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Vector Calculus and the Topology of Domains
in 3-Space

Jason Cantarella, Dennis DeTurck, and Herman Gluck

Suppose you have a vector field defined on a bounded domain in 3-space. How can you
tell whether your vector field is the gradient of some function? Or the curl of another
vector field? Can you find a nonzero field on your domain that is divergence-free, curl-
free, and tangent to the boundary? How about a nonzero field that is divergence-free,
curl-free, and orthogonal to the boundary?

To answer these questions, you need to understand the relationship between the
calculus of vector fields and the topology of their domains of definition. The Hodge
Decomposition Theorem provides the key by decomposing the space of vector fields
on the domain into five mutually orthogonal subspaces that are topologically and ana-
Iytically meaningful. This decomposition is useful not only in mathematics, but also in
fluid dynamics, electrodynamics, and plasma physics. Furthermore, carrying out the
proof provides a pleasant introduction to homology and cohomology theory in a fa-
miliar setting, and a chance to see both the general Hodge theorem and the de Rham
isomorphism theorem in action.

Our goal is to give an elementary exposition of these ideas. We provide three sec-
tions of background information early in the paper: one on solutions of the Laplace
and Poisson equations with Dirichlet and Neumann boundary conditions, one on the
Biot-Savart law from electrodynamics, and one on the topology of compact domains
in 3-space. Near the end, we see how everything we have learned provides answers to
the four questions that we have posed. We close with a brief survey of the historical
threads that led to the Hodge Decomposition Theorem, and a guide to the literature.

1. STATEMENT OF THE THEOREM. Let 2 be a compact domain in 3-space

with smooth boundary 4<2. Let VF(2) be the infinite-dimensional vector space of all
smooth vector fields in €2, on which we use the L? inner product

(V,W) = f V - Wd(vol).
Q

In this paper, “smooth” always means “all partial derivatives of all orders exist and are
continuous”.

Hodge Decomposition Theorem. The space VF(2) is the direct sum of five mutually
orthogonal subspaces:

VE(Q) =FK @ HK & CG ® HG & GG

with
ker curl = HK ¢ CG ¢ HG ¢ GG
imgrad = CG @ HG & GG
imcurl = FK & HK & CG
kerdiv =FK @ HK ¢ CG ¢ HG,
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where
FK = fluxless knots ={V.V= = 0, all interior fluxes are 0},
HK = harmonic knots ={V. V= XV=0 V-n =0},
CG = curly gradients ={V = Vg, V-V =0, all boundary fluxes are 0},
HG = harmonic gradients = {V = qu, -V =0, ¢ islocally constant on 92},

GG = grounded gradients = {V = Vo, ¢|;q =0},

and furthermore,

HK = H;(Q; R) = Hy(Q, 9Q; R) = Reems of 09
HG = Hy(Q2: R) = Hi (2, 82; R) = R components of 32) — (# components of <),

The meanings of the conditions in the theorem are explained in the following sec-
tion.

2. ORGANIZATION OF THE PROOF. We now describe the various subspaces
that appear in the Hodge Decomposition Theorem, explain the conditions that define
them, and organize the proof of the theorem into four propositions.

Consider the subspace of VF(£2) consisting of all divergence-free vector fields on
Q2 that are tangent to d<2. These vector fields are used to represent incompressible
fluid flows within fixed boundaries, and magnetic fields inside plasma containment
devices; see [6], [7], [31], [49], and [S5]. When a problem in geometric knot theory is
transformed to one in fluid dynamics, the knot is thickened to a tubular neighborhood
of itself, and is then represented by an incompressible fluid flow (sometimes called a
fluid knot) in this neighborhood, much like blood pumping miraculously through an
arterial loop as in Figure 1; see [4], [1], [35], [36], [39], and [10].

Figure 1. “Blood flow.”

With this last application in mind, we define
K=knots={V e VF(Q):V-V=0, V-n=0},
where n is the unit outward normal to the boundary of 2, and where the condition
V -V = 0 holds throughout 2, while V - n = 0 holds only on its boundary. In general,

when we state conditions for our vector fields using n, they are understood to apply
only on the boundary of 2.
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At the same time, we define
G = gradients = {V € VE(Q) : V = V)
for some smooth real-valued function ¢ defined on 2.
Proposition 1. The space VE(S?) is the direct sum of two orthogonal subspaces:
VF(2) =KoG.
The proof of this proposition in Section 7 is straightforward and brief.

As our development unfolds, we further decompose K into an orthogonal direct sum
of two subspaces, and G into an orthogonal direct sum of three subspaces.

We start by decomposing the subspace K.

Let ¥ denote any smooth orientable surface in €2 whose boundary 0% lies in
the boundary 02 of the domain 2. We call X a cross-sectional surface and write
(X,0%) C (2, 09). Orient ¥ by picking one of its two unit normal vector fields n.
Then, for any vector field V on 2, we define the flux of V through % to be

o = / V -nd(area).
¥

Assume that V is divergence-free and tangent to 0<2. Then the value of ¢ depends
only on the homology class of ¥ in the relative homology group H,(S2, 0<2; R). For
example, if 2 is an n-holed solid torus, then H,(2, 3€2; R) is generated by disjoint
oriented cross-sectional disks X1, ¥, ..., X,, positioned so that cutting 2 along these
disks produces a simply-connected region, as in Figure 2.The fluxes ®q, ®,,..., O,
of V through these disks determine the flux of V through any other cross-sectional
surface.

Figure 2. A domain with cross-sectional disks.

If the flux of V through every cross-sectional surface vanishes, then we say all
interior fluxes are 0, and define

FK = fluxless knots = {V € VE(Q2) : V-V =0,V -n =0, all interior fluxes are 0}.
Next we define
HK = harmonic knots = {V e VE(Q): V-V =0, VxV =0, V-n=0}.

We show in Section 9 that the space of harmonic knots is isomorphic to the homol-
ogy group H;(2, R) and also, via Poincaré duality, to the relative homology group
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H,($2, 0Q2; R). This is a finite-dimensional vector space, with dimension equal to the
(total) genus of 9€2, which is obtained by adding the genera of the boundary compo-
nents of the domain €.

Proposition 2. The subspace K is the direct sum of two orthogonal subspaces:
K =FK®HK.

This is the most challenging of the four propositions to prove, since its proof re-
quires the fact (Lemma 2) that the harmonic knots HK on the domain 2 are rich
enough to reflect a significant portion of its topology. The argument occupies Sec-
tions 8, 9, and 10.

Now we decompose the subspace G of gradient vector fields. Define
DFG = divergence — free gradients = {V € VF(Q) : V =Vgp, V.V =0},
which is the subspace of gradients of harmonic functions, and
GG = grounded gradients = {V € VE(Q) : V = Vg, ¢l;q =0},
which is the subspace of gradients of functions that vanish on the boundary of €.
Proposition 3. The subspace G is the direct sum of two orthogonal subspaces:
G=DFG&®GG.
The proof of this proposition in Section 11 is straightforward and brief.

Next we decompose the subspace DFG of divergence-free gradient vector fields.

If V is a vector field defined on €2, we say that all boundary fluxes of V are zero, if
the flux of V through each component of 0<2 is zero.

We define

CG = curly gradients
={V e VF(Q): V = Vg, V-V =0, all boundary fluxes are 0}.

We call CG the subspace of curly gradients because, as we see in Section 14, these are
the only gradient vector fields that lie in the image of curl.
Finally, we define the subspace

HG = harmonic gradients

={V e VF(Q):V =Vgp, V-V =0, gislocally constant on 92},

where the stated boundary condition means that ¢ is constant on each component
of 9Q2.

We show in Section 12 that the space of harmonic gradients is isomorphic to the ho-
mology group H>(£2; R) and also, via Poincaré duality, to the relative homology group
H, (2, 0Q2; R). This is a finite-dimensional vector space, with one generator for each
component of 92, and one relation for each component of 2. Hence, its dimension is
equal to the number of components of d<2 minus the number of components of 2.
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Proposition 4. The subspace DFG is the direct sum of two orthogonal subspaces:
DFG = CGe HG.

The proof of this proposition requires the fact (Lemma 3) that the harmonic gra-
dients HG on the domain 2 are rich enough to reflect a portion of its topology. The
argument, which occupies Sections 12 and 13, is easier than that of Proposition 2, but
is more substantial than those of Propositions 1 and 3.

With Propositions 1 through 4 in hand, the Hodge decomposition of VF(£2),
VE(Q2) = FK®HK & CG @ HG © GG,

follows immediately, and we can then obtain the related expressions for the kernels of
curl and div, and the images of grad and curl. Three of these four follow immediately,
but we need a brief argument to confirm the image of curl.

The following characterizations of the five orthogonal direct summands of VF(2)
attest to their naturality:

FK = (kercurl)*

HK = (ker curl) N (im grad)*
CG = (im grad) N (im curl)
HG = (kerdiv) N (im curl)*
GG = (kerdiv)*.

We can also write
HK = (ker curl)/(im grad) = H,(2; R)
and
HG = (kerdiv)/(im curl) = H,(2; R),

which gives us a chance to see two instances of the de Rham Isomorphism Theo-
rem [15] within the Hodge Decomposition Theorem.

3. EXAMPLES OF VECTOR FIELDS FROM THE FIVE SUMMANDS OF
VF(2). In this section we give examples and pictures of vector fields from the five
subspaces that appear in the Hodge Decomposition Theorem.

Let 2y be the round ball of radius 1, centered at the origin in 3-space. Since the
genus of 92 is zero, there are no harmonic knots, so HK = 0. Since 2y and 02 are
both connected, there are no harmonic gradients, so HG = 0. Thus

VE(Q) =FK® CGDGG.

We give examples of vector fields from these three subspaces first, so that we can use
the round ball 2 as the common domain.
Consider the vector field

V=—yi+xj

This is the velocity field for rotation of 3-space about the z-axis at constant angular
speed, and is divergence-free and tangent to the boundary of the ball €2; see Figure 3.
Since HK = 0, the vector field V belongs to the subspace FK of fluxless knots.
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Figure 3. A vector field in the subspace FK of fluxless knots.

Now consider the constant vertical vector field V = k; see Figure 4. This vector
field is divergence-free and has zero flux through the one and only component of 32,
so it belongs to the subspace CG of curly gradients.

1

! T

Figure 4. A vector field in the subspace CG of curly gradients.

The vector field V is the gradient of the harmonic function z. We can use this same
construction with any harmonic function ¢ defined on all of R*, and the resulting
vector field V = Vg is a curly gradient on any compact domain 2.

Now consider, on our round ball Q, of radius 1, the function r> — 1 = x2 + y2 +
72 — 1, which has constant value zero on the boundary of ;. Then the vector field

V=vV@r?-1)=2xi+2yj+2zk
belongs to the subspace GG of grounded gradients; see Figure 5.
We must abandon the round ball to present examples of harmonic knots and har-
monic gradients.
Let 2, be a solid torus of revolution about the z-axis. Since the genus of 92, is

one, there are harmonic knots: HK = R!. But since ©; and 82, are both connected,
there are still no harmonic gradients. Thus

VF(Q;) = FKHKHCGa GG .
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Figure 5. A vector field in the subspace GG of grounded gradients.
Using cylindrical coordinates (r, ¢, z), consider the vector field
V=-¢,

r

‘which is the magnetic field due to a steady current running up the z-axis; see Figure 6.
It is divergence-free and curl-free and tangent to the boundary of the solid torus €2,
hence it belongs to the subspace HK of harmonic knots.

—_

Figure 6. A vector field in the subspace HK of harmonic knots.

We switch domains again to get an example of a harmonic gradient.

Let 2, be the region between two concentric round spheres, say of radius one and
two, centered at the origin. This domain has harmonic gradients, since 02, has two
components, while 2, has only one. Thus HG = R!. But ©, has no harmonic knots,
since each boundary component has genus zero. Thus

VE(Q;) = FK®& CGOHG D GG.

Using spherical coordinates (r, 6, ¢), consider the harmonic function —1/r and its
gradient vector field
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which is just the inverse-square field; see Figure 7. Since the harmonic function —1/r
is constant on each component of 9€2, the vector field V belongs to the subspace HG
of harmonic gradients.

t

-+

Y \<

el
l

Figure 7. A vector field in the subspace HG of harmonic gradients.

4. SOLUTION OF THE LAPLACE AND POISSON EQUATIONS WITH
DIRICHLET AND NEUMANN BOUNDARY CONDITIONS. We need to use
some basic results from analysis about solvability of the Dirichlet and Neumann prob-
lems for the scalar Laplace and Poisson equations. We state them here, and point the
reader to the literature for details.

We continue to work on a bounded domain 2 in R* with connected components
Q1, Q,, ..., ) and with smooth boundary 3<2. The Laplace operator (or Laplacian)
acts on scalar functions on €2 and is defined by

P g 3%
Ap=V -Vo=— 4 —* ,
v P70 T T a2
where (x, y, z) are rectangular coordinates in R.
Given a function f on 2, the Poisson equation is

Ap=f onQQ.

If f = 0, then this is called the Laplace equation, and solutions of A¢ = 0 are called
harmonic functions. This is a partial differential equation for the unknown function ¢
on €2, and in order to have a problem that is reasonable (in either the mathematical or
physical sense), one must impose additional conditions on ¢. Typically, these restrict
the values of ¢ or its derivatives on d<2. For example, if « is a function on <2, we can
require that

¢ =u ono.

This is called a Dirichlet boundary condition. Alternatively, we can specify that

ad
a4 =v onodf
on
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for some function v on €2, where d¢/0on is the normal derivative V¢ - n on 9€2. This
is called a Neumann boundary condition.

THE DIRICHLET PROBLEM. Given functions f on Q2 and u on 0%, find a function ¢
on 2 satisfying

Ap=f onQ and ¢ =u onof2.

THE NEUMANN PROBLEM. Given functions f on Q2 and v on 0%2, find a function ¢
on 2 satisfying

d
Ap=f on2 and a—(pzv on d%2.
n

We do not need the most general possible results: we assume that our data f, u, and
v are smooth functions on their domains of definition. In particular, we mean that f is
smooth on the closed domain €2, not just on its interior.

Theorem 1.

(a) The Dirichlet problem has a unique solution ¢ for every smooth function f on
Q and u on Q2.

(b) The Neumann problem for smooth functions f on 2 and v on dS2 has a solution
¢ if and only if

/ f d(vol) = / v d(area)
Q; 0%

foreachi = 1,2, ..., k. The difference between any two solutions is a function
that is constant on each component 2; of 2.

The solution functions ¢ for both the Dirichlet and Neumann problems are smooth
on the closed domain 2 and satisfy A¢ = f on the closed domain.

We refer the reader to [20] and [23] for a variety of approaches to the proof of this
theorem.

5. THE BIOT-SAVART FORMULA FOR MAGNETIC FIELDS. The basic re-
sults from electrodynamics used throughout this paper concern the Biot-Savart formula
for the magnetic field generated by a given current distribution, and the formulas for
its divergence and curl. We state them here, and again point the reader to the literature
for details.

Let 2 be a compact domain in 3-space with smooth boundary 0€2, and let V be a
smooth vector field on 2. If we think of V as a distribution of current throughout 2,
then the Biot-Savart formula

y—x
ly —x[?

1
BS(V)() = ;- /Q V(x) x d(vol,) )

gives the resulting magnetic field BS(V) throughout 3-space.
The magnetic field BS(V) is well-defined on all of 3-space, that is, the improper in-
tegral (1) converges for every y € R®. Furthermore, BS(V) is continuous on all of R3,
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Q

Figure 8. The Biot-Savart integrand.

though its derivatives typically experience a jump discontinuity as one crosses 9<2.
Nevertheless, BS(V) is of class C™ on 2 and on the closure Q' of R® — Q.
The magnetic field BS(V) is divergence-free in the sense that
V-V=0 on< andon Q.

The most important formula concerns the curl of the magnetic field:

| V() foryeq 1 Ve - Vx)
V, x BS(V)(y) = { 0 fory € } + Evy/s;mdwoh)
2
1 V(x) -n
— 4—]Tvy AQ m d(areax).

where V, differentiates with respect to x, while V, differentiates with respect to y.
This formula is simply Maxwell’s law

oE
VxB=J+ —,

ot
where B = BS(V) represents the magnetic field, / = V is the current distribution,
and the time-dependent electric field E is due to a changing charge distribution within
Qif V- V # 0, and a changing charge distribution on 92 if V - n # 0. The magnetic
permeability 1o and the electric permittivity €9, which usually appear in Maxwell’s
equation, have been suppressed.

Formula (2) for the curl of the magnetic field contains a wealth of information.

For example, if our vector field V is divergence-free, then the first integral on the
right-hand side of (2) vanishes. If V is tangent to the boundary of €2, then the sec-
ond integral vanishes. If both conditions hold, that is, if V' € K, which according to
Proposition 2 equals FK @ HK, then we get the familiar statement that the curl of the
magnetic field is the current flow:

\4 f Q
v, x BS(V)(y) = { 0 e

In particular, this tells us that on the domain €2 the image of curl contains FK ¢ HK.
If the vector field V is divergence-free but not necessarily tangent to the boundary
of €, then (2) tells us that
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v Q 1 V) -n
Vv, x BS(V)(») =i o(y) ;Z;i 2 o }—Evy/m |yx—x| d(area,).  (3)

We use (3) at the end of the paper to show that on the domain 2 the image of cur! is
precisely FK @ HK & CG.

We also want to consider the magnetic field B in the domain <2 that is caused by
running a current / through a smooth loop C’ in the complement of 2; see Figure 9.

Cl

Figure 9. A linking current.

In this case, the Biot-Savart formula for the magnetic field takes the form

1 _
B(y) = E/@I(x) x |yy_;|3 dx, )

where the vector field 7(x) along the oriented loop C’ has constant length I and is
tangent to C’ in the direction of its orientation.

The integral (4) blows up along the loop C’, but this is of no concern to us because
are interested only in the restriction of B to the domain 2.

In the domain €2, the vector field B is smooth and has the following properties:

@ V-B=0
®) VxB=0 )

© /B-ds:Link(C, CcHl,
c

where C is a loop in 2 and Link(C, C’) denotes its linking number with C'.

We can view magnetic fields caused by currents running in loops in the following
way. Replace the loop C’ by a small tubular neighborhood N’, and let V' be a cur-
rent distribution in N’ that is divergence-free, tangent to the boundary, and has flux
through each cross-sectional disk of N'. Then the magnetic field B caused by the cur-
rent / through the loop C’ is the limit of the magnetic fields BS(V") as the tubular
neighborhood N’ shrinks down to C'.

With this point of view, the properties (5a), (5b), and (5c) are easy to derive; in
particular, (5¢) is Ampere’s Law. See [25] and [13] for further details.
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The history of the Biot-Savart Law is discussed in [51]. It contains extensive trans-
lations of the works of Oerstead, Biot, Savart, and Ampere, and a detailed analysis of
this fascinating period of scientific discovery and of the interactions among its prin-
cipals.

6. TOPOLOGY OF COMPACT DOMAINS IN 3-SPACE. The Hodge Decompo-
sition Theorem shows how the structure of the space of vector fields defined on a
compact domain in 3-space reflects the topology of the domain. We give here a brief
overview of this topology.

Figure 10 shows some of the simplest compact domains in 3-space: a round ball, a
solid torus of revolution, a solid double torus, and a solid triple torus. These domains
are bounded by surfaces of genus zero, one, two, and three, respectively.

O &

/// v\ :!/

Figure 10. Domains of various topological types.

J

The tri-lobed domain in Figure 11 is geometrically more complicated than a round
ball, but is topologically equivalent(or homeomorphic) to it: there is a one-to-one cor-
respondence between the two domains that is continuous in each direction.

Figure 11. A domain homeomorphic to a ball.

Domains in 3-space can have several components, as shown by the pair of linked
solid tori on the left in Figure 12. And the boundary of a connected domain can have
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several components, as shown by the region between two concentric spheres, on the
right in Figure 12.

Figure 12. Domains with several boundary components.

Two topologically distinct domains can nevertheless have topologically equivalent
boundaries. The domain pictured in Figure 13, which looks like a rolling pin with a
knotted hole, is topologically distinct from a solid torus, yet the two domains have
topologically equivalent boundaries. This is a case of “You can’t tell a book by its
cover.”

4’2“9\)

)/

Figure 13. You can’t tell a book by its cover.

In Figure 14, we see three domains: a solid torus linked with a solid double torus,
and a potato-shaped domain (homeomorphic to a round ball) containing them both.
The space outside the torus and double torus, but inside the potato, is a domain whose
boundary consists of all three surfaces.

Now we get down to the business of describing the topological concepts needed for
the Hodge Decomposition Theorem.

Let €2 be a compact domain in 3-space, with smooth boundary. The basic topologi-
cal information about 2 that we need is given by its homology with real coefficients.

The absolute homology of 2 consists of the vector spaces H;(<2; R), for i =
0, 1,2, 3, while the relative homology of 2 modulo its boundary 9<2 consists of the
vector spaces H; (€2, 32; R) for the same values of i. We use only homology with real
coefficients, so henceforth we suppress the symbol “R”.

The absolute homology vector space Hy(2) is generated by equivalence classes of
points in €2, with two points deemed equivalent if they can be connected by a path in €2.
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Figure 14. No limits to their beauty.

Likewise, H;(£2) is generated by equivalence classes of oriented loops in €2, with two
loops equivalent if their difference is the boundary of an oriented surface in 2. The
space H,(S2) is generated by equivalence classes of closed oriented surfaces in €2,
with two such surfaces equivalent if their difference is the boundary of some oriented
subregion of 2. The space H3(<2) is always zero.

The relative homology vector space Hy(S2, dS2) is always zero. The space
H, (€2, 0Q2) is generated by equivalence classes of oriented paths whose endpoints
lie on 02, with two such paths regarded as equivalent if their difference, augmented
as necessary by paths on 9<2, is the boundary of an oriented surface in 2. The space
H,(R2, 9K2) is generated by equivalence classes of oriented surfaces whose boundaries
lie on 92, with two such surfaces equivalent if their difference, augmented as neces-
sary by portions of 9€2, is the boundary of some oriented subregion of 2. And finally,
H;3($2, 0€2) has as a basis the oriented components of €2, since these are the subregions
of © whose boundaries lie on 9<2.

The homology of the domain of definition plays an important role in vector calculus.
Stokes’ Theorem and the divergence theorem help us to understand it.

Suppose that V is a smooth vector field on €2, and that C is a smooth oriented loop
in Q. Then [ V - ds is called the circulation of V around C.

If V is curl-free, then the circulation of V around C depends only on the homology
class of C in H;(S2). This is a consequence of Stokes’ Theorem, for if the oriented
loops C and C’ together bound a surface S, meaning that S = C — C’, then

/V-ds—/V-ds=/ V~ds=fV-ds=/VxV-nd(area)=0.
c 4 c-c as s
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We can also integrate V along an oriented path P. If the endpoints of P lie on 9€2,
and if V is curl-free and orthogonal to the boundary of €2, then the value of the integral
J» V - ds depends only on the relative homology class of P in H; (2, 92). This is
again a consequence of Stokes’ Theorem.

Now suppose that S is a smooth oriented surface without boundary in €2, and con-
sider the flux |, sV -nd(area) of V through S. If V is divergence-free, then this flux
depends only on the homology class of S in H,(<2). This is a consequence of the diver-
gence theorem, for if the closed oriented surfaces S and S’ together bound a subregion
Q' of 2, then

f V -nd(area) — / V -nd(area) = / V -nd(area)
s s S—8'

=/ V -nd(area) =[ V.Vd(vol) =0.
I o

We can also compute the flux of V through a smooth surface ¥ in 2 when X has
a non-empty boundary. If 0¥ C 92, and if V is divergence-free and tangent to the
boundary of €2, then the value of the flux integral [, V - n d(area) depends only on
the relative homology class of ¥ in H,(2, d2). This is also a consequence of the
divergence theorem.

We continue now with our study of the homology vector spaces of a domain €2,
whose dimensions are determined by three integers: the number of components of <2,
the number of components of €2, and the total genus of 9<2.

TABLE 1.
Absolute Relative
Homology Dimension Homology Dimension
Hy(2) # comp 2 Hy(2,09) 0
H(Q2) total genus of 092 H(Q2,090) # comp 02 — # comp Q2
H,(2) # comp 92 — # comp Q2 H,(2,09) total genus of 92
H3(2) 0 H;3(2,092) # comp 2

The confirmation of these dimensions, which we do not carry out here, relies on

four tools:

* Poincaré duality, which compares the absolute and relative homology vector spaces

of 2;

* Alexander duality, which compares the homology vector spaces of 2 with those of
the closure Q' of its complementary domain R® — Q;

* The Mayer-Vietoris sequence, which interweaves the homology of 2 and 2’ with
that of their intersection 2 N Q' = 3 = 3’ and of their union Q U Q' = R3,

* The long exact homology sequence for the pair (2, 9€2).
Poincaré duality provides the following isomorphisms:

Hy(2) = H3($2, 022) H{(2) = Hy(2,092)
H,(Q2) = Hi (2, 022) H;(2) = Hp(L2, 02).
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The dimensions of the homology vector spaces listed in Table 1 are clearly consistent
with these isomorphisms. Poincaré duality actually has more to say, and we return to
it later in this section.

Alexander duality provides the isomorphisms

Hy(Q2) = Hy(Q), Hy(Q) = Hi(), Hy(Q) = Hy(Q),

where the tilde over Hy(£2") reduces the dimension of this vector space by one. These
isomorphisms tell us that the homology of the closed complementary domain 2’ de-
pends only on the homology of €2, and not on how 2 is embedded in 3-space. This
is in sharp contrast to the way fundamental groups behave: if 2 is homeomorphic
to a solid torus, then the fundamental group (') of its closed complementary do-
main contains a wealth of information about the way 2 is embedded (i.e., knotted) in
3-space.
We also use the Mayer-Vietoris sequence:

co > H (R — H(Q) — Hi(Q) & Hi(Q) —> HRY) — .-,

from which we learn

(1) Every two-dimensional homology class in 2 is represented by a linear combi-
nation of the components of €2, and likewise every two-dimensional homol-
ogy class in Q' is represented by a linear combination of the components of
Q2 = 9Q.

(2) Every one-dimensional homology class in €2 is represented by a closed curve
on 9<2, and likewise for .

(3) Every one-dimensional homology class on 02 can be expressed as the sum of a
class that bounds in €2 (such a class is represented by a curve on 02 that bounds
a surface in 2) and a class that bounds in €2’

We use items (2) and (3) in what follows.

We end this section by mentioning one of the finer aspects of Poincaré and Alexan-
der duality, involving intersection and linking numbers.

Let &k denote the genus of 92, which is the common dimension of the three homol-
ogy vector spaces

Hi(Q) = H, (2, 0Q) = H((Q).

Poincaré and Alexander duality actually guarantee that we can choose loops and sur-
faces that represent bases for these three vector spaces so that they link and intersect
one another in a very special way.

We illustrate this in Figure 15, in which 2 is a solid double torus, and the common
dimension £ is 2.

Let ¥4, X5, ..., X be a family of cross-sectional surfaces in €2, whose boundaries
lie on 92, which represent a basis for H,(2, 02). In Figure 15, ¥, and ¥, appear as
two disjoint disks.

Let Cy, Cy, ..., C; be a family of loops in the interior of <2 that represent a basis
for H(2), chosen so that the intersection number of C; with X; is §;; (that is, it is 1
if i = j and 0 if { # j). The specific details of Poincaré duality guarantee that this
can be done. It is easy to make these loops disjoint. If we push the boundaries of the
cross-sectional surfaces Xy, X, ..., % slightly into the exterior region R?® — Q, we
geta family C;, C}, ..., C; of loops in R® — <2 that represent a basis for H; (). It is
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Figure 15. Related bases for Hy (Q) = Hy(Q2, 92) = Hy ().

easy to make these loops disjoint. Furthermore, the linking number of C; with C; is
automatically 6;;, as shown in Figure 15.

We caution the reader that Figure 15 depicts this situation in its simplest aspect. A
cross-sectional surface ; may have several boundary curves, in which case C’; con-
sists of several loops. And it may be impossible to make the cross-sectional surfaces
disjoint from one another. Nevertheless, the bases may be chosen with the asserted
intersection and linking numbers.

We refer back to this discussion, and choose such conveniently related bases for
H((Q), Hy(2, 02), and H; ('), several times in the sections ahead.

For further information about Poincaré and Alexander duality, see [45] and [5].

7. PROOF OF PROPOSITION 1. Armed with the analytical and topological pre-
requisites from the preceding sections, we turn to the proofs of the propositions that
lead to the Hodge Decomposition Theorem. First up is Proposition 1, which asserts
that the space VF(2) decomposes orthogonally as K & G, which means splitting all
smooth vector fields on <2 into those that are divergence-free and tangent to the bound-
ary, and those that are gradients of smooth functions.

The argument is straightforward. Let V be an arbitrary smooth vector field on €2, let
f be the smooth function f = V - V defined on €2, and let g be the smooth function
g = V - n defined on 9€2.

As a consequence of the divergence theorem, we have

f d(vol) = /

Qi

V-V d(vol) = /

082

V -nd(area) = / g d(area)

Q; 082

for each component 2; of 2. Thus, by Theorem 1, we have a solution ¢ of the Poisson
equation Ap = f on 2 with Neumann boundary condition d¢/dn = g on 9€2.
Define the vector fields V, = Vg and V; = V — V,. Then on 92, we have

dg
Vo, n=Vp-n=_—=g=V-.n,
Jon

and hence V; - n = 0 on 9€2. Also, on 2 we have
V-V=V.-Vo=Ap=f=V.V,
and hence V - V; = 0.
Thus the vector field V; is divergence-free on €2 and is tangent to 02, while V, is

of course a gradient vector field. This shows that VF(Q2) = K 4+ G, so we must now
check that this is an orthogonal direct sum.
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To this end, let V; denote any smooth divergence-free vector field on <2 that is
tangent to 02, and let V, = V¢ denote any smooth gradient vector field on 2.

In the following, we leave out the expressions “d(vol)” and “d(area)” from our
integrals where there is little chance of confusion. Using the product rule

V(oV) = Vo) - Vi+ (V- V),

we have
<V17V2>=[V1'V2=/V1'V</7
Q Q
=/(V‘(¢Vl)—w(Von))=fV~(<pV1)
Q Q

=/ (¢V1) n=0,
I

where we have used both conditions on V;, namely, that it is divergence-free and that
it is tangent to 9 <2.

Hence our two summands K and G are orthogonal, and in particular their sum is di-
rect. Thus we have shown that VF(Q2) = K @ G, which completes the proof of Propo-
sition 1.

8. ALEMMA ABOUT FLUXLESS KNOTS. We begin preparing for the proof of
Proposition 2. Recall the subspace of fluxless knots,

FK={VeVFEQ):V.-V=0, V.-n=0, allinterior fluxes are 0}.
We use the following lemma in the proof of Proposition 2.

Lemma 1. The fluxless knots are also given by
FK={VxU:V-U=0,Uxn=0}.

That is, we claim that every fluxless knot V is the curl of a divergence-free vector
field U that is orthogonal to the boundary of €2, and vice versa, that every such curl is
a fluxless knot.

To begin, let V be a fluxless knot. Thinking of V" as a current distribution, let BS(V)
be the resulting magnetic field given by (1), and let B denote its restriction to the
domain 2.

Since B is a magnetic field, we know that it is divergence-free: V - B = 0. Since
V is divergence-free and is tangent to d<2, we know from the curl formula (2) that
VxB=V.

We want to adjust B so that it becomes orthogonal to the boundary of <2, without al-
tering the facts that it is divergence-free and that its curl is V. We do this by subtracting
from B the gradient of an appropriate harmonic function.

Consider the vector field B'|;, along 92 obtained from the component of B that is
parallel to 9<2. We claim that this vector field on 92 is the gradient of some smooth
real-valued function f defined on 0€2.

To verify this claim, consider the circulation of B!|;, (equivalently, of B) around a
closed curve C on 0€2. Since V x B =V is tangent to 02, Stokes’ Theorem tells us
that the value of this integral depends only on the homology class of C in H; (9€2).
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If C bounds a surface ¥ inside €2, then by Stokes’ Theorem,

/Bds:/(VxB)-n:fVon
c T )

6)
= flux of V through ¥ =0,
because V is fluxless by hypothesis.
If C bounds a surface X outside €2, then again by Stokes’ Theorem,
/B-ds=/BS(V)~ds=[(VxBS(V))-n:O, @)
c c b

since outside of €2, we have V x BS(V) = 0 by the curl formula (2).

But we saw in item (3) of Section 6 that every closed curve C on 02 is homologous
to the sum of a closed curve that bounds inside €2, and a closed curve that bounds
outside 2. Hence by (6) and (7), [, B - ds = 0. Therefore B'|;o = V' f for some
smooth function f : 92 — R, where V! f denotes the gradient of f taken along the
surface 9€2.

Now let ¢ : 2 — R be the solution of Laplace’s equation A¢ = 0, with Dirichlet
boundary condition ¢|,o = f.

Note that V - Vo = Agp = 0 and that V x V¢ = 0. Hence, if U = B — Vg, then
V-U=0andVxU=YV.

Furthermore, for any vector T tangent to 02, we have

B-T=B";0)- T=(N"f)-T=(g) T,
and hence
U.T=(B—-V¢p)-T=0,

which tells us that U x n = 0. Thus we have shown that the fluxless field V is the curl
of a divergence-free field U that is orthogonal to 9<2, as desired.

To complete the proof of Lemma 1, we must start with a vector field U on 2 that
satisfies V- U =0 and U x n = 0, then define V = V x U, and show that V is a
fluxless knot, thatis, V-V =0, V - n = 0, and all interior fluxes of V are zero.

Clearly V-V =V - (V x U) = 0. Also, all interior fluxes of V are 0 because

/V-n:/(VxU)-nz/ U-ds=0,
X P} ax

where the last integrand is identically zero because 0% C 92 and U is orthogonal
to 0€2.

It remains to show that V is tangent to the boundary of 2. Since we have already
proved Proposition 1, we can do this by showing that V is orthogonal, in the sense of
the L? inner product on VF(S2), to every gradient vector field. This tells us that V € K,
and so in particular V is tangent to 9<2.

Let ¢ be any smooth function on 2. We show that (V, V) = 0.

We make use of the identity

V. (AxB)=(VxA) -B—A-(VxB),

with U playing the role of A and V¢ the role of B.
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We compute:
(V.Vg) =(VxU, V)

Q
=/(V~(UXV¢)+U'(VXV<P))
Q
=/Vo(U><V<p)
Q

=/ (UxVp)-n=0,
a0

where the last integrand is identically zero because U is orthogonal to 9 2.

Thus V is L2-orthogonal to every gradient vector field, and so it lies in K, and hence
is tangent to the boundary of €2. This completes the proof of Lemma 1. Note that we
did not use the fact that V- U = 0.

9. HARMONIC KNOTS. Still preparing for the proof of Proposition 2, we need to
demonstrate the abundance of harmonic knots. Recall the definition:

HK={VeVRQ):V- V=0, VxV=0 V -n=0}.
Lemma 2. HK = H;(Q) = H,(2, 02) = Reenus of 42

We begin small and specific, and suppose that €2 is a solid torus of revolution, so
that H;(S2) is one-dimensional. How can we get a vector field that generates HK?

Let C be the core circle inside 2, and let C’ be a circle in R? — Q that passes
through the hole in 2. Thus C and C’ link once; see Figure 16.

C/

Figure 16. Finding a harmonic knot.

Run a current 1 through the loop C’ and let B denote the restriction of its magnetic
field to the domain 2. Then, as indicated in Section 5, the field B has the following
properties:
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V-B=0, VxB=0, /B~ds=1. ®)
c

In general, we cannot expect B to be tangent to the boundary of 2. We plan to fix
this, without disturbing the three properties (8) of B, by subtracting from B a gradient
vector field that is divergence-free, (automatically) curl-free, and has the same normal
component as B along 9<2.

To this end, consider the smooth real-valued function g = B - m on d<2. Since B is
divergence-free, we have [, , g d(area) = 0. Thus we can find a solution ¢ of Laplace’s
equation Ag = 0 with Neumann boundary condition d¢/dn = g on 92.

The gradient vector field V¢ has the following properties:

V- (Vp)=Ap =0, V x Vg =0,
dp
Vo -n= — =g, Vo -ds =0.
9 a8 /Cw s

Now define V = B — V. Then V satisfies:
V . V = 0’ V X V = 0,

V-n=0, fVods=I.
c

Thus V is a nonzero harmonic knot in 2.

The vector field V has circulation [ V - ds = I around every loop that goes once
the long way around €2, since for curl-free vector fields the circulation depends only
on the homology class of the loop.

The flux @ of V through any cross-sectional disk ¥ of 2 is independent of the
cross-section because V is divergence-free and is tangent to 9<2. If ® were zero, then
V would be a fluxless harmonic knot and hence (by the soon to be proved orthogonality
of FK and HK) would be zero, contrary to fact. Thus its flux ¢ # 0.

We note that V' and its real multiples aV are the only harmonic knots defined on €2.
For if V* is a harmonic knot in 2 with flux ®* through a cross-sectional disk ¥, then
V* — (®*/®)V is a fluxless harmonic knot, and hence is zero.

It follows that, in this simple case, the subspace HK of harmonic knots on our torus
of revolution satisfies

HK = R! = Hi(Q) = Hy(2, 0Q) = Ree™s of HQ’

as claimed in Lemma 2.

Now suppose that 2 is an arbitrary compact domain in 3-space, with smooth bound-
ary 0€2.

Recall from Section 6 that, by Poincaré duality, H;(2) = H,(2, 92), while by
Alexander duality, H;(Q) = H,(R? — Q). Let k be the common dimension of these
three vector spaces.

Let Cy, Cy, . .., Ci be a family of disjoint loops €2 that represents a basis for H;(L2);
let ¥4, X5, ..., i be a family of cross-sectional surfaces in <2 that represents a basis
for H(2,02); and let C{, C;, ..., C; be a family of disjoint loops in R3 — Q that
represents a basis for H; (R?® — Q). These bases are to be chosen, as indicated at the
end of Section 6, so that the intersection number of C; with X; is §;;, and so that the
linking number of C; with C} is also §;;.
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Now run currents I, I, .. ., I through the loops Cy, C,, ..., C}, and let B be the
corresponding magnetic field in 2. Then in the domain 2 we have

V.B=0, VxB=0, [B.ds=1,-. 9)
c.

Exactly as in the simple case of the torus of revolution, we subtract from B the
gradient V¢ of a harmonic function ¢ that satisfies the Neumann boundary condition
dp/omn=g =B -nondf.

Then the three conditions (9) for B are also satisfied by the vector field V = B —
Vo,and moreover V-n=0.Thus V = V(Iy, b, . . ., I}) is a nonzero harmonic knot,
provided that at least one of the currents /; is nonzero.

Let @1, @5, ..., O be the fluxes of V through the cross-sectional surfaces X1, %5,
..., X. If these were all zero, then V would be a fluxless harmonic knot, and again, by
the soon to be proved orthogonality of FK and HK, would be zero. Therefore at least
one of the ®; must be nonzero. And the linear transformation that takes the current data
(I, b, .. ., I}) to the flux data ($,, O,, ..., $;) must be nonsingular, and therefore
must be an isomorphism.

It follows that the fields V (I}, I,, . . ., I;) are the only harmonic knots in 2. For if
V'’ is a harmonic knot in 2 with fluxes ®{, @, ..., ®; through the cross-sectional sur-
faces X1, ¥, ..., 2, then one of our fields V (11, I, . . ., I;) must have the same flux
values, and hence V' — V (I}, L, . . ., I) is a fluxless harmonic knot, and is therefore
zero.So V' =V (I, I, ..., I}).

Thus HK = R* = H)(Q) = Hy(Q, dQ2) = Ree™s of 32 which completes the proof
of Lemma 2.

10. PROOF OF PROPOSITION 2. With all the groundwork behind us, we now
easily complete the proof of Proposition 2. We must show that the subspace of
divergence-free vector fields that are tangent to the boundary of <2 is the orthogo-
nal direct sum of the subspace of fluxless knots and the subspace of harmonic knots:

K =FK$¢HK.

Let V be a divergence-free vector field defined in €2 and tangent to its boundary. Let
31, Xg, ..., X be a family of cross-sectional surfaces in <2 that form a basis for the
relative homology H, (2, 0R2). Let &1, @5, ..., O, be the fluxes of V through these
surfaces.

According to Lemma 2 and its proof, there is a harmonic knot Vg in Q2 with
precisely these flux values. Let Vy = V — V. Then Vy is fluxless. Thus every
divergence-free vector field V defined in €2 and tangent to its boundary can be written
as the sum of a fluxless knot V and a harmonic knot V.

Now we show that the fluxless knots are orthogonal to the harmonic knots.

To this end, let V € FK be a fluxless knot. Thatis, V-V =0, V-n = 0, and all
interior fluxes are zero. By Lemma 1, we can write V = V x U, where V - U = 0 and
Uxn=0.

Let W € HK be a harmonic knot. Thatis, V- W =0,V x W =0,and W -n = 0.

Again using the formula

V.- UxW)=(VxU)-W-U-(VxW),

we have
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(V,W)=(V><U,W)=/(V><U)~W
Q
=/(V.(U><W)+U'(V><W))=/V-(U><W)
Q Q

=/ UxW)-n=0,
aQ

because U is orthogonal to 9<2.
This completes the proof of Proposition 2.

11. PROOF OF PROPOSITION 3. We must show that the subspace of gradient
vector fields on €2 is the orthogonal direct sum of the subspace of divergence-free gra-
dient fields and the subspace of grounded gradient fields (that is, gradients of functions
that vanish on 9<2):

G=DFGa&GG.

The argument is straightforward. We start with a gradient vector field V = Vo,
where ¢ is any smooth function on 2. Let ¢; be a solution of the Laplace equation
Ag; = 0 on 2, with Dirichlet boundary condition ¢; |30 = ¢|sq, and let g, = ¢ — ¢y.
Then Vi = Vg and V, = Vg, satisfy V = V; + V..

We note that V - V; = V - Vg; = Ag; = 0, so that V; € DFG. Similarly, ¢;|yq =
®laa — ¢1lsq = 0, so that V, € GG. Thus the subspaces DFG and GG certainly span G.

Now we want to show that the divergence-free gradients are orthogonal to the
grounded gradients.

To this end, let V' € DFG. Thus V = V¢ with V-V = Agp = 0. Likewise, let
W € GG, and write W = Vi with /|3 = 0.

We use the identity

V-(Vp) =V Vo +yAgp,

to get
(V,W)=/V-W=/V¢-V1ﬁ
Q Q
:/(v.(w@_wm):/v(wm
Q Q

=/ (W) -n=0,
a2

‘where we have used the facts that A¢ = 0 and ¥/ |;, = 0.
This completes the proof of Proposition 3.

12. HARMONIC GRADIENTS. Before carrying out the proof of Proposition 4, we
need to demonstrate the abundance of harmonic gradients. Recall the definition:

HG ={V € VF(Q2) : V = Vg, V-V =0, ¢ constant on each component of 9<2}.

Lemma 3. HG = HZ(Q) o~ H1 (Q, aQ) o~ R(# components of 7$2)—(# components of Q).
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Let 2 have k components 2, 2, ..., %, and for 1 < i <k, let 3(2;) have r;
components, 9€2;1, 08242, ..., 0R;i,,. Thus dQ2 has r = r{ +r, + - - - + rx components:

0= JoQy:1<i<k 1<j<n)
Now let
{cij:1<i<k, 1<j<r}

be a set of  constants, subject to the k relations
i
D ey=0 forl<ix<k
j=1

Let ¢ be a solution of the Laplace equation A¢ = 0 on 2 with Dirichlet boundary
conditions ¢|yq,; = ¢;;. Then the divergence-free vector field V = V¢ belongs to HG.

Since we can alter ¢ on each component 2; of 2 by an additive constant (with
different constants on different components) without changing V = V¢, we lose no
vector fields by imposing the k relations ) . ¢;; =0for1 <i <«k.

By uniqueness of solutions of the Dirichfet problem for the Laplace equation, there
are no other elements of HG. This finishes the proof of Lemma 3.

Now let ®;; be the flux of V through the boundary component 0<2;;. Since V is
divergence-free, we have

Y ;=0 forl<i<k
j=1

We use the following lemma in the proof of Proposition 4.

Lemma 4. The linear map from boundary values of harmonic functions to the fluxes
of their gradients through the components of <2, which takes the (r — k)-dimensional
vector space

j=1

{(c,»j):lfifk, 1<j=<n, Zc,-,-:Oforlfigk}

to the (r — k)-dimensional vector space

Jj=1

{(q>ij):1§i§k, 1<j<r, ZCID,»j=Ofor1§i§k},

is an isomorphism.

Suppose not. Then there is some set of boundary values (c;;), not identically zero,
for which the corresponding set of fluxes (®;;) is identically zero.

Let V be the corresponding vector field, constructed as in the proof of Lemma 3.
Then V lies in both CG and HG, and so (by their soon to be proved orthogonality) must
be zero. Thus ¢ must be constant on each component £2; of €2, and since ) _; ¢;; =0,
each ¢;; = 0. Thus the linear map in question must be an isomorphism. This proves
Lemma 4.
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We pause to contrast harmonic knots with harmonic gradients.

Harmonic knots are smooth vector fields in €2 that are divergence-free, curl-free,
and tangent to the boundary of 2.

Harmonic gradients, we claim, are smooth vector fields in 2 that are divergence-
free, curl-free, and orthogonal to the boundary of €2. Every harmonic gradient certainly
has these three features, so suppose we are given a vector field V with these three
properties. We must show that it is a harmonic gradient.

To see this, first recall that a curl-free vector field on €2 is a gradient vector field if
and only if it has zero integral around a family of loops that generates H;(£2). Since
the map H;(02) — H;(S2) is onto, as noted in Section 6, these loops may be chosen
on the boundary of <2, where the integral is sure to be zero because V is orthogonal to
the boundary. This shows that V' must be a gradient vector field: V = V¢, for some
smooth function ¢ on 2. Since V is divergence-free, the function ¢ is harmonic. Since
V is orthogonal to the boundary of 2, ¢ must be constant on each component of 9 2.
Thus V is a harmonic gradient.

13. PROOF OF PROPOSITION 4. With the groundwork done, we now complete
the proof of Proposition 4. We must show that the subspace of divergence-free gradient
vector fields on 2 is the orthogonal direct sum of the subspace of curly gradients and
the subspace of harmonic gradients:

DFG = CG @ HG.
Recall the definitions:

CG=({V e VE(Q):V =Vgp, V-V =0, all boundary fluxes are 0}
HG ={V € VE(Q) : V = Vg, V-V =0, ¢ is constant on each component of 92}.

Start with a vector field V € DFG. Thus V = Vo and V-V = Agp = 0.

Let (®;;) be the fluxes of V through the components 0$2;; of d€2, where 0<2;; is
the j-th connected component of the boundary of the i-th connected component of 2.
Since V is divergence-free, we know that ; ®;;=0forl <i <k

Using the isomorphism established in Lemma 4, we choose constants (c;;) with
>_; ¢ij = 050 that the harmonic function  with /|50, = c;; provides us with a vector
ﬁefd V2 = Vi in HG with fluxes ®;; through 92;;.

Then V; =V — V5, = V(¢ — ¥) has zero flux through each component 9$2;; of 9<2,
and hence V; € CG. Since V, € HG, these two subspaces certainly span DFG.

It remains to check that these subspaces are orthogonal.

Let V € CG. Thus V = Vg, V-V = Ap = 0, and all boundary fluxes of V are
Zero.

Let W € HG. Thus W = Vy, V- W = Ay = 0, and v is constant on each com-
ponent 9€2;; of 9.

Then, once again using the formula

V.- (V) =V - Vo +Ag,

we have

<v,w>=/Qw.w=[9(v.(w¢)_w<p)
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=fv.<1/fw>>=f YV m
Q aQ

ij

=0,

where we have used the facts that A = 0, that i has constant value c;; on the com-
ponent 0€2;; of 0<2, and that the flux of V = V¢ through each boundary component
0€;; is zero.

This completes the proof of Proposition 4.

14. PROOF OF THE HODGE DECOMPOSITION THEOREM. Let 2 be a
compact domain in 3-space with smooth boundary. The desired orthogonal direct sum
decomposition,

VE(Q2) =FK @ HK © CG @ HG © GG,
is an immediate consquence of Propositions 1 through 4, as are the three partial sums

ker curl = HK & CG & HG ¢ GG
imgrad = CG ¢ HG ¢ GG
kerdiv =FK @& HK & CG @ HG,

It remains to prove
Lemma 5.
imcurl =FK @ HK & CG.
It is easy to see that
imcurl C FK @& HK @ CG, (10)

as follows. Suppose that V = V x U. Then we know that V - V = 0 and that the flux of
V through every closed surface in 2 is zero. Let ¢ be a solution of the Laplace equation
Ag¢ = 0 with Neumann boundary data d¢/odn = V - n along 92. Then V, = Vg lies
in CG. The vector field V| = V — V, is divergence-free and tangent to 92, and hence
lies in FK @ HK. Writing V = V| + V, establishes the inclusion (10).

Suppose now that V' € FK & HK @ CG. This tells us that V - V = 0 and that the
flux of V through each component of 92 is zero. We want to write V =V x U for
some U. The key to this is formula (3) for divergence-free fields:

V(y) fory € Q —iv/ V&) -n
Ofory e ar 7 g 1y — x|

V, x BS(V)(y) = { d(area,). A3)

To show that V is a curl, it is sufficient to show that the last term in (3) is a curl, and
we do this as follows.

Construct another domain * by taking a large ball containing <2 in its interior, and
then removing the interior of €2, as shown in Figure 17.

The boundary components of * consist of the boundary components of 2 plus the
boundary of the ball.
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Q*
Figure 17. Verifying the image of curl.

We now solve a Neumann problem for the Laplacian on Q*. That is, we find a
harmonic function ¢* on Q* with 9™ /dn™ = —V - n on each of the boundary com-
ponents that Q* shares with 2, and 9¢™/3n™ = 0 on the boundary of the ball. Then
we let V* = V™. Equation (3) for V* is

V*(y) fory € } / V*x)-n d(area,).
I

*
Vy x BS(Y )(y)z{ Ofory e @ | ax ly — x|

In the complementary domain ©2*', this equation is

1 k) | ¥
v, x BS(V¥)(y) = ——vy/ VI i(area,).
a

47 o |y — x|

1 V(x)-n
=—V d(area,).
4z y/asz v e

Since Q@ C Q*, this equation holds in €.
Thus in ©2 we have

V x (BS(V) + BS(V*)) =V,
‘which shows that V is in the image of curl, and hence that
im curl = FK ® HK ¢ CG,

as claimed.
Wrapping up our business, note that we have already established the isomorphisms

HK = H;(Q; R) = Hy(Q, 02; R) = RE™s 179
HG =~ HZ(Q; R) ~ HI(Q’ 39; R) o~ R(# components of dQ2)—(# components of 2)

in Lemmas 2 and 3. Finally, the characterizations of the five orthogonal direct sum-
mands of VF(£2), namely:

FK = (ker curl)*
HK = (ker curl) N (im grad)*
CG = (im grad) N (im curl)
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HG = (kerdiv) N (im curl)*
GG = (kerdiv)™*,

follow immediately from the various partial sums.
15. ANSWERS TO THE FOUR QUESTIONS.

QUESTION 1. Given a vector field defined on a compact domain in 3-space, how do
you know whether it is the gradient of a function?

Let V be our vector field, defined on the compact domain €2 with smooth boundary;
we want to know if there is a smooth real-valued function ¢ on Q2 with V = V.

If V is a gradient vector field, then its circulation around every loop is zero. Con-
versely, if the circulation of V' around every loop is zero, then V' = V¢ with ¢(x)
defined by integrating V along any path from a base point x; in each connected com-
ponent of 2 to the point x. But this is not a very practical test.

ANSWER TO QUESTION 1. The vector field V is a gradient if and only if V. x V =0
and the integrals of V around the loops Cy, Cs, ..., Cy are zero, where these loops
represent a basis for the one-dimensional homology H;(2).

We now prove that our answer is correct. We can see that the conditions are neces-
sary, so suppose that V satisfies them. We saw in Section 6 that if V is curl-free, then
its circulation around any loop C depends only on the homology class of C in H; ($2).
But any C is homologous to a linear combination of the basis loops Cy, ..., Cg,
around each of which V has circulation zero, and so V must also have circulation
zero around C. Then V is certainly a gradient field.

Although we didn’t use the Hodge Decomposition Theorem to reach this conclu-
sion, we can use it to reflect on what we have just said. The condition V x V =0
tells us that V lies in the kernel of curl, namely HK & CG © HG @ GG. The condition
that V has zero circulation around the basis loops for H;(2) tells us that the HK-
component of V is zero, and hence that V lies in CG & HG & GG, which is just the
subspace of gradient fields.

QUESTION 2. Given a vector field defined on a compact domain in 3-space, how do
you know whether it is the curl of another vector field?

Let V be our vector field defined on the compact domain <2 with smooth boundary;
we want to know if there is a vector field U on Qwith V x U = V.

If V is a curl, then its flux through every closed surface is zero, as an immediate
consequence of Stokes’ Theorem. Conversely, if the flux of V through every closed
surface S in €2 is zero, then V is a curl. Again, this is not a very practical test.

ANSWER TO QUESTION 2. The vector field V is the curl of another vector field if and
only if V - V = 0 and the flux of V through each component of d<2 is zero.

Confirmation that we have given the correct answer comes from the Hodge Decom-
position Theorem. The condition V - V' = 0 tells us that V lies in the kernel of div,
namely FK & HK & CG @ HG. The condition that the flux of V through each compo-
nent of 02 is zero tells us that the HG-component of V is zero, and hence that V lies
in FK @ HK & CG, which is just the image of curl.
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QUESTION 3. Can you find a nonzero vector field on a given compact domain in
3-space that is divergence-free, curl-free, and tangent to the boundary?

ANSWER TO QUESTION 3. Such a vector field exists if and only if Hy(2) # 0.

This is simply a part of the Hodge Decomposition Theorem. The vector fields we
are looking for are the harmonic knots; they form the subspace HK of VF(2), and
this is isomorphic to H; (2). To see whether H;(£2) is nonzero, we simply look at the
boundary components of <2 and make sure that they are not all of genus zero. If this is
true, we can refer to the proof of the Hodge Decomposition Theorem (see Section 9)
to see how the harmonic knots were constructed from magnetic fields.

QUESTION 4. Can you find a nonzero vector field on a given compact domain in
3-space that is divergence-free, curl-free, and orthogonal to the boundary?

ANSWER TO QUESTION 4. Such a vector field exists if and only if H,(2) # 0.

This is also just a part of the Hodge Decomposition Theorem. The vector fields we
are looking for are the harmonic gradients; they form the subspace HG of VF(£2), and
this is isomorphic to H>(S2). To see whether H,(S2) is nonzero, we simply look for
a connected component of €2 that has more than one boundary component. If such a
component is present, we can again refer to the proof of the Hodge Decomposition
Theorem (see Section 12) to see how the harmonic gradients were constructed from
solutions to the Dirichlet problem for the Laplace equation.

16. HISTORICAL THREADS. In this section, we trace the threads that led from
potential theory, functional analysis, fluid dynamics, electrodynamics, and topology to
the Hodge Decomposition Theorem.

We begin with existence and uniqueness of solutions to the Dirichlet problem for
the Laplace equation, which appears in the Hodge Decomposition Theorem in the
characterization of the subspace HG of harmonic gradients.

By the early part of the nineteenth century, mathematicians appreciated the impor-
tance of the potential equation A¢ = 0 in problems concerning gravitation and heat
conduction. In 1813, Poisson [38] corrected an earlier misconception of Laplace, who
had assumed that the gravitational potential ¢ satisfies A¢p = 0 everywhere (inside
or outside the mass), to the equation Agp = —47p (where p is the mass density) that
now bears his name. In the same paper, Poisson noted the usefulness of the potential
function and equation in the study of electricity.

Then George Green published his 1828 treatise [24] on the application of math-
ematical analysis to electricity and magnetism, which was neglected until its impor-
tance was recognized in the 1850s by William Thomson (Lord Kelvin). In it, Green
derived his famous identities and developed the notion now known as “Green’s func-
tion”, whose existence is equivalent to the solvability of the Dirichlet problem for the
Laplace equation. Although Green did not give a complete proof, his paper was the
first to give the variational characterization of the Dirichlet problem, now known as
“Dirichlet’s principle”. In order to solve A¢ = 0 on a domain €2 subject to the bound-
ary condition ¢ = f on 9<2, one should seek to minimize the integral f o |Vo|*d(vol)
over the set of functions ¢ that satisfy the boundary condition. Thomson called further
attention to this idea, and Riemann used it in two dimensions to solve problems in
complex variable theory.
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In the 1870s, the proof of the existence of solutions to the Dirichlet problem via
Dirichlet’s principle was called into question by Weierstrass. Subsequently, Weier-
strass’s student, H.A. Schwarz, and Carl Neumann and others developed proofs of
existence that were not based on Dirichlet’s principle. It remained for Hilbert [27] in
1900 to establish the validity of Dirichlet’s principle as a method for proving existence.

The Fourier analysis approach to partial differential equations and Fredholm’s
work on integral equations motivated the development of functional analysis at the
beginning of the twentieth century. Hilbert and his successors, especially Friedrich
Riesz [41]-[43] and Maurice Frechet [21], introduced the notion of functions as points
of a space on which the geometry of the L? inner product could be exploited.

The notion of orthogonally complementary subspaces of functions grew out of the
study of self-adjoint integral operators to which Fredholm’s alternative applies, as well
as out of the work of Erhard Schmidt, Hermann Weyl and others on eigenvalue prob-
lems for self-adjoint differential operators, where eigenspaces corresponding to differ-
ent eigenvalues are orthogonal.

We turn now to the relationship between the topology of a domain in 3-space and
the nature and variety of fluid flows that can be defined there. This appears in the
Hodge Decomposition Theorem in the characterization of the subspace HK of har-
monic knots.

An “ideal fluid” is incompressible and has no internal friction (viscosity). In 1858,
Hermann von Helmholtz [26] studied the motion of such fluids without assuming that
the velocity is the gradient of a potential function, as had usually been done in earlier
treatments by Euler, Lagrange and others. Helmoltz’s paper contained a wealth of new
ideas, which had a powerful effect on Tait, Thomson, and Maxwell.

Helmbholtz introduced the curl of a velocity field V to measure the local rotation
of the elements of the fluid, and then faced the problem of reconstructing V from
knowledge of its curl. He showed how to get one solution, and stated that all others are
obtained from this one by adding the gradient of a “multi-valued potential function”
that could be chosen to satisfy the boundary conditions.

He also introduced the simple-connectivity of a three-dimensional domain, extend-
ing the sense in which Riemann [40] had used it the year before for surfaces, and
pointed out that in a simply-connected domain bounded by closed surfaces, irrota-
tional (i.e., curl-free) fluid motion is uniquely determined by boundary conditions. In
particular, if the normal component of the fluid velocity along the boundary vanishes,
then the fluid must be at rest.

Helmoltz defined multiply-connected three-dimensional domains €2 in terms of the
maximum number of cross-sectional surfaces (X, 0X) C (€2, 0L2) that can be placed
in the domain without disconnecting it, again extending the sense in which Riemann
used this idea for surfaces.

In July 1858, the Scottish physicist Peter Guthrie Tait read Helmholtz’s article and
immediately made an English translation [46] for his personal use, which was pub-
lished nine years later, after Helmholtz had a chance to look it over and revise it. Tait
saw how to use Hamilton’s quaternions to express Helmholtz’s decomposition of in-
finitesimal fluid motions into translations, deformations, and rotations, and later saw
how to express Euler’s equations of fluid motion in a similar fashion [47, 48]. The
compactness of Tait’s quaternionic expressions foreshadowed those of contemporary
vector calculus.

Since the mid 1850’s, William Thomson had been thinking of the space between the
smallest parts of matter as filled with a continuous and material medium undergoing
rotary motions around material atoms and molecules. Thomson and Tait were friends
and collaborators, and Thomson was impressed with Tait’s smoke ring experiments
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that illustrated Helmholtz’s mathematical predictions of vortex interaction, vibration,
and stability. He felt that closed vortices might provide stable dynamical configurations
in a universal medium that were consistent with his general beliefs about the nature of
atoms, and that their vibrations might give a possible explanation of atomic spectra.
Spurred by these beliefs (which he maintained for almost twenty years before gradu-
ally abandoning them), Thomson, in his 1869 paper [S0] on vortex motion, continued
the mathematical investigations begun by Helmholtz.

Thomson introduced an embryonic version of one-dimensional homology H; (£2) in
which one counted the number of “irreconcilable” closed paths inside the domain 2.
This was subject to the standard confusion of the time between homology and homo-
topy of paths: homology was the appropriate notion in this setting, but the definitions
were those of homotopy.

He also introduced a primitive version of two-dimensional relative homology
H; (<2, 92) in which one counted the maximum number of “barriers”, meaning cross-
sectional surfaces (X, 0%) C (€2, dR2), that one could erect without disconnecting the
domain 2. Thomson pointed out, just as we did in Section 6, that while these barriers
might be disjoint in simple cases, in general one must expect them to intersect one
another.

He recognized that one was counting the “same thing” by two different means, and,
translating to fluid flows, also saw that this was the same as counting the maximum
number of linearly independent vector fields in €2 that were divergence-free, curl-free,
and tangent to the boundary (harmonic knots in our terminology), since these would be
in one-one correspondence with the values of their integrals along a maximal family
of irreconcilable closed paths inside €.

Then James Clerk Maxwell, a former schoolmate of Tait, started to think seriously
about Thomson’s topological ideas, and discussed them repeatedly with him while
Thomson was completing his paper on vortex motions. Maxwell came to understand
that, independent of complicated appearances, the connectivity of a domain in 3-space
is determined by and can be counted in terms of the connectivities of the surfaces
on its boundary. Furthermore, he saw that the connectivity of a domain is the same
as that of its complement in 3-space, the key statement of Alexander duality in this
setting. Maxwell included an exposition of all this in his Treatise on Electricity and
Magnetism [34]; see the preliminary chapter On the Measurement of Quantities, and
Chapter IV, General Theorems.

17. A GUIDE TO THE LITERATURE. To the best of our knowledge, the Hodge
Decomposition Theorem for vector fields on bounded domains in 3-space first ap-
peared in Hermann Weyl’s 1940 paper [54]. Hodge’s book [28], which appeared in
1941 with a second edition in 1952, is the standard reference for the Hodge Decompo-
sition Theorem for differential forms on manifolds without boundary, and provides a
good guide to the early literature. The corresponding results for differential forms on
manifolds with boundary, and the related boundary value problems, have their early
treatments in the 1950s in [17], [14], and [22].

The Hodge Decomposition Theorem is closely related to the de Rham Isomorphism
Theorem for differential forms. De Rham’s 1960 book [15] is the standard reference
for this on closed manifolds; it provides a good guide to the early literature. Duff’s
1952 paper [16] develops de Rham theory for differential forms on manifolds with
boundary, and solves the basic boundary value problems in the subject. Duff credits
Tucker [52] with conjecturing many of these results in 1941.

The Hodge Decomposition Theorem provides a framework for vector analysis in
3-space that is used in many studies in fluid dynamics and plasma physics: mathe-

May 2002] VECTOR CALCULUS AND THE TOPOLOGY OF DOMAINS IN 3-SPACE 439

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com



http://www.fineprint.com

’Integre Technical Publishing Co., Inc. American Mathematical Monthly 109:5 January 16,2002 2:31p.m. cantarella.tex page 44T

matical theory of viscous incompressible flow [29]; stationary solutions of the Navier-
Stokes equation [19]; self-adjoint realizations of the curl operator [37], [57]; Beltrami
fields and force-free magnetic fields [30], [32], [33]; and discrete eigenstates of plas-
mas [55], [56].

Three works have been especially helpful to us in the preparation of this paper: the
1957 notes of Blank, Friedrichs, and Grad [6], which seem to us closest in spirit to our
own views; the beautiful treatment of Hodge theory in Frank Warner’s 1971 book [53];
and the excellent 1995 book of Gunter Schwarz [44]. In addition we recommend the
papers of Giles Auchmuty [2], [3], which, in particular, deal with the case where the
boundary of the domain is not of class C*.

Finally, the Hodge Decomposition Theorem plays an important role in our own
works on writhing of knots, helicity of vector fields, the spectral theory of the Biot-
Savart and curl operators, and applications to plasma physics [8]-[13].
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