonsingular, then Dy is square and nonsingular in (24),
and it follows from (15) that Djs is also. But then (25) shows Das has
no unit matrix, and —D22D1_21 gives the singular values of AlAZ_H. Thus
in general Uy and Uy from the CSD of @ in (23) give the QSVD vectors
of Ay and As, while the elements of S and C' give the nontrivial quotient
singular values. This also points out that the form of CSD in (15) reveals
some properties of the );;, such as the common row spaces of 1; and @25,
that the direct rotation form (17) tends to hide.

Instead of viewing the QSVD of Ay and A, as this relationship between
the row spaces of A; and AY | we can view it as a joint decomposition of A;
and A, From (24) with W = [Wy, Ws] having m x ¢; Wi, and nonsingular
X = [WyRHVy, Ws] we see

Ay =UiDy [ VAR o lWH =5 X" 2y =[ Din 0], (26)
A =Dy [ VTR 0 JWH = U,8,X7, So=[ Dy 0]. (27)

From this the QSVD of general 71 x m A; and m x rq Ay can be viewed as
this joint decomposition of A; and A4 into unitary r; x r; U;, essentially
diagonal r; x m ¥; and nonsingular m x m X But the CSD gives (11 =
U1D11V1H, Q21 = Us Doy VlH, which is just this joint decomposition of Q11
and (o1, with the additional property that X = V7 is unitary. Thus the
CSD already gives the QSVDs of Q11 and Q¥ similarly of Q12 and Q%
of QF and Q12, and of Q¥ and Qa.

As well as considering the QSVD of r; x m A; and m x ry As as a
generalization of the SVD of AlAZ_H, we can also consider the product
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SVD (PSVD) of A; and As as the SVD of the product A; As. But we have
for example from (21) and (15)

QoY =, D VEViDEUR = U, diag(0F,CS,0.) UL,

which is essentially the SVD of Q11Q%, that is the PSVD of Q1 and Q4
so the CSD also gives us the PSVDs of the above four pairs of subblocks
of unitary Q).

The idea of the QSVD or PSVD of two matrices has been extended to
the generalized SVD (GSVD) of any number of matrices with compatible
dimensions by De Moor and Zha [7]. For i = 1,...,m let n,_1 x n; A;
be m such matrices, then they proved there exist unitary U; and V,,, and
nonsingular X; and Z;, ¢ = 1,...,m — 1 such that

Ay = Dy X7,
Ay = Z1Do X531,
Az = ZyDs3X3',
Am—l = Zm—ZDm—an_»Ll_la
Am = Zm—lsmvn?a (28)

where the D; and S, are essentially diagonal, and for each ¢ we can choose
to have 7; = XZ»_H corresponding to a Q or quotient transition between A;
and A;y1, or Z; = X; corresponding to a P or product transition, see [7]
for more details. Thus for three such matrices A1, A and Az we can have
the QQ, QP, PQ or PP-GSVD, in analogy with the SVDs of AlAz_HAg,
AlAZ_HAgH, AlAzAgH or A1 A5 A3 when the inverses exist.

Now if X; is unitary then XZ»_H = X;, and so the P and the Q) transitions
have the same Z;. But the CSD already gives decompositions of the form
(28) with the X; and so 7; = X; unitary, and all the GSVDs of any
sequence of compatible subblocks @Q;; = U; Dy VjH, Qg = VjD,gUIfI, ete.
follow immediately from the CSD. For example

o= wbiuf
Q2 = UiDVy!
Q¥, = V.DHUS

give all the GSVDs of ¢1 x ry Q{Il, r1 X ¢o Q12 and co X 7o leqz

Thus while the CSD gives the separate SVDs of the subblocks of @,
it is the repetition of the U; and V; in these which makes the combina-
tions GSVDs. These subtle properties contribute greatly to the power and
usefulness of the CSD.
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13.  SUBMATRICES OF MATRICES AND THEIR INVERSES

Let Z € C"*™ be a nonsingular matrix, and G its inverse, partitioned as

@] Co 1 3
VARRRAT T G111 Gia el
7 = G = . 29
[ Za1 Za22 ] ry [ Ga1 G ] o (29)

We can relate these subblocks via the QR factorization

Zi Zig | | Qun Qs Ry Ry
[ Za1 Za22 ] = Q= [ Q21 Q2o ] [ Ras ] ’ (30)

with unitary @ asin (1) and nonsingular Ry € C*°1 Ry € C®2*°2. Now

[ G111 Gia ] — RQF = [ R1_11 _Rl_llRuRz_zl ] [ B a8 ]
Gar Gas Ry, QT &

and among these we have the useful relationships from the CSD (15)

Go1 = Ray Qy = Ryy VoDILUTT, Glas = R3y Q5 = Ry, Vo DU,
711 = QiR = U'Du Vi Riy,  Zo1 = Qo1 Riy = Us Doy VT Ry, (31)

We will use these in the next section, but it is interesting to note that
the CSD of @ not only gives the QSVD of Z;; and ZI, but also the QSVD
of Glqu and (99. For

Zi1 = U1 D Vi Ry, Zo1 = Us Doy Vi Ryy,
is the equivalent of (26) and (27), as is
GE = U,D . VI RS, GE = Uy Dy VI RS

This reveals the generalized singular vectors (columns of Uy and Us) are
identical for the two QSVDs, and the singular value pairs are also closely
related.

To find such relationships between other blocks we could consider the
QL, RQ and LQ factorizations of 7, or just transpose and interchange 7
and G.

This section has indicated that the CSD of @) in the QR factorization of
a nonsingular matrix Z may be a useful theoretical tool in proving results
on partitioned Z and Z~'. We give an example in the next section.
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14. NULLITIES OF SUBMATRICES

We define the column nullity en and row nullity 7n of m x n A to be the
dimensions of the null spaces of A and A respectively. Thus if A has rank
r then

en(A) =n —r, rn(A) =m—r.

It is obvious from O, and OF in the CSD (15) that

Q11 and QI have the same nullities. (32)
Similarly
Q21 and QT have the same nullities. (33)

These simple properties are not quite so obvious from the direct rotation
form (17) of the CSD.

Although (15) was derived in [17], those authors did not notice these
nullity relations. These properties were noticed in [32, 31] where (32) was
used in deriving properties of total least squares (TLS) solutions, but the
result is a particular example of the following known result:

If G is the inverse of nonsingular 7 partitioned as in (29), then

711 and Gas have the same nullities. (34)

Since from (31) we see 711 has the same nullities as @11, and Gaz has the
same nullities as Q15 the result follows trivially from (32). We also see by
transposing or interchanging 7 and GG where necessary that

Z51 and (97 have the same nullities, (35)
719 and G19 have the same nullities,

Z99 and (G11 have the same nullities.

The result (34) was needed in deriving the solution set of the generalized to-
tal least squares problem (GTLS) in [18, §2]. Charles Johnson [12] pointed
out (35) has been proven (see for example [8, Theorem 2]) and used in
several places recently. A quick look through the literature suggests the
simplest proof from first principles is that given in [13, Lemma 4]. We have
shown the result 1s “obvious”, if we are already familiar with the CSD, the
QR factorization, and know what to look for. Certainly it is immediately
obvious for unitary matrices from the CSD (15).
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15. CONCLUSION

In this paper we have made a clear distinction between the very geometric
angles between subspaces problem and the algebraic CS decomposition — a
unitary decomposition of subblocks of a unitary matrix. We have discussed
the history from Jordan’s early understanding of angles between subspaces
through to today’s clear understanding of the CSD. The geometric proper-
ties of angles between subspaces contributed greatly to the understanding
of that problem, but limited us from seeing some of the more general alge-
braic power the CSD reveals. For this reason alone it seems pedagogically
important to present the CSD initially without reference to angles between
subspaces.

Briefly we have traced the major development of the CSD through the
following stages. First there was the brilliant work of Jordan [14] in an-
alyzing the angles between subspaces problem so successfully. Next there
was the influence of Sz.-Nagy [19, §136] leading to the direct rotation in-
troduced by Davis [2] and Kato [16, §1.4.6, §1.6.8]. Then there was the
development and use of the direct rotation by Davis [2, 3, 4] and by Davis
and Kahan in [6] in dealing with angles between subspaces. The key step
from understanding the geometric angles between subspaces problem to the
formulation of the algebraic CSD started with the detailed understanding
of the structure of this direct rotation by Davis and Kahan [6] leading
to the partial formulation and proof of the CSD in [5]. Finally Stewart
concluded the major work by unequivocally stating the CSD as a unitary
decomposition of the subblocks of a partitioned unitary matrix.

While Stewart only proved the result for r1 = ¢; < n/2, which is
perfectly adequate for dealing with angles between subspaces of the same
dimensions, Paige and Saunders [17] found this was insufficient for their
theory of the generalized (now quotient) singular value decomposition, and
gave a briefer proof and a slightly different form of the CSD for any two-
block by two-block partitioning of a unitary matrix. The present paper
adds a little to the work on the CSD by providing an easy proof and mo-
tivation, by pointing out some nullity and rank properties it immediately
reveals, by emphasizing that the CSD gives GSVDs of collections of sub-
blocks as well as SVDs of subblocks of the unitary matrix, and by showing
how, via the QR factorization, the CSD contributes to the analysis of sub-
blocks of a partitioned general nonsingular matrix and its inverse.

The proof in Section 8 holds for the trivial cases of any 2 x 1, 1 x 2
or 1 x 1 partition, and the form reveals some properties not obvious from
the more restricted (r1 < ¢; < ry) direct rotation form of Davis, Kahan
and Stewart, though this latter form is easier to remember and has simple
optimality properties for the angles between subspaces problem which are
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less easily stated for the form (15). But the angles between subspaces
problem is only one, although very important, use of the CSD, and for
other uses we find these restrictions and even the direct rotation form of the
CSD awkward. Since the Paige and Saunders form (15) has no restrictions
on dimensions, 1s easily proven requiring no special cases, and the Davis,
Kahan and Stewart direct rotation form can be easily derived from it, it is
probably advisable in the general case to present the Paige and Saunders
formulation.

We hope we have given ample evidence here to justify the CSD being
presented pedagogically in its general form, with no restrictions on the
dimensions of the subblocks of the partition. It would also help such a
presentation if the angles between subspaces problem was presented as a
distinct problem, which of course can be treated elegantly via the CSD.
That is, we feel it is clearer to present the CSD as the decomposition
of subblocks of a partitioned unitary matrix, without reference to where
these subblocks may have come. The angles between subspaces problem
and the illuminating direct rotation can then be presented as one of the
many applications of the CSD.

Finally we discuss the question of when should the CSD be tried in
a theoretical investigation. An obvious answer is whenever the problem
involves any of:

angles between subspaces,

2 x 2 partitions of unitary matrices,

orthogonal projectors, or

2 x 2 partitions of nonsingular matrices and their inverses.

Also the CSD is a powerful tool in perturbation analysis in general, see
especially [23, 26]. Briefly, whenever some aspect of a problem can usefully
be formulated in terms of two-block by two-block partitions of unitary
matrices, the CSD will probably add insights and simplify the analysis.

We wish to thank Miguel Anjos, Bill Farebrother, Roger Horn, Charles
Johnson, Pete Stewart and George Styan for valuable comments on this
work and the relevant history. Xiaowen Chang helped us to put things
together to meet the Special Issue deadline.
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