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Abstract

In 1974, Gehring posed the problem of minimizing the length of two linked curves
separated by unit distance. This constraint can be viewed as a measure of thickness
for links, and the ratio of length over thickness as the ropelength. In this paper we
refine Gehring’s problem to deal with links in a fixed link-homotopy class: we prove
ropelength minimizers exist and introduce a theory of ropelength criticality.

Our balance criterion is a set of necessary and sufficient conditions for criticality, based
on a strengthened, infinite-dimensional version (Theorem 5.4) of the Kuhn—Tucker
theorem. We use this to prove that every critical linkJ$ with finite total curvature.

The balance criterion also allows us to explicitly describe critical configurations (and
presumed minimizers) for many links including the Borromean rings. We also exhibit

a surprising critical configuration for two clasped ropes: near their tips the curvature

is unbounded and a small gap appears between the two components. These examples
reveal the depth and richness hidden in Gehring’s problem and our natural extension.
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2 Cantarella, Fu, Kusner, Sullivan and Wrinkle

1 Introduction

Suppose thatl and B are disjoint linked Jordan curves iR3
which lie at a distancd from each other.
Show that the length of is at least2r.

—Fred Gehring, 1974

Gehring’s problem, which appeared in a conference proceedings [7], was soon solved
by Marvin Ortel. Because Ortel's elegant solution was never published, we reproduce
it here with his permission: Fix any point € A; the cone onA from « is a disk
spanningA. SinceA and B are linked,B meets this disk at some poibte B, lying

on a chord ofA. BecauseDist(A, b) > 1, projectingA to the unit sphere&S aroundb

does not increase its length. The projection is a closed curve joining two antipodal
points on S, and so has length at lea3t. (Further proofs, and generalizations to
linked spheres in higher dimensions, were published in [11, 28, 12, 13].)

The unique minimizing configuration for Gehring’s problem is a Hopf link consisting

of two congruent circles in perpendicular planes, each passing through the other’s
center. This leads to a natural question: what are the length-minimizing shapes of other
link types when the different components stay unit distance apart? This constraint
prevents different components from crossing each other, but we cannot expect to fix the
link type exactly. Instead, the natural setting for this problem is Milnor’s notion of link
homotopy: two links are link-homotopic if one can be deformed into the other while
keeping different components disjoint. Clearly one link can be deformed into another
while keeping all components at unit distance if and only if they are link homotopic.

We will define thelink-thicknessof a link to be the minimum distance between dif-
ferent components. The problem we consider is then to minimize length in a link-
homotopy class, subject to the constraint of fixed link-thickness. Equivalently, we
could minimize thdink-ropelengthof the link, meaning the quotient of length over
thickness.

In [4], we found length-minimizing links under a similar constraint: that a normal tube

of diameter one around the link stay embedded. It is easy to see that the examples
constructed there (like the one in Figure 4) are also global minima (in their respective
link-homotopy classes) for the Gehring problem. The focus of this paper will be on
critical configurations. Our main result is a balance criterion (Theorem 6.1, Corol-
lary 6.3), which states that a link is link-ropelength critical if and only if the tension
force in the curve is balanced by a system of compressive forces between pairs of
points on different components éf realizing the minimum distance.

This balance criterion is based mainly on an improved, infinite-dimensional version
(Theorem 5.4) of the Kuhn—Tucker theorem on constrained optimization, which is
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Criticality for the Gehring Link Problem 3

essentially a very general method of Lagrange multipliers. The other key technical
element is a careful application of Clarke’s differentiation theorem for min-functions
(Theorem 3.1).

The direct method shows that there is a (rectifiable) minimizer for link-ropelength in
each link-homotopy class. An interesting problem is to determine the regularity of
these minimizers or other critical points. The previously known minimizers Wweére

but not C2. Our balance criterion allows us to prove that all link-ropelength-critical
curves areC'! with finite total curvature (Proposition 6.5).

We next consider generalized links, which may include open components with con-
strained endpoints, or which avoid fixed obstacles. After extending our balance crite-
rion and existence results to this setting, we analyze the problem siitipde claspA

clasp consists of two linked arcs whose endpoints are constrained to parallel planes (as
in Figure 10). A generalization to clasps of different opening angles provides a model
for the strands of rope in a woven cloth or net. The balance criterion lets us construct
explicit critical configurations (Theorem 9.5) of these generalized links; we conjecture
they are the length-minimizers subject to the constraint that the arcs remain at unit dis-
tance from each other. Our critical clasp has a number of surprising features, including
a point of infinite curvature and a small gap (at the center of the clasp) between the
tubes around the two components. This configuratiafii$/* and may represent the
worst regularity of any critical curve.

We end by constructing a ropelength-critical configuration (and presumed minimizer)
for the Borromean rings. In all the other known critical configurations for closed
links, each component is a convex plane curve built from straight segments and arcs
of circles. In our Borromean rings, the components are still planar, but are nonconvex,
and are built from different pieces including parts of a clasp curve. In a sense, this is
the first nontrivial example of a ropelength-critical link.

Our methods will have a number of other applications. In particular, we have used
them to describe critical configurations for the “standard” ropelength problem for knots
and links: minimize the length of &' link subject to the constraint that the normal
neighborhood of unit diameter remains embedded. We will publish these results in a
sequel [2] to the current paper. We can also consider minimization not of length but
of other objective functions like elastic bending energy, again subject to a thickness
constraint. Analogs of our balance criterion may be useful in describing other flexible
mechanisms, such as thick surfaces.

We note that von der Mosel and Schuricht [33] have used a similar approach (via
Clarke’s theorem and a functional-analytic version of Lagrange multipliers) to derive
necessary, but not sufficient, conditions for criticality for the ropelength functional
of [4]. We will treat the same functional in our forthcoming sequel [2], and will offer
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4 Cantarella, Fu, Kusner, Sullivan and Wrinkle

a comparison of the two methods there. We also note that Starostin has given [34] an
independent derivation of the tight clasp of Section 9, though he does not prove that it
is critical.

2 Link-thickness for closed links

In order to reformulate Gehring’s problem, we first establish some basic terminology.
Remember that a compact, orientegnanifold-with-boundary) is a finite union of
components, each of which is homeomorphic to a cigdler an interval[0, 1].

Definition A parametrized curves a mapping from a compact, orientéemanifold-
with-boundary M to R3. Two parametrized curves are equivalent if they differ by
an orientation-preserving reparametrization (i.e., by composition with an orientation-
preserving self-hnomeomorphism 8f). A curve L in R3 is an equivalence class of
parametrized curves. We sdyis closedwhen each component of its domali is a
circle, that is, when its bounda@L is empty.

Even though our curves may have self-intersections, we will usually refer to points on
the curve as if they were simply points of its imageRA. The meaning should be
clear from context.

ThelengthLen(L) of any curveL is defined to be the supremal length of all polygons
inscribed inL. A curve has finite length, or ictifiable if and only if it has a Lip-
schitz (i.e.,C%!) parametrization. One such parametrization is then by arclength
Any rectifiable curve has a well-defined unit tangent ve@tee dL/ds almost every-
where.

Definition The link-thicknessLThi(L) of a curve L is the minimum distance be-
tween points on different components bf This is the supremat for which the
(¢/2)—neighborhoods of the componentsiofre disjoint.

For now, we will consider only the case of closed curves, where each component is
a circle. (We will deal with generalized links—with endpoint constraints—later in
Section 8.) So suppose we start with a closed cuinand we want to minimize length
under the constraint that the link-thickness remains at least one. Since we can rescale
any link to haveLL.Thi > 1, this problem is the same as minimizifliok-) ropelength

the quotient of length by link-thickness.

The thickness constraint naturally prevents different components from passing through
each other, but does not prevent any given component from changing its knot type
through self-intersections. This is the setting for Milnor’s work on link homotopy:
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Criticality for the Gehring Link Problem 5

Definition A link is a closed curve with disjoint components. Tiimk-homotopy
class of a linkZ, denoted|[L]], is the set of curves homotopic o through configu-
rations that keep different componentsiotisjoint.

Note that, for our purposes, configurationsiofwhere some components have self-
intersections are still considered to be links, and are includgd.ih

For two-component links, Milnor [24] showed that linking number is the only link-
homotopy invariant. For links of many components, the topological situation is more
complicated, but a complete classification of links up to link homotopy was provided
by Habegger and Lin [16]. We will prove in Section 6 that in every link-homotopy class
there is a curve minimizing ropelength. We show these minimizers are al@ays
though our examples suggest that they may not always have bounded curvature.

3 The derivative of link-thickness

We want to define critical configurations df subject to the thickness constraint
LThi(L) > 1. Becausd.Thi is defined as the minimum of a collection of distances
between points on different components, the equaditiBhi > 1 acts like a collection

of many constraints. To make this notion precise, we will apply a theorem of Clarke
to compute the derivative dfThi as we vary the curvé..

Given any curvel, let L(?) be the compact set of all unordered pdizs i} of points
on distinct components df. The link-thickness of_ is simply the minimum over.(?)
of the distance functioist{x, y} := |y — z|.

We often want to consider eontinuous deformatiorl; of a curve L: fixing any
parametrizationf of L, that means a continuous family of parametrized curves
with fo = f. (When we reparametrizé, we apply thesamereparametrization td.;

at all timest.) We assume thak, is C! in ¢; the initial velocity of L; will then be
given by some (continuou®>—valued)vectorfield¢ along L. We let VF (L) denote
the space of all such vectorfields. Formally, these are sections of the bfififlR?
pulled back from the tangent bundle®f by the parametrizatiorf of L. ldentifying
any tangent space tB* with R? itself, this is simply a map from the domaih/

to R3. Again, when we reparametrize a curliewe apply the same reparametrization
to any vectorfield .

Consider a curvd, with LThi(L) > 0. If L; is a continuous deformation df, with
initial velocity given by some € VF(L), then for each paifz, 3} € L), we clearly

have ( >
. d £y—£x,y—3}
0¢Dist{z,y} = —|y —x = .
¢Distiz, y} := — | It:0 pr—
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6 Cantarella, Fu, Kusner, Sullivan and Wrinkle

(Even if L is not embedded, the conditiddl'hi(L) > 0 implies  and y cannot
coincide inR?3, so this formula is always meaningful.)

A function like LThi, defined as the minimum of a compact family of smooth func-
tions, is sometimes called a min-function. Clarke’s differentiation theorem for min-
functions says that—just as in the case when the compact family is finite—the deriva-
tive of a min-function is the smallest derivative of those smooth functions that achieve
the minimum. More precisely, specializing [6, Thm. 2.1] to the case we need, we
have:

Theorem 3.1 (Clarke) Suppose for some compact space K and some ¢ > 0,
we have a family of C' functions fi, : (—e,¢) — R, for k € K. Suppose fur-
ther that f(t) and f/(t) are lower semicontinuous on K x (—¢,e). Let f(t) :=
minge g fx(t). Then f has one-sided derivatives, and

a7

dtt|,_, keko

where Ko := {k € K : f;(0) = f(0)} is the set of k for which the minimum in the
definition of f is achieved when t = 0. |

To apply this theorem to thickness, suppose we have a varidtioof the curvelL,

and let¢ € VF(L) be its initial velocity. The link-thicknes&Thi(L) is written as a
minimum overk = L(?) of the pairwise distance. Clarke’s theorem picks out those
pairs achieving the minimumk, is the set of pairs achieving the minimum distance
LThi(L).

In rigidity theory, the vertices of a tensegrity framework are joinedbhys whose
length is fixed cableswhose length can shrink but not grow, astdutswhose length
can grow but not shrink (cf. [31]). Thus, we borrow the term “strut” to describe the
pairs in Ky:

Definition An unordered pair of pointéx, y} on different components df is astrut
if |y — x| = LThi(L). The space of all struts df is denotedStrut(L) ¢ L.

Struts correspond to points of contact between tubes around the different components
of L. Our balance criterion will show how the segmefgt can be viewed as carrying
a force pushing outward on its endpoints.

Applying Clarke’s theorem to link-thickness, we get:
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Criticality for the Gehring Link Problem 7

Corollary 3.2 For any curve L, and any variation vectorfield ¢ € VF (L), the (one-
sided) first variation of link-thickness is

d¢ LThi(L) = Stgllitl(lL)5§Dist{x, yl.

O

Note thatd:Dist{x,y} is a continuous function af andy, and for any fixed{z, y }
is a linear function of the variatio§), being the derivative of a smooth function.

Therefore we can collect these into a linear operatgr= ¢Dist from VF (L) to the
spaceC(Strut(L)) of continuous functions on struts, defined by
. 1
(As§)({z, y}) := d¢Dist{z,y} = =l (&y — &ory — ).
Borrowing again from rigidity theory, where the analogadsis called therigidity
matrix, we will call Ag therigidity operatorfor link-thickness.

The corollary above can be rephrased to conclude that a vartatienrease&Thi(L)
to first order if and only ifAg¢ takes at least one negative valueStmut(L).

Note that, while the corollary says that link-thickness has a directional derivative
52“ LThi in each directiorg, the operatorééF LThi is notlinear in . For instance,
when one component of a link is between two others, itis easy to havépdﬂﬁhi <

0 andot, LThi < 0. We write the superscript to emphasize that these are only one-
sided derivatives. There is, however, a form of superlinearity:

Corollary 3.3 For any curve L and any £, € VF(L), we have

3¢y, LThi(L) > 6 LThi(L) + 6,y LThi(L).

Proof This follows immediately from the linearity ofils and the general fact that
min(f + ¢g) > min f + min g: we have
> min As¢{z,y} + min Asn{z, y},

where the minima are taken over &lt, y} € Strut(L). |

We will be interested in the adjoinfg of the rigidity operator, so we first con-
sider the dual function spaces. By the Riesz representation theorem, we know that
C*(Strut) is the space of signed Radon measures on the space(L) of struts.
Similarly VE*(L) is the space of what we will cafbrcesalong L, namely vector-
valued Radon measures @n
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8 Cantarella, Fu, Kusner, Sullivan and Wrinkle

The adjoint operatordg now associates to any measyreon struts a forceAgu
along L. Geometrically, each paifz, y} acts along the chordy, outward at each of
its endpoints. In formulas,

[eaam = [ asean
L Strut

- /a:eL/yeL<£y’ ﬁ> dp(z,y),

where we have lifted: to a symmetric measure(x, y) on ordered pairs. Physically,
we think of 1, as giving the strengths of compressive forces within the struts Agnd
as the operation that integrates these strut forces to give a net force along thé curve

4 First variation of length, and finite total curvature

The objective functional we consider in this paper is simply the lefigth(Z) of a
curve. Since our curves might not be smooth, we need to carefully examine the first
variation of length.

Let L be a rectifiable curve parametrized by arclengthvith unit tangent vectof".
Supposel; is a variation ofL under which the motion of each pointe L is smooth
in time with initial velocity ¢,, and¢ € VF(L) is a Lipschitz function of arclength.
Then the standard first-variation calculation shows that

= / (T, &) ds,
t=0 L

where¢’ = d¢/ds is the arclength derivative, defined almost everywhere along

d¢Len(L) := %Len(Lt)

If L is smooth enough, we can integrate this by parts to get

d¢Len(L) = — / (T',&)ds — Y (£T,¢).
L x€IL
(In the boundary term, the sign is chosen to makg point inward atz.) In fact, not
much smoothness is required: as londlais a function of bounded variation, we can
interpretT”’ as a measure, and the formula holds in a sense we will now explore.

Following Milnor [25], we recall that the total curvature of a polygon is just the sum
of its (exterior) turning angles, and we define tb&l curvatureof any curve to be
the supremal total curvature over all inscribed polygons. A rectifiable chrves
finite total curvature if and only if the unit tangent vectBr= L'(s) is a function of
bounded variation. Sometimes the space of all such curves is d&lled" or BV,

but we will call it FTC. (See [36] for a survey of results aGiil'C curves.)
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Criticality for the Gehring Link Problem 9

If L € FTC, it follows that at every point of. there are well-defined left and right
tangent vectorgy ; these are equal and opposite except at countably many points, the
cornersof L. (See, for instance, [32, Sect. 5.2].)

If L is FTC, its tangentl’ has a distributional derivativ€ with respect to arclength:
a force (anR?®—valued Radon measure) alofgthat we call thecurvature force

The curvature force has an atom (a point mass or Dirac delta) at each eoendr,

with K{z} = T (z) + T_(x). OnaC? arc of L, the curvature force i€ = dT =

kN ds and this is absolutely continuous with respect to the arclength or Hausdorff
measureds = H!.

When L has boundary, we choose to includetiran atom at each endpoint &f, with
massl and pointing in the inward tangent direction. This means we need no boundary
terms in the formulai¢Len(L) = — [, (§,dK).

We say that a vectorfield along L is smoothf £, is a smooth function of arclength.
(The arclength parametrization of any rectifiable curve is essentially unique, so this
makes sense.) The set of all smooth vectorfields will be dernéied(L).

The first variationLen(L) can be viewed as a linear functional on smooth vectorfields
£ € VF™(L). As such a distribution, it has order zero, by definitionjdlen(L) =

Iz <T, £’> ds is bounded byC sup; |¢| for some constan€’. This happens exactly
when we can perform the integration by parts.

We collect these results as:

Lemma 4.1 Given any rectifiable curve L, the following conditions are equivalent:

(a) Lis FTC.
(b) The first variation 0Len(L) has distributional order zero.

(c) There exists a curvature force measure K along L such that 6¢Len(L) =
—Jp (&dK).

O

An FTC curve L is C' exactly when it has no corners, that is, wh€rhas no atoms
(except at the endpoints). It is furthermof€-! when T is Lipschitz, or equiva-
lently when IC is absolutely continuous (with respect to arclength) and has bounded
Radon—Nikodym derivativelXC/dH! = xN. In previous work on ropelength (see,

for example [4, 14]), the thickness measure had an upper bound for curvature built in,
meaning that any curve of positive thickness was automati¢ally. This is not true

for the link-thickness, so we do not expect the same regularity results to hold here.
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10 Cantarella, Fu, Kusner, Sullivan and Wrinkle

5 Constrained criticality and the Kuhn—Tucker thereom

We will review constrained minimization problems in a finite setting, before general-
izing to the setting we will need for our ropelength problems. Suppose we want to
minimize aC'! function f : R® — R inside theadmissible regiomefined by a finite
collection of C! inequality constraintg; > 0. A constraintg; is activeat p € R” if

g9i(p) = 0.

Definition We say thaip is aconstrained critical poinfor minimizing f if, for any
tangent vectow atp with D, f < 0, we haveD,g; < 0 for some activey;. That is,p
is critical if there is no direction € R™ that reducegd to first order while preserving
all constraints to first order.

Note that the criticality conditions for minimizing and — f are quite different; in
particular local maxima forf are rarely critical points for minimizing’, while local
minima for f usually—though not always—are.

Example 5.1 Suppose we minimizg (z,z) := z on the halfplaner > 0 in R?,
subject to
91::(x2—1)3—220, go =2z > 0.

The admissible region has an outward-pointing cusp, shown in Figure 1. The tip of
this cusp, ap = (1, 0), is the global minimum off over the admissible region, but it

is not critical: the directional derivatives in the direction= (—1,0) are D, f = —1

but Dvgi =0.

To deduce that a local minimum ¢f is critical according to our definition, an addi-
tional regularity hypothesis will be required. However, critical points can be exactly
characterized by a Lagrange multiplier theorem (cf. [17]):

Theorem 5.2 (Modified Kuhn—Tucker Theorem)A point p is constrained-critical
for minimizing f if and only if the gradient V f is a positive linear combination of the
gradients V g; of the constraints g; active at p.

The geometric intuition behind this theorem is easy to understand: Only the active
constraints matter, and being inequality constraints they can only act positively. If
there were some component efV f not canceled by th&/g;, that would give an
admissible direction to move which decreages

Unlike in the classical Kuhn—Tucker theorem, we do not need additional regularity
hypotheses on the poipt which may surprise those familiar with optimization theory.
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Criticality for the Gehring Link Problem 11

g1=0

g2=0

Figure 1: In this illustration of Example 5.1, the admissible region for the two constraints
g1 = (22— 1) — 2 > 0 andg, = z > 0 is shaded. The Mangasarian—Fromovitz constraint
qualification fails at the cusp point = (1,0) becauséVg; and Vg, are equal and opposite
there.

The explanation is that we are interested in critical points, while the classical theorem
deals with minima off . And as we saw above, not every minimumjois critical. But

just as in the classical theory, criticality will be guaranteed if we add the hypothesis that
the Mangasarian—Fromovitz constraint qualification [20] holds for a local minimum.

Definition A point p is constraint-qualified(in the sense of Mangasarian and Fro-
movitz) if there is a directiony such that for all constraintg; active atp we have
Dvgj > 0.

We note that this condition fails at the point= (1,0) in Example 5.1 above, which
was minimal but not critical.

Proposition 5.3 If p is a local minimum for f when constrained by {g; > 0}, and p
is constraint-qualified, then p is constrained-critical for minimizing f .

We have omitted proofs of the theorem and proposition above because they are stan-
dard and are also special cases of our infinite-dimensional generalizations below.

5.1 A generalized Kuhn—Tucker theorem
Note that in Theorem 5.2, the functiorfsand g; might as well be replaced by linear

functions—their differentials ap. We view this as the linear-algebraic core of the
Kuhn—Tucker theorem.
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12 Cantarella, Fu, Kusner, Sullivan and Wrinkle

We will now derive an infinite-dimensional version, where the linear functighad
defined on an arbitrary vectorspaég, and the finite family of constraintg; is re-
placed by a family4, , wherey ranges over some compact space

While our theorem does not mention optimization directly, it will be the engine that
drives all of the optimization theorems of this paper.

As usual, we leC'(Y') be the Banach space of continuous function&’owith the sup
norm||-||, and letP C C(Y') be the closed positive orthant consisting of nonnegative
functions. Then the dual spac&*(Y") consists of all signed Radon measureson
and P* C C*(Y) is the cone of positive measures.

Note that any function € C'(Y') can be decomposed into positive and negative parts:
z =zt — 2z~ with z* € P. Then we have|z~|| = Dist(z, P).

Theorem 5.4 Let X be any vectorspace and Y be a compact topological space. For
any linear functional f on X, and any linear map A : X — C(Y'), the following are
equivalent:

(a) There exists € > 0 such that ||[(A)~|| > ¢ forall { € X with f(§) = —1.

(b) There exists a positive Radon measure ;1 € P* such that f(§) = u(A¢&) for all
EeX.

This theorem is comparable to the generalized Kuhn—Tucker theorem of Luenberger
[19, p. 249]. His theorem, restated to apply to the linear Gateaux differenjials (
and A) of the original objective and constraint functions &n says:

Theorem 5.5 (Luenberger) Let X and Z be vectorspaces, with a norm given on 7 ,
and let P C Z be a closed convex cone with nonempty interior. Let f : X — R be
a linear functional and A : X — Z be a linear map. Assume that whenever A € P
we have f(£) > 0, and that A¢ lies in the interior of P for some { € X . Then there
exists u € P* such that f(§) = p(A€) forall € € X. O

While our version applies only to the ca%e= C(Y"), our hypotheses (a) ofiand A
are somewhat weaker than those imposed by Luenberger—they are necessary as well
as sufficient for (b) the existence pf

To understand our overall strategy of proof, consider the linear ffiad) : X —
R x C(Y). As we will see below, (a) implies that the image (f, A) avoids the
interior of the orthanR™ x P.

To gain some intuition, let us specialize to the case where R™. We can rephrase
(b) to say that some vector in the kernel of the adjoint niapA)* is in R~ x P.
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Figure 2: One version of the Farkas alternative states that, given any closed d@ptharst
inner product space, it must intersect at least one out of any pair of orthogonal compléments
and -+,

When Y has finite cardinalityn, we put the standard Euclidean inner product on

R x C(Y) = R"*!, and identify this space with its dual. Then the kerne( fA)*

and the image of f, A) are orthogonal complements &**!. The standard Farkas
alternative (see Figure 2) says that, given any closed ortha@itin, it must intersect

one out of any pair of orthogonal complements. Our argument in the general case,
whenY might be infinite andX infinite dimensional, will be guided by this intuition.

Proof of Theorem 5.4 One direction is easy: suppose we have a positive Radon mea-
sureyu so that for eaclf € X,

£(6) = /Y Atdp.

Forany¢ € X with f(¢) = —1, write z := A¢ € C(Y). We have[ zdu = —1,
and sinceu is a positive measure, we can replace the functiavith its negative part
to conclude thaf 2~ du > 1. Furthermoreu has finite massnass(p) := [ du < 0o
by the Riesz theorem. Therefore

Dist(z, P) = ||z" || > 1/ mass(u) > 0.
This completes the proof that (b) implies (a).

To prove the converse, first giMB x C(Y') the Euclidean combination of the sup

norms onR andC(Y):
1@, Il = Vo + llgll*.

Now consider the orthan® := [—1,00) x P. Our hypothesis (a) implies that there
is positive distance betwee® and the imagel := (f, A)(X) of the linear map
(f,A). Take sequence(sf(gi),Agi) in 7 and (¢;, z;) in O, whose pairwise distance
approache®ist(I,O). That s, setting

vi = (ti = (&), 2 — A&)
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14 Cantarella, Fu, Kusner, Sullivan and Wrinkle

we have||v;|| — Dist(I, O).

We first claim that we can assume thate R~ x P. Certainly we can assumg =
(A&;)™T, since this positive part of the functiof; realizes||z; — A& || = [|[(A&) || =
Dist(A&;, P). Thenz; — A = —(A&)™ € P. Similarly, Dist(f (&), [—1,00))
is —1 — f(&;) if this is positive (and is zero otherwise), so we may assume-
min(—1, f(&)). Thust; < f(&), sot; — f(&) < 0. This proves the first claim.

We now have a geometric problem: from Figure 2 we see there is a special case where
both the image of f, A) and its orthogonal complement lie on the boundarjRof x

P. If this happens, then the closuieintersects either the subspaBex {0} or

{0} x P. The second case does not trouble us, but the first would cause us problems
later; we now show that our assumption (a) rules it out. To do so, we think about the
setup above geometrically: IfintersectsR x {0}, then we expect that — f(&;) — 0.

Thus our second claim is that we can assumetthe f(&;) are uniformly negative.
If not, lim f(&) < —1, so without loss of generality, we can rescgledown so that
f(&) = —1. Thatmeang—1, A¢;) € I. By hypothesis (a) we know

d; == DiSt((—l,A§i>, O) = DiSt(AfZ‘, P)>c¢

for some fixede > 0. Since we are using the Euclidean combination of the norms
on R and C(Y), the distance from any rescaling layof (—1, A¢;) to O is given

by the Euclidean distance from-k, k|| A ||) to (—1,0). And we can use plane
geometry to see that rescaling by- 2 brings us closer t@:

Dist((1 — &?)(—1, A), O) = di\/l — 22+ (14 1/d?) < div/1—e? + e

We can always assume that< 1, so the constant/1 — 2 + &% is less thanl.
Therefore

Dist(I,0) lim Dist ((1 — £%)(—1, A¢;), O)
lim Dist ((—1, A), O)

= Dist(/,0).

<
<

This contradiction proves the second claim.

We have proved that the;, are inR~ x P. Using the Hahn—Banach theorem, for
eachi we can find a linear functionglc;,v;) € R x C*(Y) that vanishes on,
satisfies(c;, v;)(v;) = 1, and has norm

(ci, v3)|| = 1/Dist (v; + I, (0,0)).

Because th&-components of; are uniformly negative, so are tlag.
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Criticality for the Gehring Link Problem 15

Using Alaoglu’s theorem, théc;, ;) have a subsequence converging in the weak
topology to a limit functional ¢, v); we havec < 0 and its norm is bounded above by
1/lim Dist(v;, —I) = 1/Dist(1, O).

Setting u := v/|c| € C*(Y), we claim this will be the Radon measure in state-
ment (b). By construction,—1, 1) vanishes o/, meaning that fog € X, we have

19+ [ acdu=o

(Notice that we have used the additional geometric information fthdbes not ap-
proachR x {0} in an essential way; if it did, thea would vanish, and we could not
rescalev by 1/|c| to obtain the equation above.)

It remains only to show that is positive. In an inner product space, this would be
obvious: each/; would be positive (since it was dual to a positive— A¢;), andv

would be a limit of positive measures. But oyr were constructed implicitly by the
Hahn—-Banach theorem, and so might include negative pieces. We now address this
problem.

We can decompose each into its positive and negative parig = y;“ — v, , with
mass(v;) = mass(v;") +mass(v; ). In order to show is positive, we will prove that
lim mass(v;") = lim mass(v;). By construction, we know that

1= (c;,vi)(vi) = ci(ti — f(&)) + /Y zi — A& dv;.
Sincez; — A& € P, we have
/zi — A& dy; < /zi — A¢&; dzji+ < sz — A&H mass(l/;r).
Using Cauch};—Schwarz, and tYhe two equations above, we get
1< ||vi| \/\ci|2 + (mass(v;"))2.

Now ||v;|| converges tdist(I, O), so we findlim ||(c;, v;")|| > 1/Dist(Z,0). But
the limit of ||(c;, vi)|| (which cannot be smaller) equalgDist(I,0). Therefore,
limmass(v;") = lim mass(v;), completing the proof. O

To apply Theorem 5.4 to optimization problems, we will [étbe the space of vari-
ations ¢ of our given configuration and” be the set of active constraints. Then we
let f(£) and A¢(y) be the directional derivatives of the objective function and of the
constrainty € Y.

In this context, a configuration satisfying condition (a) of Theorem 5.4 is csaltedgly
critical, and one satisfying (b) isalanced The theorem then says that a configuration
is strongly critical if and only if it is balanced.
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16 Cantarella, Fu, Kusner, Sullivan and Wrinkle

Note that our strong criticality is indeed stronger than a simple criticality condition,
which would say that whenevegi(¢) = —1 we haveDist( A, P) > 0, or equivalently
that no¢ hasf(¢) < 0 but A € P.

Example 5.6 With X = R? andY = [0, 1], we can self(x1,z2) = z1 and
A(z1,22)(y) = 221Vy — y* + 22y

to give an example that is critical, but not strongly critical (and thus not balanced).

However, wherl’ is a finite set (with the discrete topology), strong criticality is equiv-
alent to criticality. For suppose whenevgf¢) = —1 we haveDist(A¢, P) > 0, but
there is no uniform lower bound > 0 on this distance. For eaghe€ Y, we know
that A¢(y) is a linear functional org. Since there are only finitely many, the graph

of minyey A¢(y) describes a polyhedron i x R. Since the supremum ovére X

is finite (we know it is nonpositive), it is achieved (at sogheorresponding to a vertex
of this polyhedron). But for any, the value is negative, so this supremum must be
negative.

This allows us to recover the finite-dimensional Kuhn—Tucker theoremX I&e the
tangent space t®" at p, let Y be the finite set of active constraintsigtand let f
and A be the directional derivatives of the objective function and the active constraints.
BecauseY is finite, (a) is equivalent to the definition of constrained criticality above,
and we obtain Theorem 5.2.

6 The balance criterion for the Gehring problem

We now have all the tools we need to develop a balance criterion characterizing critical
configurations for the link-ropelength problem. We start with definitions of criticality,
guided by our version of Kuhn—Tucker.

Definition SupposeL is a rectifiable link withLThi(L) = 7, and consider the
Gehring problem of minimizing length subject to the constraiithi > 7. We say
that L is:

e alocal minimunror link-ropelength if for allL’ sufficiently C°-close toL with
LThi(L') > 7 we haveLen(L’) > Len(L).

e critical if forall £ € VF*°(L) with §¢Len(L) < 0 we havedgr LThi(L) < 0.

e strongly criticalif there exists some > 0 such that for alk € VF*°(L) with
deLen(L) = —1, we haves, LThi(L) < —¢.

Geometry &7opology Volume X (20XX)



Criticality for the Gehring Link Problem 17

With these definitions, we can now apply our Kuhn—Tucker theorem to the Gehring
problem.

Theorem 6.1 (Balance Criterion) A link L is strongly critical for length when con-
strained by link-thickness if and only if there exists a positive Radon measure i on
Strut(L) such that, for every smooth vectorfield £ along L, we have

d¢Len(L) = / Asédp,
Strut(L)

where Ag = ¢Dist is the rigidity operator.

Proof We will apply Theorem 5.4 withX := VF*°(L) andY := Strut(L), letting
:= 0Len(L) be the derivative of length and := Ag be the rigidity operator. We
have

(As€)" | = — min eDist{z, y}

(when this is nonnegative). By Corollary 3.2, the right-hand sidedg LThi(L), so
that condition (a) from Theorem 5.4 is exactly strong criticality. m|

6.1 Smoothness of critical curves

It is unclear,a priori, how much regularity one should expect for ropelength-critical
curves in the Gehring problem. But we can use the balance criterion to deduce imme-
diately that they must have finite total curvature.

Corollary 6.2 Ifalink L is strongly critical for the Gehring problem, then L is FTC.

Proof The theorem tells us thdt can be balanced:
d¢Len(L) = / Ag& dp.
Strut(L)
But the right-hand side is a distribution of order zerogrsince

| Asgdu < mass(u) sup el
Strut(L) L

Therefore, by Lemma 4.1, € FTC. m|

We can now rewrite the conclusion of our balance criterion in terms of the curvature
force K on L and the adjointAg of the rigidity operator.
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18 Cantarella, Fu, Kusner, Sullivan and Wrinkle

Corollary 6.3 A link L is strongly critical for link-ropelength if and only if it has
finite total curvature and there exists a positive Radon measure j on Strut(L) such
that

As(p) = -K

as forces along L.

Proof The theorem guarantees that for all smogthve have
deLen(L) = / Asgé dp.
Strut(L)

By the corollary,L is FTC, so the left-hand side can be rewritten-ag, (¢,dK).
Approximating any continuous vectorfield uniformly by smooth ones, we find that

o= [,

forall £ € VF(L), or in other words—/C = Ag(u). |

We get an immediate and useful geometric corollary to this balance criterion.

Corollary 6.4 Suppose L is critical for link-ropelength, and E C L is a subset with
nonzero net (vector) curvature 0 # KC(E) € R3. Then there must be at least one strut
{e,z} withe € F and v ¢ E, and K(FE) is in the convex cone generated by the
directions x — e of all such struts.

Proof First note that struts fron’ to E contribute no net force. By the balance
criterion, we havelC(E) = —A§u(E), and the latter is a (positive) weighted sum of
vectorsx — e. O

We note that this corollary is the analogue for link-ropelength of von der Mosel and
Schuricht’s “Characterization of Ideal Knots” [33, Thm. 1].

We next find that critical links ar€'* as well asFTC:

Proposition 6.5 If L is strongly critical for link-ropelength, then L is C'!.

Proof We already know thaf. has finite total curvature; it i€'! precisely when it
has no corners, that is, when the curvature fdtchas no atoms. If. are the right
and left tangent vectors td at =, thenC({z}) = T+ + T_. WhenK({z}) # 0,
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Criticality for the Gehring Link Problem 19

K({z})

Figure 3: This curvel. has a corner at with left and right tangent vector$_ and 77,
whose sum is the curvature forég {x}) there. If L is to balance, there must be a stfut y }

with y in the open hemisphere (shown in light gray) of vectors with positive inner product
with C({z}). But for anyy outside thenormal cone(shown in dark gray), there are points
nearz on L that are closer tg thanz is. Thus our{z,y} cannot be a local minimum of the
self-distance function. This contradiction proves that a critical curve cannot have a corner.

Corollary 6.4 says there exists at least one sftuty} with (y — z, K({z})) > 0.
That is,

<y—x,T+>+<y—a:,T_> >0’

so we must havéy — z,7,.) > 0 or (y — z,7_) > 0. (See Figure 3.) In either
case it follows that there exist points dnnearz that are closer tg thanz is, which
contradicts the hypothesis thét, y} was a strut. This completes the proof. ad

The example of the tight clasp in Section 9 shows that critical links need Gt be—

their curvature need not be bounded—but so far this is the worst behavior we can
display. We conjecture that the curvature measure is always absolutely continuous
with respect to arclength.

6.2 Constraint qualification in the sense of Mangasarian—Fromovitz

Corollary 6.3 will be the basic model for balance criteria for generalized links, and
for links constrained by other thickness functionals [2]. In some cases, including the
link-ropelength for closed links we are treating now, we can improve on this form of
the criterion by replacing strong criticality with criticality. This is our next goal.

In Section 5, we defined a regular or constraint-qualified point for a finite set of con-
straintsgy, . . . , g, : such a point has some variation directiosuch thatD,, g; > 0 for
all the activeg;. By Corollary 3.2, the corresponding idea for a linkin the Gehring
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20 Cantarella, Fu, Kusner, Sullivan and Wrinkle

problem is the existence of a vectorfiefdfor which 5; LThi(L) > 0. Butthis is
automatic: dilatingl increased.Thi to first order.

This regularity for our problem allows us to prove that local minima are critical and
that critical points are strongly critical.

Proposition 6.6 A link L is critical for the link-ropelength problem if and only if it
is strongly critical. If L is a local minimum, then L is critical.

Proof SupposeL is a local minimum but not critical. Then for sonfjec VF*°(L)

we haved¢Len(L) < 0 but 6,; LThi(L) > 0. Then for small enough > 0, the link

L +t¢ has less length thah. This contradicts minimality unlesg LThi(L) = 0 and
thickness has decreased (but not to first order). But in this case, we can instead use
the rescaled deformatiofi.Thi(L + t£)) (L + t¢), for which LThi = 1. For small

t > 0 these again have less length thancontradicting minimality.

Strong criticality always implies criticality. Conversely, suppose a closed link
critical but not strongly critical. Then there exists a sequefices VF(L) with
d¢,Len(L) = —1 and 622 LThi(L) — 0. Letn be the vectorfield alond. induced
by dilation, scaled so tha,Len(L) < 1. Then we observe that,, ¢, Len(L) < 0 for
all i. The superlinearity of Corollary 3.3 shows that

. + . + .
lim 5n+& LThi > 5,] LThi > 0.
But then for some, we must have
nte; Len(L) <0, o, ¢, LThi(L) > 0,

contradicting the criticality ofl.. |

Thus for closed links, a minimizer (or more generally any critical point) for the link-
ropelength problem is strongly critical, and hence by Corollary 6.3 its curvature force
is balanced by some strut forcé&... However, in our generalized ropelength prob-
lems, with endpoint constraints and obstacles, constraint qualification will not always
hold. Then we will have to be careful about the distinction between criticality and
strong criticality.

6.3 Existence of minimizers

We now show that each link-homotopy class contains a globally length-minimizing
curve withLThi > 1.
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Proposition 6.7 In a given link-homotopy class [[L]|, among all curves with link-
thickness at least 1, there is some L of minimum length.

Proof We may rescale the initial. so thatLThi(L) > 2. Thus if theC? distance
betweenL and a linkL’ is less thant /2 then the straight-line homotopy between them
is a link homotopy, and.Thi(L’) > 1. Taking L’ to be a standard smoothing &f
(e.g., its convolution with a smooth bump function), it follows thgt]] contains a
C* link.

In particular, the set of rectifiable links ifiL]] with link-thickness at least is non-
empty. LetL, Lo, ... be a sequence of such links with lengths tending to the infimal
length/ in this class. By the Arzela-Ascoli theorem, taking a subsequence we may as-
sume that thel; converge inC? to a limit L. SinceLThi is continuous with respect

to the C° topology, and length is lower semicontinuous, it follows th@hi( L) > 1
andLen(Lg) < ¢. By the remarks of the last paragraphy is link homotopic toL;

for large i, and thereforeLy € [[L]]. ThusLen(Ly) = ¢ and L is the required
minimizer. a

SinceC* links are tame, the argument above also shows the following:

Proposition 6.8 There are no wild link-homotopy types with finitely many compo-
nents.

(This was originally observed by Milnor [24].) Thus in the work to come, we need
only to consider tame links.

7 Examples of critical links

7.1 The known length-minimizing links

In [4], we showed that if one component of a link is linkeditmthers then its length

is at least a certain constafy,. Although our theorem was written for the original
ropelength problem, the proof is valid for the Gehring problem as well. Whenever a
link can be realized with each component having lengththat configuration is thus a
length-minimizer not only when constrained by thickness but also when constrained by
link-thickness. (These are still the only examples known to be ropelength-minimizers.)

To any link L we can associate a graph: the vertices are the componehtsaoid the
edges record which pairs are nontrivially linked. For any tfewith » edges, there is
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C

Figure 4: This link of six components is a global minimizer for the link-ropelength problem.
Each component is a convex plane curve that minimizes its length given the number of other
components it links.

aunique linkH (T") that is a connect sum of Hopf links and whose associated graph
isT.

For many treesl” with vertices of sufficiently low degree, we can realigél (T)]]
explicitly with each component having exactly its minimum possible ledgthEven

some slightly more complicated links, like the example in Figure 4, whose graph is not
a tree, can be realized in this way. The distance between any two linked components
is exactly 1. Each component in one of these minimizers is a convex plane curve
built from circular arcs of radiud and straight segments. It is an outer parallel (at
distancel/2) to a shortest curve surrounding disjoint unit-diameter disks in the
plane. (See Figure 5.)

Consider then-star T,,, the tree with a central vertex incident to alledges. For

n < 5, the construction above produces a link-ropelength-critical configuration of
H(T,) that is known to be minimizing. We will examine the case= 2 in detail, in

light of our balance criterion, and then indicate how to produce link-ropelength-critical
configurations for alh.

Example 7.1 The link H(T5) is the simple chain of three components, shown in
Figure 6. In the ropelength minimizer, the two end components are citglesdCs,
while the middle component is a stadium cur§e The centers of the circular arcs
in S are pointse; € C;, while the center of eacly; is a points; € S. The struts
are exactly where different components are at distanc&here is a strut from each
point along each circular arc to the center of that arc (fldnto s; and fromS to ¢;).
There is also one further striit;, c2}.

Since we know that this configuration is length-minimizing when constrained by link-
thickness, these struts, by Corollary 6.3 and Proposition 6.6, must support a balancing
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Figure 5: Here we see perimeter-minimizing enclosures ef 1, 2, 3 and4 unit-diameter

disks in the plane. The components in the known minimizing links are outer parallels to such
curves at distancé/2. Whenn = 4, the minimizer does not have a unique shape; instead
there is a one-parameter family of minimizers. In the last shape on the lower left, there is one
additional isolated strut, but it carries no force in the balancing measure.

measure.. Conversely, exhibiting such a measure will re-prove that this configuration
is critical for the link-ropelength problem, though to re-prove it is a local minimum
would require some second-order theory. We now provide such a measure, which will
be a useful comparison of the results of this paper against the results of [4].

Except fore;, each pointz along the component’; is part of a unique strufz, s;}.

The measure assigned to struts in this “wheel” must exactly balance the curvature force
dK = N ds(z) along C;. Because the wheel forms a complete circle, at the center
points s;, the incoming forces from these struts cancel one another, leaving no net
force.

The situation on the stadium curve is slightly more complex. The struts from the
semicircles ofS' to the pointsc; again balancellC = N ds(x), now for = along the
semicircles. Unlike the previous situation, however, these measures have a resultant
inward force of magnitude at ¢;, directed parallel to the straight segments in the sta-
dium curve. To balance these forces, the meaguraust have an atom of magnitude

at the one remaining strytc;, c2 } .

The measurg: we have described does balance the curvature force everywhere along
the link, and thus demonstrates that the link is critical for link-ropelength.

It is worth emphasizing the fact that the inner stfut, co} bears an atom of.. This
stresses the point that in our Kuhn—Tucker theorem and the resulting balance criterion
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Figure 6: This simple chain is known to be a minimizer for the link-ropelength problem, so
by the balance criterion, its curvature force must be balanced by some measure on the struts.
At the top, we see how the curvature forces along the circular compo6grtse balanced by

the struts coming into the centegs. They produce no net force on either center At the

bottom, we see how the curvature forces along the semicirclésare balanced by struts to

their centers:;. The resulting net inward force on the is balanced by an atomic measure on

the one remaining strufcy, c2 }
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o
iz
‘l

Figure 7: This configuration off (T}) is critical for the link-ropelength problem. Itis also pre-
sumably the minimizer, even though it does not minimize the length of the long compbnent
alone. That component is the outer parallel at distant®a convex planar polygof. Each

other componenL; is a unit circle passing through a vertex®8fand lying in a perpendicular
plane. We have drawn the unit-diameter disks around these vertices, where the thick tubes
around thel; intersect the plane insidgy .

we are required to view the Lagrange multiplieras a Radon measure in the dual
spaceC*(Strut(L)), rather than as a density function on struts.

Although ropelength-minimizing, Example 7.1 is not rigid, in the sense that the com-
ponentsC; can be pivoted around the poinisto be centered at any points on the
semicircles ofS.

A stronger form of nonuniqueness is exhibited by the minimizing configurations [4] of
the five-component link7 (T;), with one component linked to all four others. Here the
central component does not even have a uniquely determined shape. Instead there is
a one-parameter family of minimizing shapes, corresponding to the deformation seen
in Figure 5 forn = 4. Again, each of the minimizers can be balanced. (As we have
proven, the existence of the balancing meagure equivalent to strong criticality for

the ropelength problem, but it does not imply that the critical point is isolated.)

Forn > 5, we expect that similar configurations &f(7,,), like the one shown in
Figure 7 forn = 6, are again minimizing. Our balance criterion lets us show they are
at least critical:
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Proposition 7.2 Suppose P is a convex planar n-gon with unit-length sides and turn-
ing angles in [0, 27/3]. Let Lo be the outer parallel at distance 1 from P, and let
Ly,..., L, be unit circles, perpendicular to the plane of P, passing through the ver-
tices of P, and centered at points on Ly. Then the link L = Lo UL U---U L, isa
configuration of H(T,) with link-thickness 1 that is critical for link-ropelength.

Proof As in the simple chain, each circlg; focuses a wheel of struts to its center
point on Ly, and a measure assigning forde to these struts balances the curvature
force on each circle while exerting no net force bg.

Let ¢; be the vertex ofP on L;, and let2a; be the turning angle aP there. The con-
dition «; < 7/3 exactly suffices to know that no two vertices (and thus no fiypare

at distance less thahfrom each other, confirming thafThi(L) = 1. The curveL
includes an arc of the unit circle arouag, from this arc of lengti2«; a fan of struts
converge ta;. To balance the curvature force dny, these struts again have measure
equal tods, giving a net inward force of sin «; on ¢;. The remaining, isolated struts
of L connect successivg along the edges oP. Unit atoms of compressive force
on these isolated struts produce exactly the outward fo2e@sc; at ¢; heeded to
balance the inward forces froify, .

By Corollary 6.3, the existence of this balancing measure on the struts proves that
is critical. O

Forn < 5, we know these configurations féf (7},) are ropelength minimizers. For

n > 5, the component,, having lengthn + 27, is longer than it needs to be: at the
expense of lengthening some other components, it could be shortened to #ngth
which, asymptotically, is much smaller, beiay/n). However, calculations we have
done suggest that the tradeoff is not worthwhile and so the critical configuration de-
scribed above is probably the global minimum for ropelength.

The examples given in Proposition 7.2—critical configurations and presumed min-
imizers for H(T,,)—are quite interesting. The shape bj is free to move in an

(n — 3)—parameter family; each other component is free to pivot (about its vertEx of
and along one of the arcs d@fy), giving an additional, parameters for the shape of
the whole link L. We also note that these examples are tight links that are not packed
tightly: Consider the thick (unit diameter) tube around one of these configurations.
As n increases, it occupies an ever-smaller fraction of the volume of its convex hull.
This should be compared with experiments of Millett and Rawdon [23] on this volume
fraction.

Although we have stated Proposition 7.2 above only for starsthe same balancing
works for the linksH (T") based on other treés. Each component linked to others
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should have the shape @&f, above. We note, however, that critical links built in this
way are not always minimizers.

Example 7.3 Consider the tre&, ,,, with n+m vertices, including one of valence
connected to another of valense. The link H (7, ,,,) then has two long components,
Lo and L, linked to each other and to—1 andm —1 short components, respectively.
For large enoug andm, we can construct two thick versions &f(7;, ,,), called
the A and B configurations, as follows.

For the A configuration, we follow Proposition 7.2 to builty and L; as outer paral-

lels to convex planan- andm-gons Py and P; in perpendicular planes. H = 2k,

then we letP, take the shape of & — 1) x 1 rectangle capped with equilateral tri-
angles on both short sides;nf = 2k + 1, we omit one triangle. (The precise shape

is unimportant, but we need at least one sharp angle on each polygon.) Further, we
choose the tip of such a triangle as the vertexPpfcorresponding td.; (and as the
vertex of P; corresponding td.g). Then it is straightforward to check that the other
components stay sufficiently far from each other for tHisconfiguration to indeed
haveLThi = 1; its total length(27 + 1)(n + m).

However, whem andm are large enough, we can save two units of length as follows.
Construct a tight configuration df (7,,—1) as in Proposition 7.2, using a regular poly-
gon. (Again, the precise shape is not important, but here we need a large hole in the
middle of the polygon.) This configuration, and indeed the unit-diameter thick tubes
around its components, is contained in a round solid tdéfysof minor radius3/2

and major radiusl + 1/(2sin 7/n-1). Then construct the analogous configuration
of H(T,,—1) contained in a solid toru&,,. Finally, place these two pieces in space
so thatU,, and U,,, form a (loose) Hopf link. (This is possible as long as the ma-
jor radii are at leas8B, corresponding to:,mm > 14.) The resulting link is theB
configuration ofH(T;,,,). Because the large Hopf link is loose, there are no struts
from H(T,,-,) to H(T,,—1). Since each of these pieces is balanced, so isBhe
configuration ofH (T}, ) -

If, as we believe, thes® configurations are the ropelength minimizers, then they are
the first ones known in which certain pairs of linked components are not in contact.
(We note that the same must be true for threomponent Hopf links for large:,

since their minimum ropelength [3] i9(n*/%). There, however, no explicit candidate
minimizer is known. And ourB configuration here has the additional property that
certain linked pairs are not even connected by chains of touching components.)

In all of the exampled7 (T") discussed above, each component is a convex plane curve
built from straight segments and arcs of unit circles. The proven minimizers are min-
imizers in their isotopy class for the original ropelength problem [4], as well as mini-
mizers in their link-homotopy class for link-ropelength. In fact, in [2] we will consider

Geometry &7opology Volume X (20XX)



28 Cantarella, Fu, Kusner, Sullivan and Wrinkle

a family of thicknesses with varying stiffness. Each of these thicknesses is charac-
terized by a stiffness\, meaning a lower bound on the diameter of curvature for a
unit-thickness curve. OuH (T') are ropelength-minimizers for the whole family, as
long as the stiffnesd does not exceed, when circular arcs of larger diameter would

be needed. We will also develop an analog of our balance criterion for these other
ropelength problems, and will see that all tHéT") discussed above (including those
that are not minimizers) are critical for all formulations of ropelength where 2.

7.2 Local minima for ropelength

We do not attempt in the paper to discuss second-order behavior of ropelength near a
critical point—in particular we have no way yet to distinguish between local minima
and saddle points for this problem. Of course, the known minimizers must be local
minima, and it is also easy to give critical configurations which are not local minima,
as in Example 7.4 below.

Many researchers have used numerical simulations of the ordinary ropelength problem
to look for nontrivial local minima for knots, in particular for the unknot. Such config-
urations have been termé&brdian unknotsince they can be untangled topologically

but not physically. Pieranslgt al.[29] have numerically simulated a reasonable can-
didate for a Gordian unknot, but we are very far from being able to prove its existence.

In Example 7.3 we gave two distinct critical configurations (7, ,,), and we
expect that this will lead to the provable existence of two distinct local minima. In
particular, our investigations lead us to predict that one cannot move fro tton-
figuration of length(27 + 1)(n+m) to the suspected global minimu without first
increasing ropelength. This shows there must be a second local minimum; we expect,
however, that this is natl but instead a third configuration of intermediate length.

This connects back to Alexander Nabutovsky’s original work on ropelength in higher
dimensions and codimensions [27]. He showed using recursive function theory that,
in those higher dimensions, a ropelength constraint often introduces new components
into the moduli space of unknotted hyperspheres; in particular there are infinitely many
local minima for ropelength. While for two-spheresi? or for circles inR? there

are presumably no such minima, we do expect there must be infinitely many Gordian
unknots inR3. Our two critical configurations o (T}, ,,) are perhaps a first step
toward proving this.
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7.3 Elastic tension energies

All of the links presented above are critical or minimizing for the sum of the lengths
of their components. This is a beautiful functional, but it is physically somewhat un-
realistic: elastic ropes should minimize a quadratic functional of the form

> ai(Len(Ly) — £:)?, (7.1)

7

wherea; > 0 is the elasticity and; the rest length of theé” component. Critical-
ity for this functional is equivalent to that foy_ ¢; Len(L;) where the tension; is
t; = 2a;(Len(L;) — ¢;). Assuming these tensions are nonnegative (that is, that no
component’s length is less than its rest length) our balance criterion extends imme-
diately to handle this case: the strut fordg(;.) must balance the tension-weighted
curvature force ¢, K;.

In the known minimizing links, such as the simple chain, each component separately
achieves its minimal possible length. Thus these examples also minimize all elastic
energies with nonnegative tensions> 0.

This behavior, however, seems rather exceptional. The examples in Proposition 7.2 do
not minimize all such functionals. In particular, if the tension in the long component
is large enough, it will shrink to Iengt@(\/E) while some of the shorter components
gain length.

Also in the Borromean rings, if the three components have different tensions, the con-
figuration we describe below (Section 10) would no longer be critical. Similarly, clasps
(Section 9) in which the two ropes have different tensions again have new critical con-
figurations. In [37] we describe in detail the shapes of these asymmetric clasp curves,
as well as their appearance in more complicated clasp-like links even when tensions
are equal. (Note that link-thickness was called Gehring thickness there, as in early
drafts of this paper.)

7.4 Nonembedded critical links

To illustrate the differences between the Gehring problem and the original ropelength
problem, we now give some examples of a different flavor: critical configurations that
are nonembedded and thus have infinite ropelength in the original sense.

Any knot is of course link-homotopic to the unknot. The link-ropelength minimizer
degenerates to a point (of length zero). The same happens for any component of an
arbitrary link that is link-homotopically split from the rest of the link.

Milnor showed that, up to link homotopy, links of two components are classified by
their linking number [24].
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Figure 8: In this configuration of two curves from Example 7.5, each circle is covered

or n; times, as labeled. fn = m; + mo andn = ny + ns, then the curve has total length
27 (m + n), and linking numbermn — min;. It is constrained-critical, though often not
minimal, for the Gehring problem in the link-homotopy class defined by its linking number.

Example 7.4 When the linking number is zero, the components split, and the link-
ropelength minimizer degenerates to have length zero. We can, however, also describe
another critical configuration for this unlink: one component degenerates to agpoint
while the second is a unit circle centeregalflhis is clearly an unstable critical point:
obvious deformations can decrease the ropelength to second order.

The case of linking numbet is close to Gehring’s original problem: the minimizer

is the same Hopf link built from round circles. (This case fits in the clH$9,)
considered above.) For larger linking number, we can use Corollary 6.3 to exhibit
many critical configurations as follows:

Example 7.5 For linking numbermn there is a critical configuratiot,,, ,, consist-

ing of the minimizing Hopf link with one component covered times and the other
coveredn times. Its total length is thugw(m + n). There are other critical config-
urations, sometimes shorter. For example, each component can be a figure-eight built
from two tangent circles. Figure 8 shows a configuration like this with total length
27(m + n) and linking numbemn — myny. The best configurations we know for
linking number17, for instance, us¢m,n) = (6,3) or (4,5). Assuming configura-

tions like these are the minimizers for two-component links, they give examples where
the set of minimizers is disconnected (since we can interchange the two components,
or reorder the way one component covers its figure-eight).

None of these configurations is embedded, so they are not critical points for the origi-
nal ropelength problem: as expected, the extra freedom in the Gehring problem some-
times allows for shorter solutions. As a further example, consider2h¢)—torus

link, with linking number2. We have computed the presumed ropelength-minimizer
numerically, as in [35]. The results are shown in Figure 9; this solution is longer than
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Figure 9: This picture shows a numerically computed minimizer foratiginal ropelength
problem on theg(2, 4)—torus link. Because it has a strut between two points on the same com-
ponent (shown center, where the darker tube contacts itself) that carries nonzero force, it is not
balanced for the Gehring problem considered here. It is longer £han the Hopf link with

one component doubly covered, which we conjecture is the minimizer for link-ropelength in
this link-homotopy type. Notice that both of these configurations break the symmetry between
the components of the link, so we expect to also find a (longer) critical configuration where the
two components are congruent.

the covered Hopf linkL, ; (the presumed link-ropelength-minimizer) and is not even
critical for the Gehring problem.

For links of more than two components, linking numbers do not suffice to distinguish
link-homotopy types; we must also consider Milnoyisinvariants [24, 16]. For in-
stance, the Borromean rings, with no nonzero linking numbers, belong to a nontrivial
link-homotopy class because they havénvariant equal tal .

Numerical experiments performed with Brakke's Evolver (compare [35]) suggest that
the minimizing Borromean rings for the link-ropelength problem should consist of
three congruent curves in perpendicular planes. In [4], we described such a config-
uration built from circular arcs of radius. Unfortunately, Corollary 6.3 shows this
configuration is not even critical for length when constrained by link-thickness. In
Section 10, the culmination of our paper, we will explicitly describe a very similar
configuration of the Borromean rings, which we prove is critical and believe is the
minimizer.

However, in order to solve for these Borromean rings, we must first consider a simpler

interaction between two ropes: the clasp that occurs when one rope is pulled over
another. Describing this will require a notion of generalized links.
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8 Generalized link classes

Although some of our definitions have applied to arbitrary curves, so far we have been
treating only ordinary (closed) links. We now want to consider generalized problems
involving curves with endpoints. To get meaningful link classes in this setting, we
must include constraints for the endpoints and obstacles for the link.

Definition A generalized linkL is a curvel (with disjoint componentd.q, ..., Ly)
together with obstacles and endpoint constraints. In particular, each endpoift.
is constrained to stay on some affine subspigeC R?, which can have dimensidi
1 or 2. Furthermore, there is a finite collectionadstaclegor each component; of
the link. Each obstacle

{p e R*: g;;(p) < 0}

is given by aC'!' function gs; With 0 as a regular value. By calling them obstacles, we
mean thatZ; is constrained to stay in the region whenén; g;; > 0.

While we could allow even more general endpoint and obstacle constraints, this ver-
sion fits nicely with our overall setup, and allows for all the specific examples we have
in mind.

Definition Supposel = |J, L; is a generalized link, with obstaclgs; and endpoint
constraintsM,.. Then itslink-homotopy class[L]] is the set of all linksL’ that are
link-homotopic to L through links where each component avoids its obstacles and
maintains its endpoint constraints. (As before, in a link homotopy, each component
of L can intersect itself but not the others.)

This definition is comparable to our previous definition for closed links (page 5); as
in the discussion at the end of Section 6, we may restrict our attention to tame link
classes.

Given a generalized lini, only variations preserving the endpoint constraints should
be allowed. A vectorfield € VF(L) is said to becompatiblewith the constraints if

it is tangent to)M, at each endpoint € dL. We write VF.(L) for the space of all
compatible vectorfields.

Given a set of obstacles; < 0 and a linkL = |J L;, we write

(L) rg;ngggggy(w)
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Then L avoids the obstacleg;; if and only if O(L) > 0. We define the wall struts
of L by

Wallw(L) = LZ N {gij == 0}, Wall(L) = LlWﬁJHU(L)
1,J
This incorporates those parts 6fon the boundary of the obstacle, but is not strictly

speaking a subset df since one point € L; might be in several of th&Vall;;.
WhenO(L) = 0, by Clarke’s Theorem 3.1 we have

5YO(L) = mi i Vi),
O nz‘l,lynxev{fglllg(m@ V9is)

Again, we collect the various derivatives appearing on the right-hand side into a rigid-
ity operatorAyy : VF.(L) — C(Wall(L)) on wall struts, given by

Awé(x) := (&, Vgij)

whenz € Wall;;. Its adjoint A5y is then

d A% (1) = Awé dy = Vo) du(z). (8.1
/L £ AL () /W oy PAwedn 2; /eraHij(L)@ gi)du(z).  (8.1)

We also have corresponding definitions for locally minimal, strongly critical, and crit-
ical configurations of.:

Definition We say that a generalized link is alocal minimurmfor length when con-
strained byLThi if we haveLen(L’) > Len(L), for all sufficiently C°-close linksL’
with the same obstacle and endpoint constraints and Withi(Z’) > LThi(L).
We say L is strongly critical (respectively, iscritical) for minimizing length when
constrained byL.Thi if there ise > 0 such that for all compatible smooth with
d¢ Len = —1, the quantity

min (6, LThi(L), 67 O(L))
is at most—e (respectively, is negative).
As in our discussion of Kuhn—Tucker at the beginning of Section 5, these notions

will be equivalent only under a regularity assumption corresponding to the constraint
gualification of Mangasarian and Fromovitz [20]:

Definition A generalized linkL is LThi-regular if there is athickening field mean-
ing a smooth compatiblg for which ¢, LThi(L) > 0 andé,f O(L) > 0.
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Note that, while we require to strictly increasd.Thi and to move away from the
obstacles, both to first order, there is no corresponding requirement for the endpoint
constraints, since they are lineaguality constraints instead of nonlinear inequality
constraints.

We can now prove a generalization of Proposition 6.6:

Proposition 8.1 If a generalized link L is a LThi-regular local minimum when con-
strained by LThi, then L is critical. Also, if L is L'Thi-regular and critical when
constrained by L'Thi, then it is strongly critical.

Proof The regularity of L means there exists a thickening fiejJde VF.(L). We
may assume, Len(L) > 0 for otherwiseL is neither minimal nor critical; we then
scalen so thatd, Len(L) < 1.

Suppose thaL is a local minimum but not critical. Then for some compatible vector-
field £ we haved¢Len(L) < 0 while 5; LThi(L) > 0 and 5gO(L) > 0. For small
t > 0, consider the linkd;, = L + t(£ 4 en). Then

dLen(Ly)

v = 0¢Len(L) + ed,Len(L).

t=0

We choose) < € < —d¢Len(L)/0,Len(L), so this derivative is negative at tinte
Thus for smallt, the L; have length less thahen(L), contradicting minimality if
they obey our constraints. But

dLThi(L,) dO(Ly)
e+ et

and the endpoint constraints are linear, so the libksmeet all our constraints for
small¢ > 0.

> 0,
t=0

> 0,
t=0

Now suppose thal is critical without being strongly critical. Then there exists a
sequence of compatible vectorfiel§s € VF.(L) with o¢,Len(L) = —1 but with
eitherd, LThi(L) — 0 or . O(L) — 0. Then we observe thay, ¢, Len(L) < 0 for

all i, while by Corollary 3.3 either

lim 7+

. + .
¢, LThi > 6 LThi > 0

or
- +
11m677+£i0 > 577 O > 0.

Takingi large enough that one of these quantities is positive, we get a contradiction to
the criticality of L. m|
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So far, this development has paralleled that of Section 6; we now diverge from our
previous course. Earlier, we saw that every closed linkT&hi-regular: rescaling
always provides a thickening field. In the generalized setting, this is no longer the
case. Thus minimality no longer implies criticality.

Example 8.2 To give a specific example, rotate the constraints of Example 5.1 around
the z-axis to give obstacleg; = (z?> + 32> —1)> — 2z < 0 andgy, = z < 0 for an
unknot L. The unit circle in thery-plane is on the boundary of both obstacles, and
is clearly the minimum-length configuration in its homotopy class. However, it is not
critical: shrinking it toward the origin will reduce its length to first order; the constraint
g1 > 0 is now violated, but not to first order.

Further, criticality and strong criticality may be different: if we allowed infinitely many
obstacles, we could construct critical, but not strongly critical links by following the
lead of Example 5.6. (If we doot allow infinitely many obstacles, then an open
guestion remains: is strong criticality a stronger assertion than criticality?)

Example 8.3 To justify our emphasis on strong criticality (rather than restricting our
attention to regular, critical links) we also note that it is easy to construct strongly
critical links that are not regular; simply take to be the unit circle in the:y-plane,

with constraintsy; (x, y, 2) = 2+y%—1 (so the excluded region is the infinite cylinder
around thez-axis) andg, = —g;. This link is trapped on the cylinder, = 0 = g9,

so it has no thickening field. On the other hand, it is clearly strongly critical.

Now we are ready to extend our balance theorem to the generalized setting. We will
accommodate the endpoint constraints by restricting our attention to compatible vec-
torfields. Our other constraints are thBist > 1 on L(?) andg;; > 0 alongL;. The

setY of active constraints then consists of the struts together with the wall struts.

Theorem 8.4 A generalized link L is strongly critical for link-ropelength if and only
if there is a positive Radon measure p on Strut(L) LI Wall(L), such that
—K =(As ® Aw)" 1

as linear functionals on VF.(L). This means that —K and (As & Aw)*u agree as
forces along L except at endpoints x € L, where they may differ by an atomic force
in a direction normal to M, .

Proof This is again a straightforward application of our Theorem 5.4, using
X =VF.(L), Y =Strut(L)UWall(L), f=JdLen, A= Ag® Aw.
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Remark 8.5 Remember thakl has been defined to include an inward-pointing atom
at each endpoint € JL. We can ignore these, however, when applying this theorem,
as long as the link, meets each endpoint constraibf, normally. We know of no
examples of critical links where this is not the case.

The regularity described in Corollary 6.2 and Proposition 6.5 carries over to general-
ized links:

Proposition 8.6 If the generalized link L is strongly critical for link-ropelength,
then L is FTC and C.

Proof The proof follows that of Corollary 6.2 and Proposition 6.5. From equa-
tion (8.1), we find thatAsy, 1« has distributional order zero just likég ., soL € FTC
follows immediately from the balance criterion of Theorem 8.4.

Now supposeL is not C! but instead has some cornemwith K{z} # 0. By The-

orem 8.4, this curvature force is balanced by struts and wall struts. So there is at
least one strut or wall strut acting anin a direction with negative inner product with
K{z}. Inthe case of a strufz, y}, we refer again to Figure 3: some points near
along L would be nearer to the endpoint But similarly, in the case of a wall strut,

we have(kC, Vg,;) < 0, but this means that some points neaalong L violate this
obstacle constraint. In either case, we get the desired contradiction. O

To understand the interplay between struts and wall struts, we now offer a simple
example of a generalized link with nonempty boundary which is balanced, needing
nonzero force on the wall struts.

Example 8.7 Cut the simple chain of Figure 6 by parallel planes througland s,

with normal vectore; — ¢o, and letL be the part of the chain lying between the two
planes. This generalized link includes two semicircles with endpoints normal to the
planes, and also the inner stadium curve, which is tangent to the plasgsad s;.

We let the planes bound an obstacle, forcingp stay between the planes, and we use
them also as endpoint constraints. Thins balanced: though the semicircles now
exert a net outward force ony and ss, this is balanced by wall struts at these points.
And the internal balance for the stadium curve remains the same.

9 The tight clasp

The tight configurations of Section 7 were the simplest closed links we could imagine:
the Hopf link, and various connect sums of Hopf links in which each component is still
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Figure 10: The simple clasp has two components, one attached at both ends to the ceiling and
the other to the floor, linked with one another as shown. The configuration shown, with each
component consisting of a semicircle joined to two straight segments, is neither critical nor
minimal.

a convex plane curve. But there is an even simpler interaction between two ropes, the
claspformed when one rope is pulled taut over another, as at the junctions of a woven
net, or when a bucket is lifted from a well by passing a rope through its rope handle.
We can model a single clasp as a generalized link with endpoint constraints.

To define thesimple claspfix two parallel planes and P at least2 units apart. Then

take two unknotted arcs and# that lie between the planes, with the endpoints, of
constrained to lie inP and those ofy in P. Let the halfspace bounded by that

does not include” be an obstacle for the componentand vice versa, and select the
isotopy class of such links shown in Figure 10. This is the class where closing each
arc in the plane of its endpoints would produce a Hopf link.

It is natural to assume that the minimizing configuration for this problem would con-
sist of semicircular arcs passing through each others’ centers, together with straight
segments joining the semicircles to the constraint planes, much like the Hopf chain of
Example 7.1. But thisaive claspis not balanced: each semicircle focuses its cur-
vature force on the tip of the other, and there is no way to balance these forces (as
the isolated strut carrying an atom of compressive force did in the Hopf chain). The
naive clasp is thus not minimizing, though we will see it is very close: the critical
configuration we construct here is only half a percent shorter.
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Example 9.1 Suppose the horizontal planésand P in the definition of the simple

clasp are taken instead to be only one unit apart. Consider the configuration where the
curvesy and# are semicircles in perpendicular vertical planes. The curvature of each
semicircle can be balanced by uniform strut tension, transmitting a net vertical force
to the tip of the other semicircle. That vertical force can be balanced by a wall strut at
each tip. Therefore, this configuration is critical for link-ropelength.

In the case of interest, whet® and P are far apart and there are no wall struts to
balance the tips, we must look harder for a solution. We will now construct critical
configurations, constrained by the link-thickndsEhi, for the simple clasp problem

and for a family of related problems where the ends of the ropes are pulled outward as
in Figure 11. These solutions minimize length under natural symmetry assumptions,
and we believe they are the global minimizers even without imposed symmetry. Be-
low in Section 10, we will construct a critical configuration of the Borromean rings
that contains portions of these clasp curves. Thus, a thorough understanding of these
generalized links will aid us in understanding that more complicated closed link.

9.1 Symmetry conditions and a convenient parametrization

We describe configurations of the clasp where the two components are congruent plane
curves, lying in planes perpendicular to each other and to the constraint planes. To fix
these symmetries in coordinates, let the constraints be the ptarestC', and let

the componenty lie in the zz-plane while¥ lies in the yz-plane. The clasp has
mirror symmetry across each of these planes (preserving each component). It also has
a symmetry interchanging the two components, which we denote p, given by
fourfold rotation about the -axis together with reflection across the-plane. These
symmetries generate a point group of order eigh®if3) whose Conway-Thurston
orbifold notation (see [9, 10]) i8 x 2. Algebraically it is isomorphic taD,.

The argument we present below to derive the critical clasps for the Gehring problem
can easily be extended to show these are the unique critical configurations among
curves with thi2 « 2 symmetry. We omit the details, however, because we know of no
way to show that the overall minimizers must have this symmetry. If one could prove
this, it would then follow that our clasps are the minimizers.

Our symmetry assumptions mean that the clasp is described by the shape of half of the
componenty, from itstip along thez-axis into thex > 0 half-plane and up to the
plane P. This consists of a curved arc near the tip joined to a straight segmenPnear
Since the curved arc is strictly convex, we can parametrize it by the anglade by

its tangent vector above the horizontal, as in Figure 12. In fact, we will use the sine of
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this angle,u = sin ¢, as our parameter. Thus in the simple clasp,do¢ [0, 1] we
write

Elementary calculations show the following:

Lemma 9.2 For a convex curve « in the xz-plane, parameterized by the sine u of its

direction ¢ € [—7, 5|, the arclength s satisfies

du
ds =secpodr =cscpdz = ———,
4 14 kV1—u?
where the curvature k is given by
dp du
K = E = @

O

For the simple clasp described above, each component turns a tat&dgf mean-

ing that v ranges from—1, throughO at the tip, tol. We can also consider more
general clasp problems where the four ends of rope are not vertical (being attached
to horizontal planes) but instead are pulled out at some angle (being attached to tilted
planes).

Given0 < 7 < 1, we define ther-clasp to be a problem like the simple clasp where

the arcy starts ats = —7 and then turns through anglewrcsin 7 to reachu = 7. Our

critical 7-clasps have the san®x 2 symmetry as the simple clasp. To put thelasp

into our framework of generalized links, we constrain the four endpoints to four planes,
each making anglercsin 7 with the vertical, as in Figure 11. The complement of the
wedge formed by the planes containing the endpoints of each arc acts as an obstacle
for the other arc. The simple clasp is theclasp with+ = 1, where the wedges
degenerate to halfspaces.

9.2 Struts between perpendicular planes

Whenever two curves in perpendicular planes are connected by a strut, elementary
trigonometry gives us first order information about the curves at both endpoints. We
state a general lemma, which we will use here for the clasp and again for the Bor-
romean rings.
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arcsin 7

Figure 11: In this variant of the simple clasp problem, the endpoints of the two ropes are
constrained to lie in four planes whose normals make amglen 7 with the horizontal. The
parameter, = sin ¢ ranges from—7 to 7 along each arc, as shown at the end of the top right
arc. If extended, the four planes shown would form the sides of a tetrahedron. Each arc is
constrained to lie in the wedge formed by the planes containing the endpoints of the other arc.

Let P, and P, be two planes meeting perpendicularly along a knand lety; C P;
be two components of a link. At a poipt € ~;, we write x; for the distance fronp;
to £, and u; for the cosine of the angle betweérand the line tangent tg; at p;.
These quantities generalize theand v of Lemma 9.2 above.

Lemma 9.3 Let v, and 2 be two components of a link L, lying in perpendicular
planes. Suppose there is a strut {p1,p2} of length 1 connecting these components.
Then in the notation of the previous paragraph we have 0 < z; < u; < 1, and any two
of the numbers x1, x2,u1,us determine the other two, according to the formulas

5 _ ug (1 —u?)

2
¢ 2 — wlul’
u; 1 (0
— 72 /02 2
u2_1 :p]/uj_ x;
T
J J

where j # 1.

Proof Picking cartesian coordinates such tlids the z-axis andP; are coordinate
planes, we find the strut difference vector — ps is (x1,x2, Az), for some num-
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ber Az. Since this strut has lengthand is perpendicular to eaeh, we have

A2+ 22 +23=1, Az :l‘iL.

2
1—u;

Simple algebraic manipulations, eliminatidy, lead to the equations given. O

Note that the condition;; < wu; is exactly the condition that the unit normal circle
aroundp; intersectsP;; the two points of intersection are mirror images (acrbsg
with the samer; andu; values. Also note that we don’t need to hayeC P; in the

lemma,; it suffices that; be tangent tab; at p;.

Whenever we have a pair of curves in perpendicular planes, which stay a constant
distancel apart, we can apply this lemma everywhere along the curves. Eachgurve

is determined as the intersection of the planewith the unit-radius tube around the
other curvey;. This will be the situation for the clasp.

9.3 The balancing equations for the clasp

By Theorem 8.4, in a critical clasp the curvature force alengust be balanced by
struts to4. In particular, almost every point (indeed, since the set of struts is closed,
everypoint) vy(u) along the curved arc of must have a strut to some poifitu*).

Then by symmetry we actually have what we c2dto-2 contact: there are struts
from ~v(+u) to 4(+u*). Here the two pointsy(+u*) must be the intersection of
the unit normal circle around(u) with the yz-plane, implying thatu* € [0,1] is
uniquely determined for each. We will refer toy(u) and4(u*) asconjugate points

on the r-clasp. Lemma 9.3 applies to any pair of conjugate points, with= w,

ug = u* andx; = x(u;).

Lemma 9.4 Suppose v is a plane curve, symmetric across a line ¢ in the plane.
Consider the net curvature force of a mirror image pair of infinitesimal arcs of ~y. This
acts in the direction of the line ¢, with magnitude 2|du|. Here the function u is defined
along -y as the cosine of the angle 1) between ¢ and the tangent line to ~y.

Proof One infinitesimal arc has net curvature fore&’ ds = N dy. When this
is added to the mirror image force, only the component alérsyrvives. We get
magnitude2| sin ¢ dy| = 2|dul. |

Suppose now we have a symmetric configuration of the clasp where the curved arcs of
the two components stay a constant distahepart. By symmetry we get the-to-2

Geometry &7opology Volume X (20XX)



42 Cantarella, Fu, Kusner, Sullivan and Wrinkle

strut pattern described above. Assuming the straight ends of each component meet the
constraint planes perpendicularly, our balance criterion Theorem 8.4 says that strong
criticality is equivalent to the statement that the net vertical curvature force exerted
by the arcs aty(+u) balances that of the conjugate arcsjét-«*). That is, using
Lemma 9.4, for a critical clasp we must have:| = |du*|, meaning that eithes — v *

or u + u* is constant.

If v« — u* were constant, by symmetry it would be zero, and our equations would
describe a pair of half-ellipses, with horizontal major axi@ and vertical minor
axis 1. On these curves, corresponding poits) and¥(u) are always at distance
from each other, but these amgaximafor the distance between components, rather
than minima. This configuration hdsl'hi < 1, and is notLThi-critical: the pairs
{7(u),¥(u)} are not struts.

Instead we must have that+ «* is constant. To find the constant, note that on the
T-clasp, the tip ofy (at w = 0) is joined by a strut to the end &f (at u* = 7); thus

u + u* = 7. This equation holds whet < u,u* < 7; to allow for negative values
(parametrizing the whole clasp curve) we write

lu| + |u*| = T.
We can now give an explicit description of our criticalclasp:

Theorem 9.5 Let 7 € [0,1], and let v = -, be the curve in the xz-plane given
parametrically for u € [—7, 7] by
1— _ 2
x=x(u) = l (T — lul) ,
VI= G = P
du

c= s [(fde= [ G

k() i= \/(1 —u2(r — |U|)2)3(1 — (7 —[ul)?)
YT = (= [ul)? + (7 — [ul)ul (1 - u?)

and the constant of integration for z is chosen so that

z2(0) + z(1) = =1 — 72,

Then the union of vy with its image 7y under the symmetry group 2 x 2 described above
is a T-clasp that is strongly critical for link-ropelength. The curvature of 7y is k,(u)
above, and the total length of the curved part of y is

where

/_TT lir(u)f;i—iuz'
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Y

Figure 12: This is an accurate plot of the critical simple clasgiven by Theorem 9.5. Here

u = sinp ranges from—1 to 1 over the curved portion of;. The tip 4(0) of the other
component is shown above on the z-axis, along with the (dotted) circular cross-section of

the tube of unit diameter arounyl. The curved dotted lines extending down from the sides

of this cross-section are the lines of contact between the shaded tube aramtthe front

half of the tube around. Symmetric lines of contact extend behind the shaded tube, realizing
the 2-to-2 contact pattern we have described. Finally, we see a small gap between the tubes,
explored in more detail in Figure 14.

Proof The proposition follows from the foregoing discussion, after substituiihg:

T — |u| into the equations of Lemma 9.3, and using Lemma 9.2. To get the constant of
integration forz, we note that the strut from(0) to 4(7) has height given (as in the
proof of Lemma 9.3) by

Az=+/1-2,(02 -z, (7)2=+1-0—72

O

Although the formulas we have given fey(«) and for arclength both involve hyper-
elliptic integrals not expressible in closed form, it is straightforward to integrate them
numerically; we have plotted our critical configuration of the simple<1) clasp in
Figure 12.
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0.5 s 1 1.5
Figure 13: The graph shows the curvaturef the tight1-clasp as a function of arclength. The
curvature blows up at the tip: this curve is ord§}-*/*. The unit-diameter thick tube around
the curve forms a cusp near the tip, when the curvature exceed#som the tip, curvature
decreases rapidly to its minimum, and then increases again to the limiting vakue-of at
the end. Thus the clasp curve, at its end, agrees to second order with the naively expected unit
circle around the tip of the other component, as is suggested in Figure 12 (Foi, as
illustrated here, the curves agree even to third order.)

As we mentioned in the introduction, Starostin has given [34] an independent deriva-
tion (using a form of balancing for smooth curves) of these sarttasp configura-
tions (as well as the family of stiff clasps we will consider in [2]). Starostin does not
prove that these configurations are critical for link-ropelength.

9.4 The geometry of the tight clasp

We now examine the curvature and other geometric features of the critical clasps for
the Gehring problem that were given in Theorem 9.5. Each component of the critical
T-clasp is aC' join of four analytic pieces: a straight segment, thén-r, 0], then

~[0, 7], and finally another straight segment. Where the curved arcs join the straight
segments att = +7, the curvaturex(u) approached ; at these points, our critical
clasp agrees to second order with the naively expected circular arcs.

The maximum curvature(0) = 1/v/1 — 72 occurs at the tip. For < 1, this is finite,
and ourr-clasp isC"!. But for 7 = 1, the curvature blows up (likés|~'/?) at the
tip. In Figure 13 we plot the curvature(u) for this simple clasp. The curve /3

(and is also in the Sobolev spabé? 3¢ for all € > 0) but has no higher regularity.

In Proposition 6.5, we proved that critical curves for link-ropelength@ke It would
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Figure 14: We see three views of the gap chamber between the two tubes in the tight clasp with
7 = 1. On the left, we see an exploded view with the two tubes and the gap chamber floating
between them. In the medium closeup in the center, we see the chamber in place between
the (now transparent) tubes. On the right, we see an extreme closeup of the center of the gap
chamber. Its height at the center (ab01t5639) is the distance between the tubes at the tips of

the clasp. The grid in the center and right pictures is a square grid projected fram-ffiane.

On the right, we see a tiny ridge running from left to right along the surface of the chamber;
this is a cusp formed by the folding of the tube surface that happens when the curvature of the
clasp rises above (cf. Figure 13). We do not know whether this gap chamber forms in clasps

of physical rope; it would be very interesting to find out.

be interesting to find out whether all such critical curves@te/? ; perhaps the simple
clasp exhibits the worst possible behavior.

In Example 7.5, we saw critical curves constrained by link-thickness which fail to have
positive thickness in the ordinary sense of [4] because one component is nonembedded.
The simple clasp fails to have positive thickness for a different reason: its curvature
is unbounded. In [2] we will consider a family of thickness measures with a variable
stiffness parametex. In these measures, a unit-thickness curve has curvature bounded
above by2/x. For any nonzero\, it follows that the critical simple clasp must be
different from the tight clasp here for the Gehring problem, and must instead include
an arc of this maximum allowed curvature.

One of the most interesting features of the clasp is the gap between the two components
of the clasp. The distance between the tipsyoand 4 is z(7) — z(0) + V1 — 72

(written in this way to be independent of the constant of integrationzjorThis is

an increasing function of, close tol when 7 is small, but increasing td.05639

atT = 1. Thus, in the simple clasp, the gap between the thick tubes around the two
components at their tips is almast of their diameter.

These thick tubes contact each other at the midpoints of the struts. Topologically, the
set of struts forms a loop. Their midpoints form a loop in space with four vertical

cusps—the line of contact of the two tubes—as seen in Figures 12 and 14. Alter-
natively, we can plot the loop of struts as pairs of arclength coordinates on the two
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Figure 15: The graph shows the strut set for the titjhidlasp, where each strut is plotted
according to the arclength of its ends on the two components of the clasp (measured from the
tip s = 0 to the shoulders at = ¢ ~ 1.58944). There is a closed loop of struts, with four
cusps at the tips and shoulders of the clasp arcs. We hope this explicit strut set will help in
verifying the accuracy of numerically computed strut sets for ropelength minimizers, such as
those in [5].

components, as in Figure 15. The solid tubes divide the rest of the ambient space into
two regions: one infinite component around the outside of the clasp, and one small
chamber sitting in the gap between the tips, shown in Figure 14. To give a sense of
scale, the gap chamber has a substantial surface area oflabouequal to the area of

a section of tube of length more thays. However, the chamber is very thin, resulting

in a volume of only0.01425.

9.5 Length comparison with the naive clasp

Earlier, we described the naive circular configuration for the simple clasp. Similarly, in
what we call thenaive 7-clasp each component is built from straight segments (nor-
mal to the constraint planes) and a unit-radius arc (of adglesin = and centered at

the tip of the other component). As we saw fot= 1, this configuration is not critical:

there is no way to balance the forces concentrated on the tips, unlike in Examples 7.1
and 9.1, which had extra struts.

Our critical 7-clasps (which we expect are the global minima for length) are indeed
slightly shorter than the naive configurations. The total length of a clasp depends, of
course, on the position of the bounding planes. Thus to compare the lengths of the
naive clasp and our critical clasp in a meaningful way, we introduce the notion of
excess length. The infimal possible length of &lasp with no thickness constraint

is easily seen to be four times the inradius of the bounding tetrahedron. (In the case
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Figure 16: Our critical configuratiom?, of the Borromean rings, shown with thick tubes of
diameter1. This configuration is very slightly shorter than the piecewise-circular version
in [4]. As in that version, the core curve of this tube has discontinuous curvature, for instance
at the “jump point” where the curve switches from convex to concave.

7 =1 this is twice the thickness of the bounding slab.) Ekeess lengthf any given
clasp is the amount by which its length exceeds this value.

For 7 = 1, the naive clasp has excess length— 2, since two unit semicircles replace

two straight segments of unit length. Numerical integration reveals the excess length
of our critical 1-clasp to be4.262897 (accurate to the number of digits shown). It is
thus about).020288, or almost half a percent, shorter. In general, the excess length
of the naiver-clasp is4 arcsin 7 — 27, while the excess length of our criticatclasp
equals the total length of the curved parts miRastimes the inter-tip distance. The
maximum percentage savings, abOout18%, occurs forr ~ sin(80°).

10 The Borromean rings

The original Gehring link problem was solved by the Hopf link made from a pair of
circles through each other’s centers. We have already generalized this to a three com-
ponent link in one way: the simple chain made from circles and stadium curves of
Section 7. But the simple chain is just a connect sum of Hopf links, and so the mini-
mizing configuration shares much of its geometry with the original Gehring solution.

We now construct a proposed minimizer for a more interesting Gehring problem—
the Borromean rings (see Figure 16). Among the three prime six-crossing links of
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Figure 17: Two further renderings of the critical configuratiBg for the Borromean rings
reveal more of the structure. The image on the left, showing thin tubes of diathaié,

viewed along an axis of threefold symmetry, has been adopted as the logo of the International
Mathematical Union. On the right, in a still from the video [15], we see even thinner tubes
inside transparent thick tubes.

three components, the Borromean rings form the one whidrusinian meaning

that if any one component is removed the remaining components are unlinked. Mil-
nor’s p-invariant classifies three-component Brunnian link-homotopy types, and the
Borromean rings are the first nontrivial example.

In this section, we describe (Theorem 10.2) a critical configuratdgnof the Bor-
romean rings, shown in Figures 16 and 17. Numerical simulations with Brakke’s
Evolver[1] suggest that this configuratioB is in fact the ropelength minimizer for
the Borromean rings. We will see below that the curvatur&gfstays belowl.534;

this means (as we show in [2]) th&, is also a critical point for length when con-
strained by the ordinary thickness measure of [4] instead of by link-thickness. In [4],
we described a similar configuratiaB, of the Borromean rings, built entirely from
arcs of unit circles. Theorem 6.1 shows tligtis not critical, and we compute tha,

is 0.08% shorter.

10.1 Symmetry and convexity
Our configurationsB, and By of the Borromean rings are quite similar, and in par-

ticular have the same symmetry and convexity properties, which we now define. The
three congruent components lie (respectively) in the three coordinate planes; reflection
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across any one of these planes is a symmetry of the link preserving each component. A
further symmetry, which cyclically permutes the three components, is giver2sy
rotation about the€1, 1, 1) axis; we write this rotation as

prpr P p.
These symmetries generate thgitohedralpoint group of order4 in O(3) whose
Conway-Thurston orbifold notation (see [9, 10])3is2. Algebraically it is isomor-

phic to +A4, and in cartesian coordinates it is most naturally seen as the wreath prod-
uct{+1}1C5.

Any symmetric configuration of the Borromean rings is the image under the pyritohe-
dral group of a single embedded arc in the closed positive quadrant afjtiane,
extending from a poinf on thez-axis to a pointI’ on they-axis, as shown in Fig-

ure 18. Conversely, given any such aft, its images undeB 2 will form a link
isotopic to the Borromean rings, as longBsnd I are not at the same distance from
the origin. We will assume thaf| < |7'| and will call I the intip while 7" is the tip.

To make the linkC?, the arcIT must beC' and must meet the axes perpendicularly
at its endpoints.

The only other points of the link in this quadrant of the-plane arel andT’; they
will be important in the following discussion.

The arcsIT of interest to us consist of a small concave piece near the intip joined to
a large convex piece ending at the tip. That is, there is a jump poit/T such that

the arclJ is strictly concave, whileJT is strictly convex. As in our discussion of
the clasp, we will parametriz€J by the angley (less thang) that its tangent vector
makes to the right of the vertical, or hy = sin+. Herewv ranges from0 at [ to
some valuer at J, which will be one of the fundamental parameters for the curves
we describe.

Along the convex ard T we can still definev = sin ¢, which now decreases from
throughO to —1. But we also use the angle= 7+, the angle above the horizontal
made by the tangent vector t6I". Since our curve i, we havey(T) = 0 and
@(J) = § + arcsino. In the curves we describe, some initial subdg of JT' is
part of the unit circle around; we havep(R) < 5 so that alongT" we can also use
the parameter = sin ¢.

Finally, to achieve a force balance we will find it necessary that some péiaiong

the circle JR has a strut tal’ as well as tol . This lets us transmit some force from

the large convex arc of one component to the smaller concave arc of another, indirectly
through the third component. In the,-plane, we find that\/ is the midpoint of the
segment/T, and thus if we sep := sin /(M) < ¢ we have

I=(2p,0), M= (p,\/1-p?), T=(0,2/1-p?)
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<

(p = arcsinu

M = (1=p%p)

—@

Figure 18: Any configuratiorB of the Borromean rings with « 2 symmetry is generated by

a planar arddT'. We consider arcs whergJ is concave and/T" is convex. The other points

of B in this quadrant are the rotation imagesnd7’ of I and7. In our configurations, there

are pointsM and R such that/R is part of the unit circle around, and A is the midpoint
betweenI and 7. The four dotted lines are thus struts of lendth The height difference
from .J to I is o = sin(.J) as delineated by the horizontal dashed line, and the coordinates
of M are given in terms op = sin (M) = — cos p(M).
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10.2 The configuration built from circular arcs

The configurationBs we described in [4] is generated by an df of this form.
In By, we haveR = T, so that the entire convex atfl’ is part of the unit circle
around. Furthermore, the concave afd is also part of a unit circle, centeredAt
This implies thatM = J ando = p =: py. The valuep, is determined by the fact
that I and 7" are at unit distance, meanirdp, + 1 = 2,/1 — p3. As we computed
in [4], the total length ofB; is then6m + 24 arcsin ps = 29.0263.

This configuration is not balanced (and thus not critical) for link-ropelength. To bal-
ance the curvature forces of the circular arcs, the fans of struts to their centers would
have to carry force proportional to arclength. But these struts would then concentrate
outward force on the tips and inward force on the intips; there are no further struts
to balance these forces. This is like the picture for the naive clasp—all the force is
concentrated on the tips. As for the clasp, the tips in the critical configuration will be
further apart.

In [2], we introduce a family of thickness measures with variable stiffness. For stiff-
ness2 (meaning that the curves cannot have osculating circles of diameter lesy)than

we will see thatB, is balanced and hence critical for ropelength. Because the circu-
lar arcs have exactly the maximum allowed curvature, we will see that their curvature
force need not be balanced pointwise, but only in total. Outward strut force on their
midpoints (the tips and intips) can in a sense be spread out to balance the curvature all
along the arc. Becaus® # 45°, however, there is an imbalance of total curvature
forces between the convex and concave arcs. Thus our balancing measure will need an
atom of force on the special colinear strts M} and {M, T} ; this transmits force

from 7" throughM to 1.

10.3 Configurations involving clasp arcs

To get a balanced configuratiaB, of the Borromean rings, we have to replace the
concave circular aréJ (and part of the convex arc) by a tight clasp arc. Suppake

is part of ar-clasp for somer > o. We will now describe a configuration determined
by certain values of our three parameters

0<p<o<T7<1,
a particular curve of the class illustrated in Figure 18.

First, the arclJ is the piecev € [0, 0] of the 7-clasp, translated out along the
axis until its tip I is at (2p,0,0). Next, JM R is an arc of the unit circle around,
with v(J) = o, v(M) = p andu(R) = 7. Note that to get these arcs to match up
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at J, we will need two conditions on our parameterss andr. Finally to define the
remaining arcRST, consider the imagé.JM of IJM, rotated into theyz-plane.
Then RST is conjugate tal JM in the sense of Lemma 9.3: it is the intersection of
the unit-radius tube arounfl/ M with the zy-plane, with S defined to be the point
conjugate toJ. Figure 19 shows the arET” and its two rotated images, that is, the
part of By lying in the nonnegative orthant in space.

Lemma 10.1 For any fixed 7, suppose the parameters 0 < p < o < 7 satisfy the
two equations

u=g du
0=2p—+/1— 2+/ S 10.1
P 7 u=0 Kr(u)V1—u? (10.1)
and )
1_
0=1-(2p—0)> 7 (10.2)

1—02(1—0)2
where k., is the curvature of the clasp from Theorem 9.5. Then there is a C' and
piecewise analytic arc IJM RST as described in the last paragraph. Its images under

the symmetry group 3 % 2 form a configuration B(p, o, T) of the Borromean rings with
link-thickness LThi = 1.

Proof As a point on the unit circle/ R around!, the jump point/ has coordinates

(\/1 —02,2p— o0, 0).

As a point on ther-clasplJ, its coordinates are

7 udu
<2p+/0 m, z.(0), 0).
Equating these, using
(1-0?%
T—2(r—o)2
from Theorem 9.5, gives (10.1) and (10.2).

If these equations are satisfied, then the positior/ aé well-defined, and/JR is
aC'! arc, meeting the:-axis perpendicularly. The aiRST is the conjugate of J M
and thus isC' by Lemma 9.3. AtT’, the same lemma shows it meets thexis
perpendicularly. AtR, the w = 7 base of ther-clasp agrees even to second order
with the unit circle.

(o) =1—

In this configuration, all the struts shown in Figure 19 have lengthif the link-
thickness were less thah there would need to be some shorter strut in this positive
octant. But that strut would be governed by Lemma 9.3, and (rotating to assume one
endpoint is on/'T) its projection to thery-plane would be normal to the ai@’; the

figure makes it clear that no such strut exists. |
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Figure 19: One octant of the critical Borromean rinfg consists of three rotated images
of an arcIJMRT of the type shown in Figure 18. The dotted lines are struts of leigth
connecting the labeled points. We now describe all other strut$'tim this octant. Of course,
all along the circular arc/M R there are struts to its centdr. Also, between the marked
struts are several one-parameter families of struts, joining two arcs. The first family joins the
conjugate clasp arc®S andI.J; a second family connectST to the circular arc/M . The
other families are rotated images of these, connecfiffj to ST, andI.J to RS. The struts
{T, M} and {M, I} are colinear. To balancgT’, it is important to consider also the mirror-
image struts across they-plane. This figure is an accurate drawing Bf, except that we
have exaggerated the separation betwgérand J: their actual distance is smaller than the
width of the lines used in the picture.
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10.4 The balanced configuration

Finally, we wish to find the third condition on our parameterss and, which will
ensure thatB(p, o, 7) satisfies the balance criterion of Corollary 6.3.

For most of the struts, it is immediately clear what stress they need to have in a balanc-
ing measure.: The struts from/J to RS, and those from\/ R to I and from RT

to IM must be stressed exactly enough to balance the curvature foré¢ ahd

of M RT. The conjugate clasp ards/ and RS exactly balance each other’s curva-
ture forces in this way.

The situation along the short circular afd/ is more complicated. The struts inward
to I need to balance not only the curvature force/af itself, but also the force acting
inward on.J M from the struts fromS7". Remember that the measure needed on these
last struts is determined by the curvatureXif; this in turn determines the measure
needed on the inward struts fros/. We will write this down explicitly below. The
final condition on our parameters then comes from a balance of forceswdiere a
whole family of struts converges.

Note that this configuratiom, of the Borromean rings is the first known example of a
ropelength-critical configuration in which this sort of transmitted force appears. Struts
impinge on the arc/ M from the direction opposite its own curvature, and transmit
their force through that arc. Without this force transmitted through the (very) short
arc JM, the relatively long convex piec&1 would exert too much inward force

on the relatively short concave piedd. Instead, some of this inward force, when
transmitted through/ M, becomes forceutward on the concave piecé.J. This
transmitted force plays the same role in balanciBigthat the atomic force from"
through M to I played in balancingB, for the stiff problem. But here our strut
measure is absolutely continuous, with no atoms.

To write down the final balancing condition @t we begin with an application of
Lemma 9.4: the total curvature force df\/ R and its mirror image across the:-
plane acts ol downward in they-direction, with magnitude

2(u(J) —u(R)) =2(V1—-0%2—71).

But the struts fromJ M carry extra transmitted force. To determine this, consider the
curvature force of an infinitesimal arc 8fI” and its mirror image across they-plane.
Parametrizing them as usual ly Lemma 9.4 tells us the net force, exerted in the
negativexr direction, is2du. This horizontal force is exerted on an infinitesimal piece

of JM and its mirrorimage across the -plane. If we parametrizé M by v = sin 1,

then remembering that the force on this arc acts perpendicular to the arc, we see that
if its horizontal component idu, then its vertical component isdu/+/1 — v2. This
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force gets transmitted through fo Because of the symmetry across heplane, of
course only the vertical component matters in the end. But this symmetry also doubles
that vertical force. Rour copies of the arcST' act onI: the original, and reflections
across thery- and yz-planes.) The resultant total transmitted forcelois upward

with magnitude
T—0O 2
2/ L du.
u=0 1—02

Here the upper limit of integration ig(S) = 7 —v(J) because/ and S are conjugate
points on ther-clasp. To make this integral explicit, we need to give the relation
betweenu and v; this comes from Lemma 9.3. AlongM we havey-coordinate
2p — v, so the lemma gives

1—(2p—v)%/v?
2 _ 2. _
u® =wu(v)”: Cy—r
If one wanted, this could be solved to giweas the root of a quartic equation jn
andu. Note thatu = 0 atv = p, as we expect fof” and M. Plugging inu =7 — o
andv = o (at.S andJ) reproduces (10.2).

Summarizing, we can write the force-balancing condition as
=7 2v  du(v)

0=7—-v1_02+ L
v=p V1 — 02 dv

(10.3)
and so we have proved

Theorem 10.2 Suppose p = py, 0 = o9 and T = T satisfy the three equations
(10.1) (10.2) and (10.3) Then the configuration By = B(pg, 00, 7) of the Bor-
romean rings, constructed as in Lemma 10.1, is strongly critical for link-ropelength.

O

Itis easy to solve (10.1) fgs, or (10.2) forp or 7, or (10.3) forr, thereby eliminating

one of our three variables. Then we are left with two nonlinear integral equations in the
other two variables. While we have not proved formally that a solution to this system
exists, we have solved it numerically to high precision, both in Mathematica and using
QUADPACK/MINPACK [30, 26]. We obtain

po ~ 0.4074218, o¢ ~ 0.4177486, 79~ 0.7561107,

where again we follow the standard convention that the error is lesstthan the last
digit shown. There is nothing delicate about this solution, since our expressions vanish
to first order at this point. Numerically it is also clear that this solution is unique.

Using these constants, we compute the length of our critical Borromean Bpgs
as29.0030. By comparison, the length of the piecewise circular Borromean ri®igs
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was 29.0263. Thus our critical configuratiorB, beats the naive circular configura-
tion By by slightly less than one-tenth of one percent. For comparison, the best lower
bound known so far [4] for the length of the Borromean ring87s

Figure 20 shows an arclength plot of the struts in the Borromean rings. In Figure 21 we
plot the curvature of the critical Borromean ringfs as a function of arclength. Note
that it is discontinuous only at andS. Each component il is built of 14 analytic
pieces, joined in &'>! fashion at the symmetric images of the poifts/, R andSS.

The maximum curvature (at the intigg is (1 — 73)~'/? ~ 1.528. ThereforeB is

also ropelength critical for the standard ropelength functional of [4], as we will show
in [2]. Itis also critical for all the stiff ropelength functionals where the lower boind

on the diameter of curvature is less thay'1 — 75 ~ 1.3.

We note that Starostin has described [34] a configuraBgrof the Borromean rings
with ropelength intermediate between that of d8y and By; his configuration re-
places the arcgJ and RT of B, by clasp arcs, but does not incorporate the other
features ofBy. While Bg can be balanced almost everywhere and Starostin appears
to assume that it is a critical configuration, in fact it is not balanced at the intips since
it does not satisfy the equivalent of (10.3). Thus by Corollary 83,is not critical.

11 Open problems and further directions

Our work in this paper has been motivated by a simple principle: that the ideas of
rigidity theory for finite frameworks of bars and struts can be extended to handle mech-
anisms built from continuous curves of constraints and contacts. In the simple case of
links critical for link-ropelength, this method has already yielded some strong results,
such as ouC'! -regularity theorem, as well as some surprises like the tight clasp and
the critical Borromean rings. Furthermore we expect that these methods in general,
and our Kuhn—Tucker Theorem 5.4 in particular, will prove to be useful tools, with
applications to a number of outstanding problems in the geometry and topology of
curves and surfaces.

We have mentioned our forthcoming extension of these results [2] to the classical ro-
pelength problem, where the presence of curvature constraints and self-contacts of
the tube around individual components makes the situation considerably more chal-
lenging. Our theory of generalized links and obstacles should also be applicable to
the study of packing problems for tubes and surfaces, as when thick rope is packed
into a box [18] (a problem of some interest in molecular biology: see [22, 21]), or
when the gray matter of the brain is folded and pressed against the skull. We should
also mention that while we have only considered minimidamggthin this paper, our
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Figure 20: This picture shows a portion of the strut set of our Borromean rings, plotted as
pairs of arclength coordinates along components of the link. The horizontal axis represents
arclength along one quadrant of the horizontal component, ffotn 7. On the vertical

axis, we plot arclength along quadrants of the other two components simultaneously. (This
plot accurately depicts the small arclength betwéérand .J, in contrast to Figure 19 where

this distance is exaggerated.) The horizontal segment at the bottom shows the struts from the
circular arcJMR to I; it joins to arcs representing the families of struts frads to I.J

and from ST to JM. Symmetrically, the struts to the third component are shown at the
upper left: a vertical segment for the circl? around, and arcs for the struts frodiJ M

to RS71. Remembering that this square plot should be reflected across all of its sides to show
the complete strut set, we can easily read off the number of struts coming in to any point on
the curve: two alond J and RST, three along/ M and one alongV/ R.
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Figure 21: The curvature of the Borromean ring$3,, plotted as a function of arclength

along one quarter of one component of this critical configuration. The curvature has its maxi-
mum (aboutl.533) at the intip!, at s = 0 in this plot, and then smoothly drops off to beldw

(This first part could have been plotted negatively, since this is the concave pidsig bfit

we have chosen to show the unsignedf a space curve.) After a jump at, we havex = 1

along the circular ar M R. Along the clasp ard?S, the curvature drops smoothly fromn

and then rises slightly again, before jumping up abbvat S and then increasing to a local
maximum at7".
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framework should work equally well for other objective functionals, such as a general
theory of elastic rods with self-contact.

A finite-dimensional duality theorem akin to our Kuhn—Tucker theorem is one key
step in the proof of the Unfolding Theorem [8] of Connelly, Demaine, and Rote: Any
embedded, non-convex planar polygon admits a motion that preserves all edge lengths
and strictly increases the distance between any two points on the polygon not already
joined by a straight line of polygon edges.

Our theory allows us to complete part of the proof of the (conjectured) generalization
to smooth plane curves. Whether our methods can be made strong enough to overcome
the formidable difficulties involved in proving a smooth unfolding theorem remains to

be seen.

There are several specific open questions suggested by our work above.

Question What is the regularity of a critical curve for link-ropelength? Such curves
are at worsC"' and at bestC!-*/3.

While we have demonstratexitical configurations of the tight clasps and Borromean
rings, we have not attempted to prove that these configurations are minimal.

Question Are our tight clasps and Borromean rings length-minimal in their link-
homotopy types?

The Euclidean-cone methods of [4] seem to hold out some hope for reducing the clasp
problem to the case where both curves are planar, but we have not investigated this line
of attack.
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