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Abstract

In 1974, Gehring posed the problem of minimizing the length of two linked curves
separated by unit distance. This constraint can be viewed as a measure of thickness
for links, and the ratio of length over thickness as the ropelength. In this paper we
refine Gehring’s problem to deal with links in a fixed link-homotopy class: we prove
ropelength minimizers exist and introduce a theory of ropelength criticality.

Our balance criterion is a set of necessary and sufficient conditions for criticality, based
on a strengthened, infinite-dimensional version (Theorem 5.4) of the Kuhn–Tucker
theorem. We use this to prove that every critical link isC1 with finite total curvature.
The balance criterion also allows us to explicitly describe critical configurations (and
presumed minimizers) for many links including the Borromean rings. We also exhibit
a surprising critical configuration for two clasped ropes: near their tips the curvature
is unbounded and a small gap appears between the two components. These examples
reveal the depth and richness hidden in Gehring’s problem and our natural extension.
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1 Introduction

Suppose thatA andB are disjoint linked Jordan curves inR3

which lie at a distance1 from each other.
Show that the length ofA is at least2π .

—Fred Gehring, 1974

Gehring’s problem, which appeared in a conference proceedings [7], was soon solved
by Marvin Ortel. Because Ortel’s elegant solution was never published, we reproduce
it here with his permission: Fix any pointa ∈ A; the cone onA from a is a disk
spanningA. SinceA andB are linked,B meets this disk at some pointb ∈ B , lying
on a chord ofA. BecauseDist(A, b) ≥ 1, projectingA to the unit sphereS aroundb
does not increase its length. The projection is a closed curve joining two antipodal
points onS , and so has length at least2π . (Further proofs, and generalizations to
linked spheres in higher dimensions, were published in [11, 28, 12, 13].)

The unique minimizing configuration for Gehring’s problem is a Hopf link consisting
of two congruent circles in perpendicular planes, each passing through the other’s
center. This leads to a natural question: what are the length-minimizing shapes of other
link types when the different components stay unit distance apart? This constraint
prevents different components from crossing each other, but we cannot expect to fix the
link type exactly. Instead, the natural setting for this problem is Milnor’s notion of link
homotopy: two links are link-homotopic if one can be deformed into the other while
keeping different components disjoint. Clearly one link can be deformed into another
while keeping all components at unit distance if and only if they are link homotopic.

We will define thelink-thicknessof a link to be the minimum distance between dif-
ferent components. The problem we consider is then to minimize length in a link-
homotopy class, subject to the constraint of fixed link-thickness. Equivalently, we
could minimize thelink-ropelengthof the link, meaning the quotient of length over
thickness.

In [4], we found length-minimizing links under a similar constraint: that a normal tube
of diameter one around the link stay embedded. It is easy to see that the examples
constructed there (like the one in Figure 4) are also global minima (in their respective
link-homotopy classes) for the Gehring problem. The focus of this paper will be on
critical configurations. Our main result is a balance criterion (Theorem 6.1, Corol-
lary 6.3), which states that a link is link-ropelength critical if and only if the tension
force in the curve is balanced by a system of compressive forces between pairs of
points on different components ofL realizing the minimum distance.

This balance criterion is based mainly on an improved, infinite-dimensional version
(Theorem 5.4) of the Kuhn–Tucker theorem on constrained optimization, which is
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essentially a very general method of Lagrange multipliers. The other key technical
element is a careful application of Clarke’s differentiation theorem for min-functions
(Theorem 3.1).

The direct method shows that there is a (rectifiable) minimizer for link-ropelength in
each link-homotopy class. An interesting problem is to determine the regularity of
these minimizers or other critical points. The previously known minimizers wereC1,1

but notC2 . Our balance criterion allows us to prove that all link-ropelength-critical
curves areC1 with finite total curvature (Proposition 6.5).

We next consider generalized links, which may include open components with con-
strained endpoints, or which avoid fixed obstacles. After extending our balance crite-
rion and existence results to this setting, we analyze the problem of thesimple clasp. A
clasp consists of two linked arcs whose endpoints are constrained to parallel planes (as
in Figure 10). A generalization to clasps of different opening angles provides a model
for the strands of rope in a woven cloth or net. The balance criterion lets us construct
explicit critical configurations (Theorem 9.5) of these generalized links; we conjecture
they are the length-minimizers subject to the constraint that the arcs remain at unit dis-
tance from each other. Our critical clasp has a number of surprising features, including
a point of infinite curvature and a small gap (at the center of the clasp) between the
tubes around the two components. This configuration isC1,2/3 and may represent the
worst regularity of any critical curve.

We end by constructing a ropelength-critical configuration (and presumed minimizer)
for the Borromean rings. In all the other known critical configurations for closed
links, each component is a convex plane curve built from straight segments and arcs
of circles. In our Borromean rings, the components are still planar, but are nonconvex,
and are built from different pieces including parts of a clasp curve. In a sense, this is
the first nontrivial example of a ropelength-critical link.

Our methods will have a number of other applications. In particular, we have used
them to describe critical configurations for the “standard” ropelength problem for knots
and links: minimize the length of aC1 link subject to the constraint that the normal
neighborhood of unit diameter remains embedded. We will publish these results in a
sequel [2] to the current paper. We can also consider minimization not of length but
of other objective functions like elastic bending energy, again subject to a thickness
constraint. Analogs of our balance criterion may be useful in describing other flexible
mechanisms, such as thick surfaces.

We note that von der Mosel and Schuricht [33] have used a similar approach (via
Clarke’s theorem and a functional-analytic version of Lagrange multipliers) to derive
necessary, but not sufficient, conditions for criticality for the ropelength functional
of [4]. We will treat the same functional in our forthcoming sequel [2], and will offer
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4 Cantarella, Fu, Kusner, Sullivan and Wrinkle

a comparison of the two methods there. We also note that Starostin has given [34] an
independent derivation of the tight clasp of Section 9, though he does not prove that it
is critical.

2 Link-thickness for closed links

In order to reformulate Gehring’s problem, we first establish some basic terminology.
Remember that a compact, oriented1-manifold-with-boundaryM is a finite union of
components, each of which is homeomorphic to a circleS1 or an interval[0, 1].

Definition A parametrized curveis a mapping from a compact, oriented1-manifold-
with-boundaryM to R3 . Two parametrized curves are equivalent if they differ by
an orientation-preserving reparametrization (i.e., by composition with an orientation-
preserving self-homeomorphism ofM ). A curveL in R3 is an equivalence class of
parametrized curves. We sayL is closedwhen each component of its domainM is a
circle, that is, when its boundary∂L is empty.

Even though our curves may have self-intersections, we will usually refer to points on
the curve as if they were simply points of its image inR3 . The meaning should be
clear from context.

ThelengthLen(L) of any curveL is defined to be the supremal length of all polygons
inscribed inL. A curve has finite length, or isrectifiable, if and only if it has a Lip-
schitz (i.e.,C0,1 ) parametrization. One such parametrization is then by arclengths.
Any rectifiable curve has a well-defined unit tangent vectorT = dL/ds almost every-
where.

Definition The link-thicknessLThi(L) of a curveL is the minimum distance be-
tween points on different components ofL. This is the supremalε for which the
(ε/2)–neighborhoods of the components ofL are disjoint.

For now, we will consider only the case of closed curves, where each component is
a circle. (We will deal with generalized links—with endpoint constraints—later in
Section 8.) So suppose we start with a closed curveL and we want to minimize length
under the constraint that the link-thickness remains at least one. Since we can rescale
any link to haveLThi ≥ 1, this problem is the same as minimizing(link-) ropelength,
the quotient of length by link-thickness.

The thickness constraint naturally prevents different components from passing through
each other, but does not prevent any given component from changing its knot type
through self-intersections. This is the setting for Milnor’s work on link homotopy:
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Definition A link is a closed curve with disjoint components. Thelink-homotopy
class of a linkL, denoted[[L]], is the set of curves homotopic toL through configu-
rations that keep different components ofL disjoint.

Note that, for our purposes, configurations ofL where some components have self-
intersections are still considered to be links, and are included in[[L]].

For two-component links, Milnor [24] showed that linking number is the only link-
homotopy invariant. For links of many components, the topological situation is more
complicated, but a complete classification of links up to link homotopy was provided
by Habegger and Lin [16]. We will prove in Section 6 that in every link-homotopy class
there is a curve minimizing ropelength. We show these minimizers are alwaysC1 ,
though our examples suggest that they may not always have bounded curvature.

3 The derivative of link-thickness

We want to define critical configurations ofL subject to the thickness constraint
LThi(L) ≥ 1. BecauseLThi is defined as the minimum of a collection of distances
between points on different components, the equationLThi ≥ 1 acts like a collection
of many constraints. To make this notion precise, we will apply a theorem of Clarke
to compute the derivative ofLThi as we vary the curveL.

Given any curveL, let L(2) be the compact set of all unordered pairs{x, y} of points
on distinct components ofL. The link-thickness ofL is simply the minimum overL(2)

of the distance functionDist{x, y} := |y − x|.
We often want to consider acontinuous deformationLt of a curveL: fixing any
parametrizationf of L, that means a continuous familyft of parametrized curves
with f0 = f . (When we reparametrizeL, we apply thesamereparametrization toLt

at all timest.) We assume thatLt is C1 in t; the initial velocity ofLt will then be
given by some (continuous,R3–valued)vectorfieldξ alongL. We letVF(L) denote
the space of all such vectorfields. Formally, these are sections of the bundlef∗TR3

pulled back from the tangent bundle ofR3 by the parametrizationf of L. Identifying
any tangent space toR3 with R3 itself, this is simply a map from the domainM
to R3 . Again, when we reparametrize a curveL, we apply the same reparametrization
to any vectorfieldξ .

Consider a curveL with LThi(L) > 0. If Lt is a continuous deformation ofL, with
initial velocity given by someξ ∈ VF(L), then for each pair{x, y} ∈ L(2) , we clearly
have

δξDist{x, y} :=
d
dt
|y − x|

∣∣∣∣
t=0

=

〈
ξy − ξx, y − x

〉
|y − x|

.
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6 Cantarella, Fu, Kusner, Sullivan and Wrinkle

(Even if L is not embedded, the conditionLThi(L) > 0 implies x and y cannot
coincide inR3 , so this formula is always meaningful.)

A function like LThi, defined as the minimum of a compact family of smooth func-
tions, is sometimes called a min-function. Clarke’s differentiation theorem for min-
functions says that—just as in the case when the compact family is finite—the deriva-
tive of a min-function is the smallest derivative of those smooth functions that achieve
the minimum. More precisely, specializing [6, Thm. 2.1] to the case we need, we
have:

Theorem 3.1 (Clarke) Suppose for some compact space K and some ε > 0,
we have a family of C1 functions fk : (−ε, ε) → R, for k ∈ K . Suppose fur-
ther that fk(t) and f ′k(t) are lower semicontinuous on K × (−ε, ε). Let f(t) :=
mink∈K fk(t). Then f has one-sided derivatives, and

df
dt+

∣∣∣∣
t=0

= min
k∈K0

f ′k(0),

where K0 := {k ∈ K : fk(0) = f(0)} is the set of k for which the minimum in the
definition of f is achieved when t = 0.

To apply this theorem to thickness, suppose we have a variationLt of the curveL,
and letξ ∈ VF(L) be its initial velocity. The link-thicknessLThi(L) is written as a
minimum overK = L(2) of the pairwise distance. Clarke’s theorem picks out those
pairs achieving the minimum:K0 is the set of pairs achieving the minimum distance
LThi(L).

In rigidity theory, the vertices of a tensegrity framework are joined bybars whose
length is fixed,cableswhose length can shrink but not grow, andstrutswhose length
can grow but not shrink (cf. [31]). Thus, we borrow the term “strut” to describe the
pairs inK0 :

Definition An unordered pair of points{x, y} on different components ofL is astrut
if |y − x| = LThi(L). The space of all struts ofL is denotedStrut(L) ⊂ L(2) .

Struts correspond to points of contact between tubes around the different components
of L. Our balance criterion will show how the segmentxy can be viewed as carrying
a force pushing outward on its endpoints.

Applying Clarke’s theorem to link-thickness, we get:
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Corollary 3.2 For any curve L, and any variation vectorfield ξ ∈ VF(L), the (one-
sided) first variation of link-thickness is

δ+ξ LThi(L) = min
Strut(L)

δξDist{x, y}.

Note thatδξDist{x, y} is a continuous function ofx andy , and for any fixed{x, y}
is a linear function of the variationξ , being the derivative of a smooth function.

Therefore we can collect these into a linear operatorAS = δDist from VF(L) to the
spaceC(Strut(L)) of continuous functions on struts, defined by

(ASξ)({x, y}) := δξDist{x, y} =
1

|y − x|
〈
ξy − ξx, y − x

〉
.

Borrowing again from rigidity theory, where the analogousA is called therigidity
matrix, we will call AS therigidity operator for link-thickness.

The corollary above can be rephrased to conclude that a variationξ decreasesLThi(L)
to first order if and only ifASξ takes at least one negative value onStrut(L).

Note that, while the corollary says that link-thickness has a directional derivative
δ+ξ LThi in each directionξ , the operatorδ+ξ LThi is not linear in ξ . For instance,

when one component of a link is between two others, it is easy to have bothδ+ξ LThi <
0 andδ+−ξ LThi < 0. We write the superscript+ to emphasize that these are only one-
sided derivatives. There is, however, a form of superlinearity:

Corollary 3.3 For any curve L and any ξ, η ∈ VF(L), we have

δ+ξ+η LThi(L) ≥ δ+ξ LThi(L) + δ+η LThi(L).

Proof This follows immediately from the linearity ofAS and the general fact that
min(f + g) ≥ min f + min g : we have

minAS(ξ + η){x, y} = min(ASξ +ASη){x, y}
≥ minASξ{x, y}+ minASη{x, y},

where the minima are taken over all{x, y} ∈ Strut(L).

We will be interested in the adjointA∗S of the rigidity operator, so we first con-
sider the dual function spaces. By the Riesz representation theorem, we know that
C∗(Strut) is the space of signed Radon measures on the spaceStrut(L) of struts.
Similarly VF∗(L) is the space of what we will callforcesalongL, namely vector-
valued Radon measures onL.
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8 Cantarella, Fu, Kusner, Sullivan and Wrinkle

The adjoint operatorA∗S now associates to any measureµ on struts a forceA∗Sµ
alongL. Geometrically, each pair{x, y} acts along the chordxy , outward at each of
its endpoints. In formulas,∫

L
ξ dA∗Sµ =

∫
Strut

ASξ dµ

=
∫

x∈L

∫
y∈L

〈
ξy,

y − x

|y − x|

〉
dµ(x, y),

where we have liftedµ to a symmetric measureµ(x, y) on ordered pairs. Physically,
we think ofµ as giving the strengths of compressive forces within the struts, andA∗S
as the operation that integrates these strut forces to give a net force along the curveL.

4 First variation of length, and finite total curvature

The objective functional we consider in this paper is simply the lengthLen(L) of a
curve. Since our curves might not be smooth, we need to carefully examine the first
variation of length.

Let L be a rectifiable curve parametrized by arclengths, with unit tangent vectorT .
SupposeLt is a variation ofL under which the motion of each pointx ∈ L is smooth
in time with initial velocity ξx , andξ ∈ VF(L) is a Lipschitz function of arclength.
Then the standard first-variation calculation shows that

δξLen(L) :=
d
dt

Len(Lt)
∣∣∣∣
t=0

=
∫

L

〈
T, ξ′

〉
ds,

whereξ′ = dξ/ds is the arclength derivative, defined almost everywhere alongL.

If L is smooth enough, we can integrate this by parts to get

δξLen(L) = −
∫

L

〈
T ′, ξ

〉
ds−

∑
x∈∂L

〈
± T, ξ

〉
.

(In the boundary term, the sign is chosen to make±T point inward atx.) In fact, not
much smoothness is required: as long asT is a function of bounded variation, we can
interpretT ′ as a measure, and the formula holds in a sense we will now explore.

Following Milnor [25], we recall that the total curvature of a polygon is just the sum
of its (exterior) turning angles, and we define thetotal curvatureof any curve to be
the supremal total curvature over all inscribed polygons. A rectifiable curveL has
finite total curvature if and only if the unit tangent vectorT = L′(s) is a function of
bounded variation. Sometimes the space of all such curves is calledW 1,BV or BV 1 ,
but we will call it FTC. (See [36] for a survey of results onFTC curves.)
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If L ∈ FTC, it follows that at every point ofL there are well-defined left and right
tangent vectorsT± ; these are equal and opposite except at countably many points, the
cornersof L. (See, for instance, [32, Sect. 5.2].)

If L is FTC, its tangentT has a distributional derivativeK with respect to arclength:
a force (anR3–valued Radon measure) alongL that we call thecurvature force.

The curvature force has an atom (a point mass or Dirac delta) at each cornerx ∈ L,
with K{x} = T+(x) + T−(x). On aC2 arc ofL, the curvature force isK = dT =
κN ds and this is absolutely continuous with respect to the arclength or Hausdorff
measureds = H1 .

WhenL has boundary, we choose to include inK an atom at each endpoint ofL, with
mass1 and pointing in the inward tangent direction. This means we need no boundary
terms in the formulaδξLen(L) = −

∫
L

〈
ξ,dK

〉
.

We say that a vectorfieldξ alongL is smoothif ξs is a smooth function of arclength.
(The arclength parametrization of any rectifiable curve is essentially unique, so this
makes sense.) The set of all smooth vectorfields will be denotedVF∞(L).

The first variationδLen(L) can be viewed as a linear functional on smooth vectorfields
ξ ∈ VF∞(L). As such a distribution, it has order zero, by definition, ifδξLen(L) =∫
L

〈
T, ξ′

〉
ds is bounded byC supL |ξ| for some constantC . This happens exactly

when we can perform the integration by parts.

We collect these results as:

Lemma 4.1 Given any rectifiable curve L, the following conditions are equivalent:

(a) L is FTC.

(b) The first variation δLen(L) has distributional order zero.

(c) There exists a curvature force measure K along L such that δξLen(L) =
−

∫
L

〈
ξ, dK

〉
.

An FTC curveL is C1 exactly when it has no corners, that is, whenK has no atoms
(except at the endpoints). It is furthermoreC1,1 when T is Lipschitz, or equiva-
lently whenK is absolutely continuous (with respect to arclength) and has bounded
Radon–Nikodym derivativedK/dH1 = κN . In previous work on ropelength (see,
for example [4, 14]), the thickness measure had an upper bound for curvature built in,
meaning that any curve of positive thickness was automaticallyC1,1 . This is not true
for the link-thickness, so we do not expect the same regularity results to hold here.
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10 Cantarella, Fu, Kusner, Sullivan and Wrinkle

5 Constrained criticality and the Kuhn–Tucker thereom

We will review constrained minimization problems in a finite setting, before general-
izing to the setting we will need for our ropelength problems. Suppose we want to
minimize aC1 function f : Rn → R inside theadmissible regiondefined by a finite
collection ofC1 inequality constraintsgi ≥ 0. A constraintgi is activeat p ∈ Rn if
gi(p) = 0.

Definition We say thatp is aconstrained critical pointfor minimizing f if, for any
tangent vectorv at p with Dvf < 0, we haveDvgi < 0 for some activegi . That is,p
is critical if there is no directionv ∈ Rn that reducesf to first order while preserving
all constraints to first order.

Note that the criticality conditions for minimizingf and−f are quite different; in
particular local maxima forf are rarely critical points for minimizingf , while local
minima for f usually—though not always—are.

Example 5.1 Suppose we minimizef(x, z) := x on the halfplanex ≥ 0 in R2 ,
subject to

g1 := (x2 − 1)3 − z ≥ 0, g2 := z ≥ 0.

The admissible region has an outward-pointing cusp, shown in Figure 1. The tip of
this cusp, atp = (1, 0), is the global minimum off over the admissible region, but it
is not critical: the directional derivatives in the directionv = (−1, 0) areDvf = −1
butDvgi = 0.

To deduce that a local minimum off is critical according to our definition, an addi-
tional regularity hypothesis will be required. However, critical points can be exactly
characterized by a Lagrange multiplier theorem (cf. [17]):

Theorem 5.2 (Modified Kuhn–Tucker Theorem)A point p is constrained-critical
for minimizing f if and only if the gradient ∇f is a positive linear combination of the
gradients ∇gj of the constraints gj active at p.

The geometric intuition behind this theorem is easy to understand: Only the active
constraints matter, and being inequality constraints they can only act positively. If
there were some component of−∇f not canceled by the∇gj , that would give an
admissible direction to move which decreasesf .

Unlike in the classical Kuhn–Tucker theorem, we do not need additional regularity
hypotheses on the pointp, which may surprise those familiar with optimization theory.

Geometry &Topology, Volume X (20XX)
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g2 = 0

g1 = 0

p x

z

Figure 1: In this illustration of Example 5.1, the admissible region for the two constraints
g1 = (x2 − 1)3 − z ≥ 0 andg2 = z ≥ 0 is shaded. The Mangasarian–Fromovitz constraint
qualification fails at the cusp pointp = (1, 0) because∇g1 and∇g2 are equal and opposite
there.

The explanation is that we are interested in critical points, while the classical theorem
deals with minima off . And as we saw above, not every minimum off is critical. But
just as in the classical theory, criticality will be guaranteed if we add the hypothesis that
the Mangasarian–Fromovitz constraint qualification [20] holds for a local minimum.

Definition A point p is constraint-qualified(in the sense of Mangasarian and Fro-
movitz) if there is a directionv such that for all constraintsgj active atp we have
Dvgj > 0.

We note that this condition fails at the pointp = (1, 0) in Example 5.1 above, which
was minimal but not critical.

Proposition 5.3 If p is a local minimum for f when constrained by {gi ≥ 0}, and p
is constraint-qualified, then p is constrained-critical for minimizing f .

We have omitted proofs of the theorem and proposition above because they are stan-
dard and are also special cases of our infinite-dimensional generalizations below.

5.1 A generalized Kuhn–Tucker theorem

Note that in Theorem 5.2, the functionsf andgi might as well be replaced by linear
functions—their differentials atp. We view this as the linear-algebraic core of the
Kuhn–Tucker theorem.

Geometry &Topology, Volume X (20XX)



12 Cantarella, Fu, Kusner, Sullivan and Wrinkle

We will now derive an infinite-dimensional version, where the linear functionalf is
defined on an arbitrary vectorspaceX , and the finite family of constraintsgi is re-
placed by a familyAy , wherey ranges over some compact spaceY .

While our theorem does not mention optimization directly, it will be the engine that
drives all of the optimization theorems of this paper.

As usual, we letC(Y ) be the Banach space of continuous functions onY with the sup
norm‖ · ‖, and letP ⊂ C(Y ) be the closed positive orthant consisting of nonnegative
functions. Then the dual spaceC∗(Y ) consists of all signed Radon measures onY ,
andP ∗ ⊂ C∗(Y ) is the cone of positive measures.

Note that any functionz ∈ C(Y ) can be decomposed into positive and negative parts:
z = z+ − z− with z± ∈ P . Then we have‖z−‖ = Dist(z, P ).

Theorem 5.4 Let X be any vectorspace and Y be a compact topological space. For
any linear functional f on X , and any linear map A : X → C(Y ), the following are
equivalent:

(a) There exists ε > 0 such that ‖(Aξ)−‖ ≥ ε for all ξ ∈ X with f(ξ) = −1.

(b) There exists a positive Radon measure µ ∈ P ∗ such that f(ξ) = µ(Aξ) for all
ξ ∈ X .

This theorem is comparable to the generalized Kuhn–Tucker theorem of Luenberger
[19, p. 249]. His theorem, restated to apply to the linear Gateaux differentials (f
andA) of the original objective and constraint functions onX , says:

Theorem 5.5 (Luenberger) Let X and Z be vectorspaces, with a norm given on Z ,
and let P ⊂ Z be a closed convex cone with nonempty interior. Let f : X → R be
a linear functional and A : X → Z be a linear map. Assume that whenever Aξ ∈ P
we have f(ξ) ≥ 0, and that Aξ lies in the interior of P for some ξ ∈ X . Then there
exists µ ∈ P ∗ such that f(ξ) = µ(Aξ) for all ξ ∈ X .

While our version applies only to the caseZ = C(Y ), our hypotheses (a) onf andA
are somewhat weaker than those imposed by Luenberger—they are necessary as well
as sufficient for (b) the existence ofµ.

To understand our overall strategy of proof, consider the linear map(f,A) : X →
R × C(Y ). As we will see below, (a) implies that the image of(f,A) avoids the
interior of the orthantR− × P .

To gain some intuition, let us specialize to the case whereX = Rm . We can rephrase
(b) to say that some vector in the kernel of the adjoint map(f,A)∗ is in R− × P .

Geometry &Topology, Volume X (20XX)
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O

I⊥

I O

I⊥

I

Figure 2: One version of the Farkas alternative states that, given any closed orthantO in a
inner product space, it must intersect at least one out of any pair of orthogonal complementsI
andI⊥ .

When Y has finite cardinalityn, we put the standard Euclidean inner product on
R × C(Y ) ∼= Rn+1 , and identify this space with its dual. Then the kernel of(f,A)∗

and the image of(f,A) are orthogonal complements inRn+1 . The standard Farkas
alternative (see Figure 2) says that, given any closed orthant inRn+1 , it must intersect
one out of any pair of orthogonal complements. Our argument in the general case,
whenY might be infinite andX infinite dimensional, will be guided by this intuition.

Proof of Theorem 5.4 One direction is easy: suppose we have a positive Radon mea-
sureµ so that for eachξ ∈ X ,

f(ξ) =
∫

Y
Aξ dµ.

For anyξ ∈ X with f(ξ) = −1, write z := Aξ ∈ C(Y ). We have
∫
z dµ = −1,

and sinceµ is a positive measure, we can replace the functionz with its negative part
to conclude that

∫
z− dµ ≥ 1. Furthermoreµ has finite massmass(µ) :=

∫
dµ <∞

by the Riesz theorem. Therefore

Dist(z, P ) = ‖z−‖ ≥ 1/mass(µ) > 0.

This completes the proof that (b) implies (a).

To prove the converse, first giveR × C(Y ) the Euclidean combination of the sup
norms onR andC(Y ):

‖(a, g)‖ =
√
a2 + ‖g‖2.

Now consider the orthantO := [−1,∞) × P . Our hypothesis (a) implies that there
is positive distance betweenO and the imageI := (f,A)(X) of the linear map
(f,A). Take sequences

(
f(ξi), Aξi

)
in I and (ti, zi) in O , whose pairwise distance

approachesDist(I,O). That is, setting

vi :=
(
ti − f(ξi), zi −Aξi

)
Geometry &Topology, Volume X (20XX)



14 Cantarella, Fu, Kusner, Sullivan and Wrinkle

we have‖vi‖ → Dist(I,O).

We first claim that we can assume thatvi ∈ R− × P . Certainly we can assumezi =
(Aξi)+ , since this positive part of the functionAξi realizes‖zi−Aξi‖ = ‖(Aξi)−‖ =
Dist(Aξi, P ). Then zi − Aξi = −(Aξi)− ∈ P . Similarly, Dist(f(ξi), [−1,∞))
is −1 − f(ξi) if this is positive (and is zero otherwise), so we may assumeti =
min(−1, f(ξi)). Thusti ≤ f(ξi), so ti − f(ξi) ≤ 0. This proves the first claim.

We now have a geometric problem: from Figure 2 we see there is a special case where
both the image of(f,A) and its orthogonal complement lie on the boundary ofR− ×
P . If this happens, then the closurēI intersects either the subspaceR × {0} or
{0} × P . The second case does not trouble us, but the first would cause us problems
later; we now show that our assumption (a) rules it out. To do so, we think about the
setup above geometrically: if̄I intersectsR×{0}, then we expect thatti−f(ξi) → 0.

Thus our second claim is that we can assume theti − f(ξi) are uniformly negative.
If not, lim f(ξi) ≤ −1, so without loss of generality, we can rescaleξi down so that
f(ξi) = −1. That means(−1, Aξi) ∈ I . By hypothesis (a) we know

di := Dist
(
(−1, Aξi), O

)
= Dist(Aξi, P ) ≥ ε

for some fixedε > 0. Since we are using the Euclidean combination of the norms
on R andC(Y ), the distance from any rescaling byk of (−1, Aξi) to O is given
by the Euclidean distance from(−k, k‖Aξ−i ‖) to (−1, 0). And we can use plane
geometry to see that rescaling by1− ε2 brings us closer toO :

Dist
(
(1− ε2)(−1, Aξi), O

)
= di

√
1− 2ε2 + ε4(1 + 1/d2

i ) ≤ di

√
1− ε2 + ε4.

We can always assume thatε < 1, so the constant
√

1− ε2 + ε4 is less than1.
Therefore

Dist(I,O) ≤ lim Dist
(
(1− ε2)(−1, Aξi), O

)
< lim Dist

(
(−1, Aξi), O

)
= Dist(I,O).

This contradiction proves the second claim.

We have proved that thevi are in R− × P . Using the Hahn–Banach theorem, for
each i we can find a linear functional(ci, νi) ∈ R × C∗(Y ) that vanishes onI ,
satisfies(ci, νi)(vi) = 1, and has norm∥∥(ci, νi)

∥∥ = 1/Dist
(
vi + I, (0, 0)

)
.

Because theR-components ofvi are uniformly negative, so are theci .
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Criticality for the Gehring Link Problem 15

Using Alaoglu’s theorem, the(ci, νi) have a subsequence converging in the weak∗

topology to a limit functional(c, ν); we havec < 0 and its norm is bounded above by
1/ lim Dist(vi,−I) = 1/Dist(I,O).

Setting µ := ν/|c| ∈ C∗(Y ), we claim this will be the Radon measure in state-
ment (b). By construction,(−1, µ) vanishes onI , meaning that forξ ∈ X , we have

−f(ξ) +
∫

Y
Aξ dµ = 0.

(Notice that we have used the additional geometric information thatI does not ap-
proachR × {0} in an essential way; if it did, thenc would vanish, and we could not
rescaleν by 1/|c| to obtain the equation above.)

It remains only to show thatµ is positive. In an inner product space, this would be
obvious: eachνi would be positive (since it was dual to a positivezi − Aξi ), andν
would be a limit of positive measures. But ourνi were constructed implicitly by the
Hahn–Banach theorem, and so might include negative pieces. We now address this
problem.

We can decompose eachνi into its positive and negative partsνi = ν+
i − ν−i , with

mass(νi) = mass(ν+
i )+mass(ν−i ). In order to showν is positive, we will prove that

lim mass(ν+
i ) = lim mass(νi). By construction, we know that

1 = (ci, νi)(vi) = ci(ti − f(ξi)) +
∫

Y
zi −Aξi dνi.

Sincezi −Aξi ∈ P , we have∫
Y
zi −Aξi dνi ≤

∫
Y
zi −Aξi dν

+
i ≤

∥∥zi −Aξi
∥∥mass(ν+

i ).

Using Cauchy–Schwarz, and the two equations above, we get

1 ≤
∥∥vi

∥∥√
|ci|2 + (mass(ν+

i ))2.

Now ‖vi‖ converges toDist(I,O), so we findlim ‖(ci, ν+
i )‖ ≥ 1/Dist(I,O). But

the limit of ‖(ci, νi)‖ (which cannot be smaller) equals1/Dist(I,O). Therefore,
lim mass(ν+

i ) = lim mass(νi), completing the proof.

To apply Theorem 5.4 to optimization problems, we will letX be the space of vari-
ationsξ of our given configuration andY be the set of active constraints. Then we
let f(ξ) andAξ(y) be the directional derivatives of the objective function and of the
constrainty ∈ Y .

In this context, a configuration satisfying condition (a) of Theorem 5.4 is calledstrongly
critical, and one satisfying (b) isbalanced. The theorem then says that a configuration
is strongly critical if and only if it is balanced.
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16 Cantarella, Fu, Kusner, Sullivan and Wrinkle

Note that our strong criticality is indeed stronger than a simple criticality condition,
which would say that wheneverf(ξ) = −1 we haveDist(Aξ, P ) > 0, or equivalently
that noξ hasf(ξ) < 0 butAξ ∈ P .

Example 5.6 With X = R2 andY = [0, 1], we can setf(x1, x2) = x1 and

A(x1, x2)(y) = 2x1

√
y − y2 + x2y

to give an example that is critical, but not strongly critical (and thus not balanced).

However, whenY is a finite set (with the discrete topology), strong criticality is equiv-
alent to criticality. For suppose wheneverf(ξ) = −1 we haveDist(Aξ, P ) > 0, but
there is no uniform lower boundε > 0 on this distance. For eachy ∈ Y , we know
thatAξ(y) is a linear functional onξ . Since there are only finitely manyy , the graph
of miny∈Y Aξ(y) describes a polyhedron inX ×R. Since the supremum overξ ∈ X
is finite (we know it is nonpositive), it is achieved (at someξ corresponding to a vertex
of this polyhedron). But for anyξ , the value is negative, so this supremum must be
negative.

This allows us to recover the finite-dimensional Kuhn–Tucker theorem: letX be the
tangent space toRn at p, let Y be the finite set of active constraints atp, and letf
andA be the directional derivatives of the objective function and the active constraints.
BecauseY is finite, (a) is equivalent to the definition of constrained criticality above,
and we obtain Theorem 5.2.

6 The balance criterion for the Gehring problem

We now have all the tools we need to develop a balance criterion characterizing critical
configurations for the link-ropelength problem. We start with definitions of criticality,
guided by our version of Kuhn–Tucker.

Definition SupposeL is a rectifiable link withLThi(L) = τ , and consider the
Gehring problem of minimizing length subject to the constraintLThi ≥ τ . We say
thatL is:

• a local minimumfor link-ropelength if for allL′ sufficientlyC0 -close toL with
LThi(L′) ≥ τ we haveLen(L′) ≥ Len(L).

• critical if for all ξ ∈ VF∞(L) with δξLen(L) < 0 we haveδ+ξ LThi(L) < 0.

• strongly critical if there exists someε > 0 such that for allξ ∈ VF∞(L) with
δξLen(L) = −1, we haveδ+ξ LThi(L) ≤ −ε.
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Criticality for the Gehring Link Problem 17

With these definitions, we can now apply our Kuhn–Tucker theorem to the Gehring
problem.

Theorem 6.1 (Balance Criterion) A link L is strongly critical for length when con-
strained by link-thickness if and only if there exists a positive Radon measure µ on
Strut(L) such that, for every smooth vectorfield ξ along L, we have

δξLen(L) =
∫

Strut(L)
ASξ dµ,

where AS = δDist is the rigidity operator.

Proof We will apply Theorem 5.4 withX := VF∞(L) andY := Strut(L), letting
f := δLen(L) be the derivative of length andA := AS be the rigidity operator. We
have

‖(ASξ)−‖ = −min
Strut

δξDist{x, y}

(when this is nonnegative). By Corollary 3.2, the right-hand side is−δ+ξ LThi(L), so
that condition (a) from Theorem 5.4 is exactly strong criticality.

6.1 Smoothness of critical curves

It is unclear,a priori, how much regularity one should expect for ropelength-critical
curves in the Gehring problem. But we can use the balance criterion to deduce imme-
diately that they must have finite total curvature.

Corollary 6.2 If a link L is strongly critical for the Gehring problem, then L is FTC.

Proof The theorem tells us thatL can be balanced:

δξLen(L) =
∫

Strut(L)
ASξ dµ.

But the right-hand side is a distribution of order zero onξ , since∫
Strut(L)

ASξ dµ ≤ mass(µ) sup
L
|ξ|.

Therefore, by Lemma 4.1,L ∈ FTC.

We can now rewrite the conclusion of our balance criterion in terms of the curvature
forceK on L and the adjointA∗S of the rigidity operator.
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Corollary 6.3 A link L is strongly critical for link-ropelength if and only if it has
finite total curvature and there exists a positive Radon measure µ on Strut(L) such
that

A∗S(µ) = −K

as forces along L.

Proof The theorem guarantees that for all smoothξ , we have

δξLen(L) =
∫

Strut(L)
ASξ dµ.

By the corollary,L is FTC, so the left-hand side can be rewritten as−
∫
L

〈
ξ,dK

〉
.

Approximating any continuous vectorfield uniformly by smooth ones, we find that

−
∫

L

〈
ξ,dK

〉
=

∫
Strut(L)

ASξ dµ

for all ξ ∈ VF(L), or in other words,−K = A∗S(µ).

We get an immediate and useful geometric corollary to this balance criterion.

Corollary 6.4 Suppose L is critical for link-ropelength, and E ⊂ L is a subset with
nonzero net (vector) curvature 0 6= K(E) ∈ R3 . Then there must be at least one strut
{e, x} with e ∈ E and x /∈ E , and K(E) is in the convex cone generated by the
directions x− e of all such struts.

Proof First note that struts fromE to E contribute no net force. By the balance
criterion, we haveK(E) = −A∗Sµ(E), and the latter is a (positive) weighted sum of
vectorsx− e.

We note that this corollary is the analogue for link-ropelength of von der Mosel and
Schuricht’s “Characterization of Ideal Knots” [33, Thm. 1].

We next find that critical links areC1 as well asFTC:

Proposition 6.5 If L is strongly critical for link-ropelength, then L is C1 .

Proof We already know thatL has finite total curvature; it isC1 precisely when it
has no corners, that is, when the curvature forceK has no atoms. IfT± are the right
and left tangent vectors toL at x, thenK({x}) = T+ + T− . WhenK({x}) 6= 0,
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T−

K({x})

T+

L
x

Figure 3: This curveL has a corner atx with left and right tangent vectorsT− and T+ ,
whose sum is the curvature forceK({x}) there. IfL is to balance, there must be a strut{x, y}
with y in the open hemisphere (shown in light gray) of vectors with positive inner product
with K({x}). But for anyy outside thenormal cone(shown in dark gray), there are points
nearx on L that are closer toy thanx is. Thus our{x, y} cannot be a local minimum of the
self-distance function. This contradiction proves that a critical curve cannot have a corner.

Corollary 6.4 says there exists at least one strut{x, y} with 〈y − x,K({x})〉 > 0.
That is,

〈y − x, T+〉+ 〈y − x, T−〉 > 0,

so we must have〈y − x, T+〉 > 0 or 〈y − x, T−〉 > 0. (See Figure 3.) In either
case it follows that there exist points onL nearx that are closer toy thanx is, which
contradicts the hypothesis that{x, y} was a strut. This completes the proof.

The example of the tight clasp in Section 9 shows that critical links need not beC1,1—
their curvature need not be bounded—but so far this is the worst behavior we can
display. We conjecture that the curvature measure is always absolutely continuous
with respect to arclength.

6.2 Constraint qualification in the sense of Mangasarian–Fromovitz

Corollary 6.3 will be the basic model for balance criteria for generalized links, and
for links constrained by other thickness functionals [2]. In some cases, including the
link-ropelength for closed links we are treating now, we can improve on this form of
the criterion by replacing strong criticality with criticality. This is our next goal.

In Section 5, we defined a regular or constraint-qualified point for a finite set of con-
straintsg1, . . . , gn : such a point has some variation directionv such thatDvgi > 0 for
all the activegi . By Corollary 3.2, the corresponding idea for a linkL in the Gehring
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problem is the existence of a vectorfieldξ for which δ+ξ LThi(L) > 0. But this is
automatic: dilatingL increasesLThi to first order.

This regularity for our problem allows us to prove that local minima are critical and
that critical points are strongly critical.

Proposition 6.6 A link L is critical for the link-ropelength problem if and only if it
is strongly critical. If L is a local minimum, then L is critical.

Proof SupposeL is a local minimum but not critical. Then for someξ ∈ VF∞(L)
we haveδξLen(L) < 0 but δ+ξ LThi(L) ≥ 0. Then for small enought > 0, the link
L+ tξ has less length thanL. This contradicts minimality unlessδξ LThi(L) = 0 and
thickness has decreased (but not to first order). But in this case, we can instead use
the rescaled deformation(LThi(L+ tξ))−1(L+ tξ), for which LThi ≡ 1. For small
t > 0 these again have less length thanL, contradicting minimality.

Strong criticality always implies criticality. Conversely, suppose a closed linkL is
critical but not strongly critical. Then there exists a sequenceξi ∈ VF(L) with
δξi

Len(L) = −1 and δ+ξi
LThi(L) → 0. Let η be the vectorfield alongL induced

by dilation, scaled so thatδηLen(L) < 1. Then we observe thatδη+ξi
Len(L) < 0 for

all i. The superlinearity of Corollary 3.3 shows that

lim δ+η+ξi
LThi ≥ δ+η LThi > 0.

But then for somei, we must have

δη+ξi
Len(L) < 0, δ+η+ξi

LThi(L) > 0,

contradicting the criticality ofL.

Thus for closed links, a minimizer (or more generally any critical point) for the link-
ropelength problem is strongly critical, and hence by Corollary 6.3 its curvature force
is balanced by some strut forceA∗Sµ. However, in our generalized ropelength prob-
lems, with endpoint constraints and obstacles, constraint qualification will not always
hold. Then we will have to be careful about the distinction between criticality and
strong criticality.

6.3 Existence of minimizers

We now show that each link-homotopy class contains a globally length-minimizing
curve withLThi ≥ 1.
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Proposition 6.7 In a given link-homotopy class [[L]], among all curves with link-
thickness at least 1, there is some L0 of minimum length.

Proof We may rescale the initialL so thatLThi(L) ≥ 2. Thus if theC0 distance
betweenL and a linkL′ is less than1/2 then the straight-line homotopy between them
is a link homotopy, andLThi(L′) ≥ 1. TakingL′ to be a standard smoothing ofL
(e.g., its convolution with a smooth bump function), it follows that[[L]] contains a
C∞ link.

In particular, the set of rectifiable links in[[L]] with link-thickness at least1 is non-
empty. LetL1, L2, . . . be a sequence of such links with lengths tending to the infimal
length` in this class. By the Arzela-Ascoli theorem, taking a subsequence we may as-
sume that theLi converge inC0 to a limit L0 . SinceLThi is continuous with respect
to theC0 topology, and length is lower semicontinuous, it follows thatLThi(L0) ≥ 1
andLen(L0) ≤ `. By the remarks of the last paragraph,L0 is link homotopic toLi

for large i, and thereforeL0 ∈ [[L]]. Thus Len(L0) = ` and L0 is the required
minimizer.

SinceC∞ links are tame, the argument above also shows the following:

Proposition 6.8 There are no wild link-homotopy types with finitely many compo-
nents.

(This was originally observed by Milnor [24].) Thus in the work to come, we need
only to consider tame links.

7 Examples of critical links

7.1 The known length-minimizing links

In [4], we showed that if one component of a link is linked tok others then its length
is at least a certain constantPk . Although our theorem was written for the original
ropelength problem, the proof is valid for the Gehring problem as well. Whenever a
link can be realized with each component having lengthPk , that configuration is thus a
length-minimizer not only when constrained by thickness but also when constrained by
link-thickness. (These are still the only examples known to be ropelength-minimizers.)

To any linkL we can associate a graph: the vertices are the components ofL, and the
edges record which pairs are nontrivially linked. For any treeT with n edges, there is
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Figure 4: This link of six components is a global minimizer for the link-ropelength problem.
Each component is a convex plane curve that minimizes its length given the number of other
components it links.

a unique linkH(T ) that is a connect sum ofn Hopf links and whose associated graph
is T .

For many treesT with vertices of sufficiently low degree, we can realize[[H(T )]]
explicitly with each component having exactly its minimum possible lengthPk . Even
some slightly more complicated links, like the example in Figure 4, whose graph is not
a tree, can be realized in this way. The distance between any two linked components
is exactly 1. Each component in one of these minimizers is a convex plane curve
built from circular arcs of radius1 and straight segments. It is an outer parallel (at
distance1/2) to a shortest curve surroundingn disjoint unit-diameter disks in the
plane. (See Figure 5.)

Consider then-star Tn , the tree with a central vertex incident to alln edges. For
n ≤ 5, the construction above produces a link-ropelength-critical configuration of
H(Tn) that is known to be minimizing. We will examine the casen = 2 in detail, in
light of our balance criterion, and then indicate how to produce link-ropelength-critical
configurations for alln.

Example 7.1 The link H(T2) is the simple chain of three components, shown in
Figure 6. In the ropelength minimizer, the two end components are circlesC1 andC2 ,
while the middle component is a stadium curveS . The centers of the circular arcs
in S are pointsci ∈ Ci , while the center of eachCi is a pointsi ∈ S . The struts
are exactly where different components are at distance1. There is a strut from each
point along each circular arc to the center of that arc (fromCi to si and fromS to ci ).
There is also one further strut{c1, c2}.

Since we know that this configuration is length-minimizing when constrained by link-
thickness, these struts, by Corollary 6.3 and Proposition 6.6, must support a balancing
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Figure 5: Here we see perimeter-minimizing enclosures ofn = 1, 2, 3 and4 unit-diameter
disks in the plane. The components in the known minimizing links are outer parallels to such
curves at distance1/2. Whenn = 4, the minimizer does not have a unique shape; instead
there is a one-parameter family of minimizers. In the last shape on the lower left, there is one
additional isolated strut, but it carries no force in the balancing measure.

measureµ. Conversely, exhibiting such a measure will re-prove that this configuration
is critical for the link-ropelength problem, though to re-prove it is a local minimum
would require some second-order theory. We now provide such a measure, which will
be a useful comparison of the results of this paper against the results of [4].

Except forci , each pointx along the componentCi is part of a unique strut{x, si}.
The measure assigned to struts in this “wheel” must exactly balance the curvature force
dK = N ds(x) alongCi . Because the wheel forms a complete circle, at the center
points si , the incoming forces from these struts cancel one another, leaving no net
force.

The situation on the stadium curve is slightly more complex. The struts from the
semicircles ofS to the pointsci again balancedK = N ds(x), now for x along the
semicircles. Unlike the previous situation, however, these measures have a resultant
inward force of magnitude2 at ci , directed parallel to the straight segments in the sta-
dium curve. To balance these forces, the measureµ must have an atom of magnitude2
at the one remaining strut{c1, c2}.

The measureµ we have described does balance the curvature force everywhere along
the link, and thus demonstrates that the link is critical for link-ropelength.

It is worth emphasizing the fact that the inner strut{c1, c2} bears an atom ofµ. This
stresses the point that in our Kuhn–Tucker theorem and the resulting balance criterion
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s1

C1 C2

s2S

c1 c2

S

C1 C2

Figure 6: This simple chain is known to be a minimizer for the link-ropelength problem, so
by the balance criterion, its curvature force must be balanced by some measure on the struts.
At the top, we see how the curvature forces along the circular componentsCi are balanced by
the struts coming into the centerssi . They produce no net force on either centersi . At the
bottom, we see how the curvature forces along the semicircles ofS are balanced by struts to
their centersci . The resulting net inward force on theci is balanced by an atomic measure on
the one remaining strut{c1, c2}.
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L0

P

Figure 7: This configuration ofH(T6) is critical for the link-ropelength problem. It is also pre-
sumably the minimizer, even though it does not minimize the length of the long componentL0

alone. That component is the outer parallel at distance1 to a convex planar polygonP . Each
other componentLi is a unit circle passing through a vertex ofP and lying in a perpendicular
plane. We have drawn the unit-diameter disks around these vertices, where the thick tubes
around theLi intersect the plane insideL0 .

we are required to view the Lagrange multiplierµ as a Radon measure in the dual
spaceC∗(Strut(L)), rather than as a density function on struts.

Although ropelength-minimizing, Example 7.1 is not rigid, in the sense that the com-
ponentsCi can be pivoted around the pointsci to be centered at any pointssi on the
semicircles ofS .

A stronger form of nonuniqueness is exhibited by the minimizing configurations [4] of
the five-component linkH(T4), with one component linked to all four others. Here the
central component does not even have a uniquely determined shape. Instead there is
a one-parameter family of minimizing shapes, corresponding to the deformation seen
in Figure 5 forn = 4. Again, each of the minimizers can be balanced. (As we have
proven, the existence of the balancing measureµ is equivalent to strong criticality for
the ropelength problem, but it does not imply that the critical point is isolated.)

For n > 5, we expect that similar configurations ofH(Tn), like the one shown in
Figure 7 forn = 6, are again minimizing. Our balance criterion lets us show they are
at least critical:
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Proposition 7.2 Suppose P is a convex planar n-gon with unit-length sides and turn-
ing angles in [0, 2π/3]. Let L0 be the outer parallel at distance 1 from P , and let
L1, . . . , Ln be unit circles, perpendicular to the plane of P , passing through the ver-
tices of P , and centered at points on L0 . Then the link L = L0 ∪ L1 ∪ · · · ∪ Ln is a
configuration of H(Tn) with link-thickness 1 that is critical for link-ropelength.

Proof As in the simple chain, each circleLi focuses a wheel of struts to its center
point onL0 , and a measure assigning forceds to these struts balances the curvature
force on each circle while exerting no net force onL0 .

Let ci be the vertex ofP onLi , and let2αi be the turning angle ofP there. The con-
dition αi ≤ π/3 exactly suffices to know that no two vertices (and thus no twoLi ) are
at distance less than1 from each other, confirming thatLThi(L) = 1. The curveL0

includes an arc of the unit circle aroundci ; from this arc of length2αi a fan of struts
converge toci . To balance the curvature force onL0 , these struts again have measure
equal tods, giving a net inward force of2 sinαi on ci . The remaining, isolated struts
of L connect successiveci along the edges ofP . Unit atoms of compressive force
on these isolated struts produce exactly the outward forces2 sinαi at ci needed to
balance the inward forces fromL0 .

By Corollary 6.3, the existence of this balancing measure on the struts proves thatL
is critical.

For n ≤ 5, we know these configurations forH(Tn) are ropelength minimizers. For
n > 5, the componentL0 , having lengthn + 2π , is longer than it needs to be: at the
expense of lengthening some other components, it could be shortened to lengthPn ,
which, asymptotically, is much smaller, beingO(

√
n). However, calculations we have

done suggest that the tradeoff is not worthwhile and so the critical configuration de-
scribed above is probably the global minimum for ropelength.

The examples given in Proposition 7.2—critical configurations and presumed min-
imizers for H(Tn)—are quite interesting. The shape ofL0 is free to move in an
(n−3)–parameter family; each other component is free to pivot (about its vertex ofP
and along one of the arcs ofL0 ), giving an additionaln parameters for the shape of
the whole linkL. We also note that these examples are tight links that are not packed
tightly: Consider the thick (unit diameter) tube around one of these configurations.
As n increases, it occupies an ever-smaller fraction of the volume of its convex hull.
This should be compared with experiments of Millett and Rawdon [23] on this volume
fraction.

Although we have stated Proposition 7.2 above only for starsTn , the same balancing
works for the linksH(T ) based on other treesT . Each component linked ton others
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should have the shape ofL0 above. We note, however, that critical links built in this
way are not always minimizers.

Example 7.3 Consider the treeTn,m with n+m vertices, including one of valencen
connected to another of valencem. The linkH(Tn,m) then has two long components,
L0 andL1 , linked to each other and ton−1 andm−1 short components, respectively.
For large enoughn andm, we can construct two thick versions ofH(Tn,m), called
theA andB configurations, as follows.

For theA configuration, we follow Proposition 7.2 to buildL0 andL1 as outer paral-
lels to convex planarn- andm-gonsP0 andP1 in perpendicular planes. Ifn = 2k ,
then we letP0 take the shape of a(k − 1) × 1 rectangle capped with equilateral tri-
angles on both short sides; ifn = 2k + 1, we omit one triangle. (The precise shape
is unimportant, but we need at least one sharp angle on each polygon.) Further, we
choose the tip of such a triangle as the vertex ofP0 corresponding toL1 (and as the
vertex ofP1 corresponding toL0 ). Then it is straightforward to check that the other
components stay sufficiently far from each other for thisA configuration to indeed
haveLThi = 1; its total length(2π + 1)(n+m).

However, whenn andm are large enough, we can save two units of length as follows.
Construct a tight configuration ofH(Tn−1) as in Proposition 7.2, using a regular poly-
gon. (Again, the precise shape is not important, but here we need a large hole in the
middle of the polygon.) This configuration, and indeed the unit-diameter thick tubes
around its components, is contained in a round solid torusUn of minor radius 3/2
and major radius1 + 1/(2 sin π/n−1). Then construct the analogous configuration
of H(Tm−1) contained in a solid torusUm . Finally, place these two pieces in space
so thatUn andUm form a (loose) Hopf link. (This is possible as long as the ma-
jor radii are at least3, corresponding ton,m ≥ 14.) The resulting link is theB
configuration ofH(Tn,m). Because the large Hopf link is loose, there are no struts
from H(Tn−1) to H(Tm−1). Since each of these pieces is balanced, so is theB
configuration ofH(Tn,m).

If, as we believe, theseB configurations are the ropelength minimizers, then they are
the first ones known in which certain pairs of linked components are not in contact.
(We note that the same must be true for then-component Hopf links for largen,
since their minimum ropelength [3] isO(n3/2). There, however, no explicit candidate
minimizer is known. And ourB configuration here has the additional property that
certain linked pairs are not even connected by chains of touching components.)

In all of the examplesH(T ) discussed above, each component is a convex plane curve
built from straight segments and arcs of unit circles. The proven minimizers are min-
imizers in their isotopy class for the original ropelength problem [4], as well as mini-
mizers in their link-homotopy class for link-ropelength. In fact, in [2] we will consider
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a family of thicknesses with varying stiffness. Each of these thicknesses is charac-
terized by a stiffnessλ, meaning a lower bound on the diameter of curvature for a
unit-thickness curve. OurH(T ) are ropelength-minimizers for the whole family, as
long as the stiffnessλ does not exceed2, when circular arcs of larger diameter would
be needed. We will also develop an analog of our balance criterion for these other
ropelength problems, and will see that all theH(T ) discussed above (including those
that are not minimizers) are critical for all formulations of ropelength whereλ ≤ 2.

7.2 Local minima for ropelength

We do not attempt in the paper to discuss second-order behavior of ropelength near a
critical point—in particular we have no way yet to distinguish between local minima
and saddle points for this problem. Of course, the known minimizers must be local
minima, and it is also easy to give critical configurations which are not local minima,
as in Example 7.4 below.

Many researchers have used numerical simulations of the ordinary ropelength problem
to look for nontrivial local minima for knots, in particular for the unknot. Such config-
urations have been termedGordian unknotssince they can be untangled topologically
but not physically. Pieranskyet al. [29] have numerically simulated a reasonable can-
didate for a Gordian unknot, but we are very far from being able to prove its existence.

In Example 7.3 we gave two distinct critical configurations forH(Tn,m), and we
expect that this will lead to the provable existence of two distinct local minima. In
particular, our investigations lead us to predict that one cannot move from theA con-
figuration of length(2π+1)(n+m) to the suspected global minimumB without first
increasing ropelength. This shows there must be a second local minimum; we expect,
however, that this is notA but instead a third configuration of intermediate length.

This connects back to Alexander Nabutovsky’s original work on ropelength in higher
dimensions and codimensions [27]. He showed using recursive function theory that,
in those higher dimensions, a ropelength constraint often introduces new components
into the moduli space of unknotted hyperspheres; in particular there are infinitely many
local minima for ropelength. While for two-spheres inR3 or for circles inR2 there
are presumably no such minima, we do expect there must be infinitely many Gordian
unknots inR3 . Our two critical configurations ofH(Tn,m) are perhaps a first step
toward proving this.
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7.3 Elastic tension energies

All of the links presented above are critical or minimizing for the sum of the lengths
of their components. This is a beautiful functional, but it is physically somewhat un-
realistic: elastic ropes should minimize a quadratic functional of the form∑

i

ai

(
Len(Li)− `i)2, (7.1)

whereai > 0 is the elasticity and̀ i the rest length of theith component. Critical-
ity for this functional is equivalent to that for

∑
ti Len(Li) where the tensionti is

ti = 2ai(Len(Li) − `i). Assuming these tensions are nonnegative (that is, that no
component’s length is less than its rest length) our balance criterion extends imme-
diately to handle this case: the strut forceA∗S(µ) must balance the tension-weighted
curvature force

∑
tiKi .

In the known minimizing links, such as the simple chain, each component separately
achieves its minimal possible length. Thus these examples also minimize all elastic
energies with nonnegative tensionsti ≥ 0.

This behavior, however, seems rather exceptional. The examples in Proposition 7.2 do
not minimize all such functionals. In particular, if the tension in the long component
is large enough, it will shrink to lengthO

(√
k
)

while some of the shorter components
gain length.

Also in the Borromean rings, if the three components have different tensions, the con-
figuration we describe below (Section 10) would no longer be critical. Similarly, clasps
(Section 9) in which the two ropes have different tensions again have new critical con-
figurations. In [37] we describe in detail the shapes of these asymmetric clasp curves,
as well as their appearance in more complicated clasp-like links even when tensions
are equal. (Note that link-thickness was called Gehring thickness there, as in early
drafts of this paper.)

7.4 Nonembedded critical links

To illustrate the differences between the Gehring problem and the original ropelength
problem, we now give some examples of a different flavor: critical configurations that
are nonembedded and thus have infinite ropelength in the original sense.

Any knot is of course link-homotopic to the unknot. The link-ropelength minimizer
degenerates to a point (of length zero). The same happens for any component of an
arbitrary link that is link-homotopically split from the rest of the link.

Milnor showed that, up to link homotopy, links of two components are classified by
their linking number [24].
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m1 m2

n2 n1

Figure 8: In this configuration of two curves from Example 7.5, each circle is coveredmi

or ni times, as labeled. Ifm = m1 + m2 andn = n1 + n2 , then the curve has total length
2π(m + n), and linking numbermn − m1n1 . It is constrained-critical, though often not
minimal, for the Gehring problem in the link-homotopy class defined by its linking number.

Example 7.4 When the linking number is zero, the components split, and the link-
ropelength minimizer degenerates to have length zero. We can, however, also describe
another critical configuration for this unlink: one component degenerates to a pointp
while the second is a unit circle centered atp. This is clearly an unstable critical point:
obvious deformations can decrease the ropelength to second order.

The case of linking number1 is close to Gehring’s original problem: the minimizer
is the same Hopf link built from round circles. (This case fits in the classH(Tn)
considered above.) For larger linking number, we can use Corollary 6.3 to exhibit
many critical configurations as follows:

Example 7.5 For linking numbermn there is a critical configurationLm,n consist-
ing of the minimizing Hopf link with one component coveredm times and the other
coveredn times. Its total length is thus2π(m + n). There are other critical config-
urations, sometimes shorter. For example, each component can be a figure-eight built
from two tangent circles. Figure 8 shows a configuration like this with total length
2π(m + n) and linking numbermn − m1n1 . The best configurations we know for
linking number17, for instance, use(m,n) = (6, 3) or (4, 5). Assuming configura-
tions like these are the minimizers for two-component links, they give examples where
the set of minimizers is disconnected (since we can interchange the two components,
or reorder the way one component covers its figure-eight).

None of these configurations is embedded, so they are not critical points for the origi-
nal ropelength problem: as expected, the extra freedom in the Gehring problem some-
times allows for shorter solutions. As a further example, consider the(2, 4)–torus
link, with linking number2. We have computed the presumed ropelength-minimizer
numerically, as in [35]. The results are shown in Figure 9; this solution is longer than
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Figure 9: This picture shows a numerically computed minimizer for theoriginal ropelength
problem on the(2, 4)–torus link. Because it has a strut between two points on the same com-
ponent (shown center, where the darker tube contacts itself) that carries nonzero force, it is not
balanced for the Gehring problem considered here. It is longer thanL2,1 , the Hopf link with
one component doubly covered, which we conjecture is the minimizer for link-ropelength in
this link-homotopy type. Notice that both of these configurations break the symmetry between
the components of the link, so we expect to also find a (longer) critical configuration where the
two components are congruent.

the covered Hopf linkL2,1 (the presumed link-ropelength-minimizer) and is not even
critical for the Gehring problem.

For links of more than two components, linking numbers do not suffice to distinguish
link-homotopy types; we must also consider Milnor’sµ-invariants [24, 16]. For in-
stance, the Borromean rings, with no nonzero linking numbers, belong to a nontrivial
link-homotopy class because they haveµ-invariant equal to1.

Numerical experiments performed with Brakke’s Evolver (compare [35]) suggest that
the minimizing Borromean rings for the link-ropelength problem should consist of
three congruent curves in perpendicular planes. In [4], we described such a config-
uration built from circular arcs of radius1. Unfortunately, Corollary 6.3 shows this
configuration is not even critical for length when constrained by link-thickness. In
Section 10, the culmination of our paper, we will explicitly describe a very similar
configuration of the Borromean rings, which we prove is critical and believe is the
minimizer.

However, in order to solve for these Borromean rings, we must first consider a simpler
interaction between two ropes: the clasp that occurs when one rope is pulled over
another. Describing this will require a notion of generalized links.
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8 Generalized link classes

Although some of our definitions have applied to arbitrary curves, so far we have been
treating only ordinary (closed) links. We now want to consider generalized problems
involving curves with endpoints. To get meaningful link classes in this setting, we
must include constraints for the endpoints and obstacles for the link.

Definition A generalized linkL is a curveL (with disjoint componentsL1, . . . , LN )
together with obstacles and endpoint constraints. In particular, each endpointx ∈ ∂L
is constrained to stay on some affine subspaceMx ⊂ R3 , which can have dimension0,
1 or 2. Furthermore, there is a finite collection ofobstaclesfor each componentLi of
the link. Each obstacle

{p ∈ R3 : gij(p) < 0}

is given by aC1 function gij with 0 as a regular value. By calling them obstacles, we
mean thatLi is constrained to stay in the region whereminj gij ≥ 0.

While we could allow even more general endpoint and obstacle constraints, this ver-
sion fits nicely with our overall setup, and allows for all the specific examples we have
in mind.

Definition SupposeL =
⋃

i Li is a generalized link, with obstaclesgij and endpoint
constraintsMx . Then itslink-homotopy class[[L]] is the set of all linksL′ that are
link-homotopic toL through links where each component avoids its obstacles and
maintains its endpoint constraints. (As before, in a link homotopy, each component
of L can intersect itself but not the others.)

This definition is comparable to our previous definition for closed links (page 5); as
in the discussion at the end of Section 6, we may restrict our attention to tame link
classes.

Given a generalized linkL, only variations preserving the endpoint constraints should
be allowed. A vectorfieldξ ∈ VF(L) is said to becompatiblewith the constraints if
it is tangent toMx at each endpointx ∈ ∂L. We write VFc(L) for the space of all
compatible vectorfields.

Given a set of obstaclesgij < 0 and a linkL =
⋃
Li , we write

O(L) := min
i,j

min
x∈Li

gij(x).
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ThenL avoids the obstaclesgij if and only if O(L) ≥ 0. We define the wall struts
of L by

Wallij(L) := Li ∩ {gij = 0}, Wall(L) :=
⊔
i,j

Wallij(L).

This incorporates those parts ofL on the boundary of the obstacle, but is not strictly
speaking a subset ofL since one pointx ∈ Li might be in several of theWallij .
WhenO(L) = 0, by Clarke’s Theorem 3.1 we have

δ+ξ O(L) = min
i,j

min
x∈Wallij(L)

〈
ξx,∇gij

〉
.

Again, we collect the various derivatives appearing on the right-hand side into a rigid-
ity operatorAW : VFc(L) → C(Wall(L)) on wall struts, given by

AWξ(x) := 〈ξx,∇gij〉

whenx ∈ Wallij . Its adjointA∗W is then∫
L
ξ dA∗W(µ) =

∫
Wall(L)

AWξ dµ =
∑
i,j

∫
x∈Wallij(L)

〈
ξx,∇gij

〉
dµ(x). (8.1)

We also have corresponding definitions for locally minimal, strongly critical, and crit-
ical configurations ofL:

Definition We say that a generalized linkL is a local minimumfor length when con-
strained byLThi if we haveLen(L′) ≥ Len(L), for all sufficientlyC0 -close linksL′

with the same obstacle and endpoint constraints and withLThi(L′) ≥ LThi(L).
We sayL is strongly critical (respectively, iscritical) for minimizing length when
constrained byLThi if there is ε > 0 such that for all compatible smoothξ with
δξ Len = −1, the quantity

min
(
δ+ξ LThi(L), δ+ξ O(L)

)
is at most−ε (respectively, is negative).

As in our discussion of Kuhn–Tucker at the beginning of Section 5, these notions
will be equivalent only under a regularity assumption corresponding to the constraint
qualification of Mangasarian and Fromovitz [20]:

Definition A generalized linkL is LThi-regular if there is athickening field, mean-
ing a smooth compatibleη for which δ+η LThi(L) > 0 andδ+η O(L) > 0.
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Note that, while we requireη to strictly increaseLThi and to move away from the
obstacles, both to first order, there is no corresponding requirement for the endpoint
constraints, since they are linearequalityconstraints instead of nonlinear inequality
constraints.

We can now prove a generalization of Proposition 6.6:

Proposition 8.1 If a generalized link L is a LThi-regular local minimum when con-
strained by LThi, then L is critical. Also, if L is LThi-regular and critical when
constrained by LThi, then it is strongly critical.

Proof The regularity ofL means there exists a thickening fieldη ∈ VFc(L). We
may assumeδηLen(L) ≥ 0 for otherwiseL is neither minimal nor critical; we then
scaleη so thatδηLen(L) < 1.

Suppose thatL is a local minimum but not critical. Then for some compatible vector-
field ξ we haveδξLen(L) < 0 while δ+ξ LThi(L) ≥ 0 andδ+ξ O(L) ≥ 0. For small
t > 0, consider the linksLt = L+ t(ξ + εη). Then

dLen(Lt)
dt+

∣∣∣∣
t=0

= δξLen(L) + εδηLen(L).

We choose0 < ε < −δξLen(L)/δηLen(L), so this derivative is negative at time0.
Thus for smallt, the Lt have length less thanLen(L), contradicting minimality if
they obey our constraints. But

dLThi(Lt)
dt+

∣∣∣∣
t=0

> 0,
dO(Lt)

dt+

∣∣∣∣
t=0

> 0,

and the endpoint constraints are linear, so the linksLt meet all our constraints for
small t > 0.

Now suppose thatL is critical without being strongly critical. Then there exists a
sequence of compatible vectorfieldsξi ∈ VFc(L) with δξi

Len(L) = −1 but with
eitherδ+ξi

LThi(L) → 0 or δ+ξi
O(L) → 0. Then we observe thatδη+ξi

Len(L) < 0 for
all i, while by Corollary 3.3 either

lim δ+η+ξi
LThi ≥ δ+η LThi > 0

or
lim δ+η+ξi

O ≥ δ+η O > 0.

Taking i large enough that one of these quantities is positive, we get a contradiction to
the criticality ofL.
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So far, this development has paralleled that of Section 6; we now diverge from our
previous course. Earlier, we saw that every closed link isLThi-regular: rescaling
always provides a thickening field. In the generalized setting, this is no longer the
case. Thus minimality no longer implies criticality.

Example 8.2 To give a specific example, rotate the constraints of Example 5.1 around
the z -axis to give obstaclesg1 = (x2 + y2 − 1)3 − z < 0 and g2 = z < 0 for an
unknotL. The unit circle in thexy -plane is on the boundary of both obstacles, and
is clearly the minimum-length configuration in its homotopy class. However, it is not
critical: shrinking it toward the origin will reduce its length to first order; the constraint
g1 ≥ 0 is now violated, but not to first order.

Further, criticality and strong criticality may be different: if we allowed infinitely many
obstacles, we could construct critical, but not strongly critical links by following the
lead of Example 5.6. (If we donot allow infinitely many obstacles, then an open
question remains: is strong criticality a stronger assertion than criticality?)

Example 8.3 To justify our emphasis on strong criticality (rather than restricting our
attention to regular, critical links) we also note that it is easy to construct strongly
critical links that are not regular; simply takeL to be the unit circle in thexy -plane,
with constraintsg1(x, y, z) = x2+y2−1 (so the excluded region is the infinite cylinder
around thez -axis) andg2 = −g1 . This link is trapped on the cylinderg1 = 0 = g2 ,
so it has no thickening field. On the other hand, it is clearly strongly critical.

Now we are ready to extend our balance theorem to the generalized setting. We will
accommodate the endpoint constraints by restricting our attention to compatible vec-
torfields. Our other constraints are thenDist ≥ 1 on L(2) andgij ≥ 0 alongLi . The
setY of active constraints then consists of the struts together with the wall struts.

Theorem 8.4 A generalized link L is strongly critical for link-ropelength if and only
if there is a positive Radon measure µ on Strut(L) tWall(L), such that

−K = (AS ⊕AW)∗µ

as linear functionals on VFc(L). This means that −K and (AS ⊕ AW)∗µ agree as
forces along L except at endpoints x ∈ ∂L, where they may differ by an atomic force
in a direction normal to Mx .

Proof This is again a straightforward application of our Theorem 5.4, using

X = VFc(L), Y = Strut(L) tWall(L), f = δ Len, A = AS ⊕AW.
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Remark 8.5 Remember thatK has been defined to include an inward-pointing atom
at each endpointx ∈ ∂L. We can ignore these, however, when applying this theorem,
as long as the linkL meets each endpoint constraintMx normally. We know of no
examples of critical links where this is not the case.

The regularity described in Corollary 6.2 and Proposition 6.5 carries over to general-
ized links:

Proposition 8.6 If the generalized link L is strongly critical for link-ropelength,
then L is FTC and C1 .

Proof The proof follows that of Corollary 6.2 and Proposition 6.5. From equa-
tion (8.1), we find thatA∗Wµ has distributional order zero just likeA∗Sµ, soL ∈ FTC
follows immediately from the balance criterion of Theorem 8.4.

Now supposeL is notC1 but instead has some cornerx with K{x} 6= 0. By The-
orem 8.4, this curvature force is balanced by struts and wall struts. So there is at
least one strut or wall strut acting onx in a direction with negative inner product with
K{x}. In the case of a strut{x, y}, we refer again to Figure 3: some points nearx
alongL would be nearer to the endpointy . But similarly, in the case of a wall strut,
we have〈K,∇gij〉 < 0, but this means that some points nearx alongL violate this
obstacle constraint. In either case, we get the desired contradiction.

To understand the interplay between struts and wall struts, we now offer a simple
example of a generalized linkL with nonempty boundary which is balanced, needing
nonzero force on the wall struts.

Example 8.7 Cut the simple chain of Figure 6 by parallel planes throughs1 ands2
with normal vectorc1 − c2 , and letL be the part of the chain lying between the two
planes. This generalized link includes two semicircles with endpoints normal to the
planes, and also the inner stadium curve, which is tangent to the planes ats1 ands2 .
We let the planes bound an obstacle, forcingL to stay between the planes, and we use
them also as endpoint constraints. ThenL is balanced: though the semicircles now
exert a net outward force ons1 ands2 , this is balanced by wall struts at these points.
And the internal balance for the stadium curve remains the same.

9 The tight clasp

The tight configurations of Section 7 were the simplest closed links we could imagine:
the Hopf link, and various connect sums of Hopf links in which each component is still
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Figure 10: The simple clasp has two components, one attached at both ends to the ceiling and
the other to the floor, linked with one another as shown. The configuration shown, with each
component consisting of a semicircle joined to two straight segments, is neither critical nor
minimal.

a convex plane curve. But there is an even simpler interaction between two ropes, the
claspformed when one rope is pulled taut over another, as at the junctions of a woven
net, or when a bucket is lifted from a well by passing a rope through its rope handle.
We can model a single clasp as a generalized link with endpoint constraints.

To define thesimple clasp, fix two parallel planesP andP̃ at least2 units apart. Then
take two unknotted arcsγ and γ̃ that lie between the planes, with the endpoints ofγ
constrained to lie inP and those of̃γ in P̃ . Let the halfspace bounded byP that
does not includẽP be an obstacle for the componentγ̃ , and vice versa, and select the
isotopy class of such links shown in Figure 10. This is the class where closing each
arc in the plane of its endpoints would produce a Hopf link.

It is natural to assume that the minimizing configuration for this problem would con-
sist of semicircular arcs passing through each others’ centers, together with straight
segments joining the semicircles to the constraint planes, much like the Hopf chain of
Example 7.1. But thisnaive claspis not balanced: each semicircle focuses its cur-
vature force on the tip of the other, and there is no way to balance these forces (as
the isolated strut carrying an atom of compressive force did in the Hopf chain). The
naive clasp is thus not minimizing, though we will see it is very close: the critical
configuration we construct here is only half a percent shorter.
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Example 9.1 Suppose the horizontal planesP and P̃ in the definition of the simple
clasp are taken instead to be only one unit apart. Consider the configuration where the
curvesγ and γ̃ are semicircles in perpendicular vertical planes. The curvature of each
semicircle can be balanced by uniform strut tension, transmitting a net vertical force
to the tip of the other semicircle. That vertical force can be balanced by a wall strut at
each tip. Therefore, this configuration is critical for link-ropelength.

In the case of interest, whereP and P̃ are far apart and there are no wall struts to
balance the tips, we must look harder for a solution. We will now construct critical
configurations, constrained by the link-thicknessLThi, for the simple clasp problem
and for a family of related problems where the ends of the ropes are pulled outward as
in Figure 11. These solutions minimize length under natural symmetry assumptions,
and we believe they are the global minimizers even without imposed symmetry. Be-
low in Section 10, we will construct a critical configuration of the Borromean rings
that contains portions of these clasp curves. Thus, a thorough understanding of these
generalized links will aid us in understanding that more complicated closed link.

9.1 Symmetry conditions and a convenient parametrization

We describe configurations of the clasp where the two components are congruent plane
curves, lying in planes perpendicular to each other and to the constraint planes. To fix
these symmetries in coordinates, let the constraints be the planesz = ±C , and let
the componentγ lie in the xz -plane while γ̃ lies in the yz -plane. The clasp has
mirror symmetry across each of these planes (preserving each component). It also has
a symmetry interchanging the two components, which we denotep 7→ p̃, given by
fourfold rotation about thez -axis together with reflection across thexy -plane. These
symmetries generate a point group of order eight inO(3) whose Conway–Thurston
orbifold notation (see [9, 10]) is2∗2. Algebraically it is isomorphic toD4 .

The argument we present below to derive the critical clasps for the Gehring problem
can easily be extended to show these are the unique critical configurations among
curves with this2∗2 symmetry. We omit the details, however, because we know of no
way to show that the overall minimizers must have this symmetry. If one could prove
this, it would then follow that our clasps are the minimizers.

Our symmetry assumptions mean that the clasp is described by the shape of half of the
componentγ , from its tip along thez -axis into thex > 0 half-plane and up to the
planeP . This consists of a curved arc near the tip joined to a straight segment nearP .
Since the curved arc is strictly convex, we can parametrize it by the angleϕ made by
its tangent vector above the horizontal, as in Figure 12. In fact, we will use the sine of
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this angle,u = sinϕ, as our parameter. Thus in the simple clasp, foru ∈ [0, 1] we
write

γ(±u) = (±x(u), 0, z(u)),
γ̃(±u) = (0,±x(u),−z(u)).

Elementary calculations show the following:

Lemma 9.2 For a convex curve γ in the xz -plane, parameterized by the sine u of its
direction ϕ ∈ [−π

2 ,
π
2 ], the arclength s satisfies

ds = secϕdx = cscϕ dz =
du

κ
√

1− u2
,

where the curvature κ is given by

κ =
dϕ
ds

=
du
dx
.

For the simple clasp described above, each component turns a total of180◦ , mean-
ing that u ranges from−1, through0 at the tip, to1. We can also consider more
general clasp problems where the four ends of rope are not vertical (being attached
to horizontal planes) but instead are pulled out at some angle (being attached to tilted
planes).

Given 0 ≤ τ ≤ 1, we define theτ -clasp to be a problem like the simple clasp where
the arcγ starts atu = −τ and then turns through angle2 arcsin τ to reachu = τ . Our
critical τ -clasps have the same2∗2 symmetry as the simple clasp. To put theτ -clasp
into our framework of generalized links, we constrain the four endpoints to four planes,
each making anglearcsin τ with the vertical, as in Figure 11. The complement of the
wedge formed by the planes containing the endpoints of each arc acts as an obstacle
for the other arc. The simple clasp is theτ -clasp with τ = 1, where the wedges
degenerate to halfspaces.

9.2 Struts between perpendicular planes

Whenever two curves in perpendicular planes are connected by a strut, elementary
trigonometry gives us first order information about the curves at both endpoints. We
state a general lemma, which we will use here for the clasp and again for the Bor-
romean rings.
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arcsin τ

Figure 11: In this variant of the simple clasp problem, the endpoints of the two ropes are
constrained to lie in four planes whose normals make anglearcsin τ with the horizontal. The
parameteru = sinϕ ranges from−τ to τ along each arc, as shown at the end of the top right
arc. If extended, the four planes shown would form the sides of a tetrahedron. Each arc is
constrained to lie in the wedge formed by the planes containing the endpoints of the other arc.

Let P1 andP2 be two planes meeting perpendicularly along a line`, and letγi ⊂ Pi

be two components of a link. At a pointpi ∈ γi , we writexi for the distance frompi

to `, andui for the cosine of the angle between` and the line tangent toγi at pi .
These quantities generalize thex andu of Lemma 9.2 above.

Lemma 9.3 Let γ1 and γ2 be two components of a link L, lying in perpendicular
planes. Suppose there is a strut {p1, p2} of length 1 connecting these components.
Then in the notation of the previous paragraph we have 0 ≤ xi ≤ ui ≤ 1, and any two
of the numbers x1, x2, u1, u2 determine the other two, according to the formulas

x2
i = 1−

x2
j

u2
j

=
u2

i (1− u2
j )

1− u2
iu

2
j

,

u2
i =

1− x2
j/u

2
j

1− x2
j

=
x2

i

1− x2
j

,

where j 6= i.

Proof Picking cartesian coordinates such that` is the z -axis andPi are coordinate
planes, we find the strut difference vectorp1 − p2 is (x1, x2,∆z), for some num-
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ber ∆z . Since this strut has length1 and is perpendicular to eachγi , we have

∆z2 + x2
1 + x2

2 = 1, ∆z = xi
ui√

1− u2
i

.

Simple algebraic manipulations, eliminating∆z , lead to the equations given.

Note that the conditionxi ≤ ui is exactly the condition that the unit normal circle
aroundpi intersectsPj ; the two points of intersection are mirror images (acrossPi ),
with the samexj anduj values. Also note that we don’t need to haveγi ⊂ Pi in the
lemma; it suffices thatγi be tangent toPi at pi .

Whenever we have a pair of curves in perpendicular planes, which stay a constant
distance1 apart, we can apply this lemma everywhere along the curves. Each curveγi

is determined as the intersection of the planePi with the unit-radius tube around the
other curveγj . This will be the situation for the clasp.

9.3 The balancing equations for the clasp

By Theorem 8.4, in a critical clasp the curvature force alongγ must be balanced by
struts toγ̃ . In particular, almost every point (indeed, since the set of struts is closed,
everypoint) γ(u) along the curved arc ofγ must have a strut to some pointγ̃(u∗).
Then by symmetry we actually have what we call2-to-2 contact: there are struts
from γ(±u) to γ̃(±u∗). Here the two points̃γ(±u∗) must be the intersection of
the unit normal circle aroundγ(u) with the yz -plane, implying thatu∗ ∈ [0, 1] is
uniquely determined for eachu. We will refer toγ(u) and γ̃(u∗) asconjugate points
on the τ -clasp. Lemma 9.3 applies to any pair of conjugate points, withu1 = u,
u2 = u∗ andxi = x(ui).

Lemma 9.4 Suppose γ is a plane curve, symmetric across a line ` in the plane.
Consider the net curvature force of a mirror image pair of infinitesimal arcs of γ . This
acts in the direction of the line `, with magnitude 2|du|. Here the function u is defined
along γ as the cosine of the angle ψ between ` and the tangent line to γ .

Proof One infinitesimal arc has net curvature forceκN ds = N dψ . When this
is added to the mirror image force, only the component along` survives. We get
magnitude2| sinψ dψ| = 2|du|.

Suppose now we have a symmetric configuration of the clasp where the curved arcs of
the two components stay a constant distance1 apart. By symmetry we get the2-to-2
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strut pattern described above. Assuming the straight ends of each component meet the
constraint planes perpendicularly, our balance criterion Theorem 8.4 says that strong
criticality is equivalent to the statement that the net vertical curvature force exerted
by the arcs atγ(±u) balances that of the conjugate arcs atγ̃(±u∗). That is, using
Lemma 9.4, for a critical clasp we must have|du| = |du∗|, meaning that eitheru−u∗
or u+ u∗ is constant.

If u − u∗ were constant, by symmetry it would be zero, and our equations would
describe a pair of half-ellipses, with horizontal major axis

√
2 and vertical minor

axis1. On these curves, corresponding pointsγ(u) and γ̃(u) are always at distance1
from each other, but these aremaximafor the distance between components, rather
than minima. This configuration hasLThi < 1, and is notLThi-critical: the pairs
{γ(u), γ̃(u)} are not struts.

Instead we must have thatu + u∗ is constant. To find the constant, note that on the
τ -clasp, the tip ofγ (at u = 0) is joined by a strut to the end of̃γ (at u∗ = τ ); thus
u + u∗ = τ . This equation holds when0 ≤ u, u∗ ≤ τ ; to allow for negative values
(parametrizing the whole clasp curve) we write

|u|+ |u∗| = τ.

We can now give an explicit description of our criticalτ -clasp:

Theorem 9.5 Let τ ∈ [0, 1], and let γ = γτ be the curve in the xz -plane given
parametrically for u ∈ [−τ, τ ] by

x = xτ (u) :=
u
√

1− (τ − |u|)2√
1− u2(τ − |u|)2

,

z = zτ (u) :=
∫

dz
dx

dx =
∫

u√
1− u2

du
κτ (u)

,

where

κτ (u) :=

√(
1− u2(τ − |u|)2

)3(1− (τ − |u|)2
)

1− (τ − |u|)2 + (τ − |u|)|u|(1− u2)
and the constant of integration for z is chosen so that

z(0) + z(τ) = −
√

1− τ2.

Then the union of γ with its image γ̃ under the symmetry group 2∗2 described above
is a τ -clasp that is strongly critical for link-ropelength. The curvature of γ is κτ (u)
above, and the total length of the curved part of γ is∫ τ

−τ

du
κτ (u)

√
1− u2

.
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x

z

ϕ

γ(0)

γ̃(0) γ(1)

Figure 12: This is an accurate plot of the critical simple claspγ given by Theorem 9.5. Here
u = sinϕ ranges from−1 to 1 over the curved portion ofγ . The tip γ̃(0) of the other
component is shown aboveγ on thez -axis, along with the (dotted) circular cross-section of
the tube of unit diameter around̃γ . The curved dotted lines extending down from the sides
of this cross-section are the lines of contact between the shaded tube aroundγ and the front
half of the tube around̃γ . Symmetric lines of contact extend behind the shaded tube, realizing
the 2-to-2 contact pattern we have described. Finally, we see a small gap between the tubes,
explored in more detail in Figure 14.

Proof The proposition follows from the foregoing discussion, after substitutingu∗ =
τ − |u| into the equations of Lemma 9.3, and using Lemma 9.2. To get the constant of
integration forz , we note that the strut fromγ(0) to γ̃(τ) has height given (as in the
proof of Lemma 9.3) by

∆z =
√

1− xτ (0)2 − xτ (τ)2 =
√

1− 0− τ2.

Although the formulas we have given forzτ (u) and for arclength both involve hyper-
elliptic integrals not expressible in closed form, it is straightforward to integrate them
numerically; we have plotted our critical configuration of the simple (τ = 1) clasp in
Figure 12.

Geometry &Topology, Volume X (20XX)



44 Cantarella, Fu, Kusner, Sullivan and Wrinkle
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Figure 13: The graph shows the curvatureκ of the tight1-clasp as a function of arclength. The
curvature blows up at the tip: this curve is onlyC1,2/3 . The unit-diameter thick tube around
the curve forms a cusp near the tip, when the curvature exceeds2. From the tip, curvature
decreases rapidly to its minimum, and then increases again to the limiting value ofκ = 1 at
the end. Thus the clasp curve, at its end, agrees to second order with the naively expected unit
circle around the tip of the other component, as is suggested in Figure 12. (Forτ = 1, as
illustrated here, the curves agree even to third order.)

As we mentioned in the introduction, Starostin has given [34] an independent deriva-
tion (using a form of balancing for smooth curves) of these sameτ -clasp configura-
tions (as well as the family of stiff clasps we will consider in [2]). Starostin does not
prove that these configurations are critical for link-ropelength.

9.4 The geometry of the tight clasp

We now examine the curvature and other geometric features of the critical clasps for
the Gehring problem that were given in Theorem 9.5. Each component of the critical
τ -clasp is aC1 join of four analytic pieces: a straight segment, thenγ[−τ, 0], then
γ[0, τ ], and finally another straight segment. Where the curved arcs join the straight
segments atu = ±τ , the curvatureκ(u) approaches1; at these points, our critical
clasp agrees to second order with the naively expected circular arcs.

The maximum curvatureκ(0) = 1/
√

1− τ2 occurs at the tip. Forτ < 1, this is finite,
and ourτ -clasp isC1,1 . But for τ = 1, the curvature blows up (like|s|−1/3 ) at the
tip. In Figure 13 we plot the curvatureκ(u) for this simple clasp. The curve isC1,2/3

(and is also in the Sobolev spaceW 2, 3−ε for all ε > 0) but has no higher regularity.

In Proposition 6.5, we proved that critical curves for link-ropelength areC1 . It would
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Figure 14: We see three views of the gap chamber between the two tubes in the tight clasp with
τ = 1. On the left, we see an exploded view with the two tubes and the gap chamber floating
between them. In the medium closeup in the center, we see the chamber in place between
the (now transparent) tubes. On the right, we see an extreme closeup of the center of the gap
chamber. Its height at the center (about0.05639) is the distance between the tubes at the tips of
the clasp. The grid in the center and right pictures is a square grid projected from thexy -plane.
On the right, we see a tiny ridge running from left to right along the surface of the chamber;
this is a cusp formed by the folding of the tube surface that happens when the curvature of the
clasp rises above2 (cf. Figure 13). We do not know whether this gap chamber forms in clasps
of physical rope; it would be very interesting to find out.

be interesting to find out whether all such critical curves areC1,2/3 ; perhaps the simple
clasp exhibits the worst possible behavior.

In Example 7.5, we saw critical curves constrained by link-thickness which fail to have
positive thickness in the ordinary sense of [4] because one component is nonembedded.
The simple clasp fails to have positive thickness for a different reason: its curvature
is unbounded. In [2] we will consider a family of thickness measures with a variable
stiffness parameterλ. In these measures, a unit-thickness curve has curvature bounded
above by2/λ. For any nonzeroλ, it follows that the critical simple clasp must be
different from the tight clasp here for the Gehring problem, and must instead include
an arc of this maximum allowed curvature.

One of the most interesting features of the clasp is the gap between the two components
of the clasp. The distance between the tips ofγ and γ̃ is z(τ) − z(0) +

√
1− τ2

(written in this way to be independent of the constant of integration forz ). This is
an increasing function ofτ , close to1 when τ is small, but increasing to1.05639
at τ = 1. Thus, in the simple clasp, the gap between the thick tubes around the two
components at their tips is almost6% of their diameter.

These thick tubes contact each other at the midpoints of the struts. Topologically, the
set of struts forms a loop. Their midpoints form a loop in space with four vertical
cusps—the line of contact of the two tubes—as seen in Figures 12 and 14. Alter-
natively, we can plot the loop of struts as pairs of arclength coordinates on the two
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−` 0 `

Figure 15: The graph shows the strut set for the tight1-clasp, where each strut is plotted
according to the arclength of its ends on the two components of the clasp (measured from the
tip s = 0 to the shoulders ats = ` ≈ 1.58944). There is a closed loop of struts, with four
cusps at the tips and shoulders of the clasp arcs. We hope this explicit strut set will help in
verifying the accuracy of numerically computed strut sets for ropelength minimizers, such as
those in [5].

components, as in Figure 15. The solid tubes divide the rest of the ambient space into
two regions: one infinite component around the outside of the clasp, and one small
chamber sitting in the gap between the tips, shown in Figure 14. To give a sense of
scale, the gap chamber has a substantial surface area of about1.10, equal to the area of
a section of tube of length more than1/3. However, the chamber is very thin, resulting
in a volume of only0.01425.

9.5 Length comparison with the naive clasp

Earlier, we described the naive circular configuration for the simple clasp. Similarly, in
what we call thenaiveτ -clasp, each component is built from straight segments (nor-
mal to the constraint planes) and a unit-radius arc (of angle2 arcsin τ and centered at
the tip of the other component). As we saw forτ = 1, this configuration is not critical:
there is no way to balance the forces concentrated on the tips, unlike in Examples 7.1
and 9.1, which had extra struts.

Our critical τ -clasps (which we expect are the global minima for length) are indeed
slightly shorter than the naive configurations. The total length of a clasp depends, of
course, on the position of the bounding planes. Thus to compare the lengths of the
naive clasp and our critical clasp in a meaningful way, we introduce the notion of
excess length. The infimal possible length of aτ -clasp with no thickness constraint
is easily seen to be four times the inradius of the bounding tetrahedron. (In the case
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Figure 16: Our critical configurationB0 of the Borromean rings, shown with thick tubes of
diameter1. This configuration is very slightly shorter than the piecewise-circular version
in [4]. As in that version, the core curve of this tube has discontinuous curvature, for instance
at the “jump point” where the curve switches from convex to concave.

τ = 1 this is twice the thickness of the bounding slab.) Theexcess lengthof any given
clasp is the amount by which its length exceeds this value.

For τ = 1, the naive clasp has excess length2π−2, since two unit semicircles replace
two straight segments of unit length. Numerical integration reveals the excess length
of our critical 1-clasp to be4.262897 (accurate to the number of digits shown). It is
thus about0.020288, or almost half a percent, shorter. In general, the excess length
of the naiveτ -clasp is4 arcsin τ − 2τ , while the excess length of our criticalτ -clasp
equals the total length of the curved parts minus2τ times the inter-tip distance. The
maximum percentage savings, about0.518%, occurs forτ ≈ sin(80◦).

10 The Borromean rings

The original Gehring link problem was solved by the Hopf link made from a pair of
circles through each other’s centers. We have already generalized this to a three com-
ponent link in one way: the simple chain made from circles and stadium curves of
Section 7. But the simple chain is just a connect sum of Hopf links, and so the mini-
mizing configuration shares much of its geometry with the original Gehring solution.

We now construct a proposed minimizer for a more interesting Gehring problem—
the Borromean rings (see Figure 16). Among the three prime six-crossing links of
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Figure 17: Two further renderings of the critical configurationB0 for the Borromean rings
reveal more of the structure. The image on the left, showing thin tubes of diameter0.315,
viewed along an axis of threefold symmetry, has been adopted as the logo of the International
Mathematical Union. On the right, in a still from the video [15], we see even thinner tubes
inside transparent thick tubes.

three components, the Borromean rings form the one which isBrunnian, meaning
that if any one component is removed the remaining components are unlinked. Mil-
nor’s µ-invariant classifies three-component Brunnian link-homotopy types, and the
Borromean rings are the first nontrivial example.

In this section, we describe (Theorem 10.2) a critical configurationB0 of the Bor-
romean rings, shown in Figures 16 and 17. Numerical simulations with Brakke’s
Evolver[1] suggest that this configurationB0 is in fact the ropelength minimizer for
the Borromean rings. We will see below that the curvature ofB0 stays below1.534;
this means (as we show in [2]) thatB0 is also a critical point for length when con-
strained by the ordinary thickness measure of [4] instead of by link-thickness. In [4],
we described a similar configurationB2 of the Borromean rings, built entirely from
arcs of unit circles. Theorem 6.1 shows thatB2 is not critical, and we compute thatB0

is 0.08% shorter.

10.1 Symmetry and convexity

Our configurationsB0 andB2 of the Borromean rings are quite similar, and in par-
ticular have the same symmetry and convexity properties, which we now define. The
three congruent components lie (respectively) in the three coordinate planes; reflection
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across any one of these planes is a symmetry of the link preserving each component. A
further symmetry, which cyclically permutes the three components, is given by120◦

rotation about the(1, 1, 1) axis; we write this rotation as

p 7→ p̃ 7→ p̂ 7→ p.

These symmetries generate thepyritohedralpoint group of order24 in O(3) whose
Conway–Thurston orbifold notation (see [9, 10]) is3∗2. Algebraically it is isomor-
phic to±A4 , and in cartesian coordinates it is most naturally seen as the wreath prod-
uct {±1} o C3 .

Any symmetric configuration of the Borromean rings is the image under the pyritohe-
dral group of a single embedded arc in the closed positive quadrant of thexy -plane,
extending from a pointI on thex-axis to a pointT on they -axis, as shown in Fig-
ure 18. Conversely, given any such arcIT , its images under3∗2 will form a link
isotopic to the Borromean rings, as long asT andI are not at the same distance from
the origin. We will assume that|I| < |T | and will call I the intip whileT is the tip.
To make the linkC1 , the arcIT must beC1 and must meet the axes perpendicularly
at its endpoints.

The only other points of the link in this quadrant of thexy -plane areĨ and T̂ ; they
will be important in the following discussion.

The arcsIT of interest to us consist of a small concave piece near the intip joined to
a large convex piece ending at the tip. That is, there is a jump pointJ ∈ IT such that
the arcIJ is strictly concave, whileJT is strictly convex. As in our discussion of
the clasp, we will parametrizeIJ by the angleψ (less thanπ

2 ) that its tangent vector
makes to the right of the vertical, or byv = sinψ . Here v ranges from0 at I to
some valueσ at J , which will be one of the fundamental parameters for the curves
we describe.

Along the convex arcJT we can still definev = sinψ , which now decreases fromσ
through0 to −1. But we also use the angleϕ = π

2 +ψ , the angle above the horizontal
made by the tangent vector toJT . Since our curve isC1 , we haveϕ(T ) = 0 and
ϕ(J) = π

2 + arcsinσ . In the curves we describe, some initial subarcJR of JT is
part of the unit circle around̃I ; we haveϕ(R) ≤ π

2 so that alongRT we can also use
the parameteru = sinϕ.

Finally, to achieve a force balance we will find it necessary that some pointM along
the circleJR has a strut toT̂ as well as toĨ . This lets us transmit some force from
the large convex arc of one component to the smaller concave arc of another, indirectly
through the third component. In thexy -plane, we find thatM is the midpoint of the
segment̃IT̂ , and thus if we setρ := sinψ(M) ≤ σ we have

Ĩ =
(
2ρ, 0

)
, M =

(
ρ,

√
1− ρ2

)
, T̂ =

(
0, 2

√
1− ρ2

)
.
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I
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(√
1− ρ2, ρ
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ϕ = arcsinu
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T̂ x
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Figure 18: Any configurationB of the Borromean rings with3 ∗ 2 symmetry is generated by
a planar arcIT . We consider arcs whereIJ is concave andJT is convex. The other points
of B in this quadrant are the rotation imagesĨ andT̂ of I andT . In our configurations, there
are pointsM andR such thatJR is part of the unit circle around̃I , andM is the midpoint
betweenĨ and T̂ . The four dotted lines are thus struts of length1. The height difference
from J to Ĩ is σ = sinψ(J) as delineated by the horizontal dashed line, and the coordinates
of M are given in terms ofρ = sinψ(M) = − cosϕ(M).
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10.2 The configuration built from circular arcs

The configurationB2 we described in [4] is generated by an arcIT of this form.
In B2 , we haveR = T , so that the entire convex arcJT is part of the unit circle
aroundĨ . Furthermore, the concave arcIJ is also part of a unit circle, centered atT̂ .
This implies thatM = J andσ = ρ =: ρ2 . The valueρ2 is determined by the fact
that I and T̂ are at unit distance, meaning2ρ2 + 1 = 2

√
1− ρ2

2 . As we computed
in [4], the total length ofB2 is then6π + 24 arcsin ρ2 ≈ 29.0263.

This configuration is not balanced (and thus not critical) for link-ropelength. To bal-
ance the curvature forces of the circular arcs, the fans of struts to their centers would
have to carry force proportional to arclength. But these struts would then concentrate
outward force on the tips and inward force on the intips; there are no further struts
to balance these forces. This is like the picture for the naive clasp—all the force is
concentrated on the tips. As for the clasp, the tips in the critical configuration will be
further apart.

In [2], we introduce a family of thickness measures with variable stiffness. For stiff-
ness2 (meaning that the curves cannot have osculating circles of diameter less than2)
we will see thatB2 is balanced and hence critical for ropelength. Because the circu-
lar arcs have exactly the maximum allowed curvature, we will see that their curvature
force need not be balanced pointwise, but only in total. Outward strut force on their
midpoints (the tips and intips) can in a sense be spread out to balance the curvature all
along the arc. Becauseρ2 6= 45◦ , however, there is an imbalance of total curvature
forces between the convex and concave arcs. Thus our balancing measure will need an
atom of force on the special colinear struts{Ĩ ,M} and{M, T̂}; this transmits force
from T̂ throughM to Ĩ .

10.3 Configurations involving clasp arcs

To get a balanced configurationB0 of the Borromean rings, we have to replace the
concave circular arcIJ (and part of the convex arc) by a tight clasp arc. SupposeIJ
is part of aτ -clasp for someτ ≥ σ . We will now describe a configuration determined
by certain values of our three parameters

0 ≤ ρ ≤ σ ≤ τ ≤ 1,

a particular curve of the class illustrated in Figure 18.

First, the arcIJ is the piecev ∈ [0, σ] of the τ -clasp, translated out along thex-
axis until its tip I is at (2ρ, 0, 0). Next, JMR is an arc of the unit circle around̃I ,
with v(J) = σ , v(M) = ρ andu(R) = τ . Note that to get these arcs to match up
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at J , we will need two conditions on our parametersρ, σ andτ . Finally to define the
remaining arcRST , consider the imagẽIJ̃M̃ of IJM , rotated into theyz -plane.
ThenRST is conjugate toĨ J̃M̃ in the sense of Lemma 9.3: it is the intersection of
the unit-radius tube around̃IJ̃M̃ with the xy -plane, withS defined to be the point
conjugate toJ̃ . Figure 19 shows the arcIT and its two rotated images, that is, the
part ofB0 lying in the nonnegative orthant in space.

Lemma 10.1 For any fixed τ , suppose the parameters 0 ≤ ρ ≤ σ ≤ τ satisfy the
two equations

0 = 2ρ−
√

1− σ2 +
∫ u=σ

u=0

u du
κτ (u)

√
1− u2

(10.1)

and

0 = 1− (2ρ− σ)2 − 1− σ2

1− σ2(τ − σ)2
(10.2)

where κτ is the curvature of the clasp from Theorem 9.5. Then there is a C1 and
piecewise analytic arc IJMRST as described in the last paragraph. Its images under
the symmetry group 3∗2 form a configuration B(ρ, σ, τ) of the Borromean rings with
link-thickness LThi = 1.

Proof As a point on the unit circleJR aroundĨ , the jump pointJ has coordinates(√
1− σ2, 2ρ− σ, 0

)
.

As a point on theτ -claspIJ , its coordinates are(
2ρ+

∫ σ

0

u du
κτ (u)

√
1− u2

, xτ (σ), 0
)
.

Equating these, using

x2
τ (σ) = 1− (1− σ2)

1− σ2(τ − σ)2

from Theorem 9.5, gives (10.1) and (10.2).

If these equations are satisfied, then the position ofJ is well-defined, andIJR is
aC1 arc, meeting thex-axis perpendicularly. The arcRST is the conjugate ofIJM
and thus isC1 by Lemma 9.3. AtT , the same lemma shows it meets they -axis
perpendicularly. AtR, the u = τ base of theτ -clasp agrees even to second order
with the unit circle.

In this configuration, all the struts shown in Figure 19 have length1. If the link-
thickness were less than1, there would need to be some shorter strut in this positive
octant. But that strut would be governed by Lemma 9.3, and (rotating to assume one
endpoint is onIT ) its projection to thexy -plane would be normal to the arcIT ; the
figure makes it clear that no such strut exists.
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Ŝ
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Figure 19: One octant of the critical Borromean ringsB0 consists of three rotated images
of an arcIJMRT of the type shown in Figure 18. The dotted lines are struts of length1
connecting the labeled points. We now describe all other struts toIT in this octant. Of course,
all along the circular arcJMR there are struts to its center̃I . Also, between the marked
struts are several one-parameter families of struts, joining two arcs. The first family joins the
conjugate clasp arcsRS and Ĩ J̃ ; a second family connectsST to the circular arcJ̃M̃ . The
other families are rotated images of these, connectingJM to ŜT̂ , andIJ to R̂Ŝ . The struts
{T̂ ,M} and{M, Ĩ} are colinear. To balanceIT , it is important to consider also the mirror-
image struts across thexy -plane. This figure is an accurate drawing ofB0 , except that we
have exaggerated the separation betweenM andJ : their actual distance is smaller than the
width of the lines used in the picture.
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10.4 The balanced configuration

Finally, we wish to find the third condition on our parametersρ, σ andτ , which will
ensure thatB(ρ, σ, τ) satisfies the balance criterion of Corollary 6.3.

For most of the struts, it is immediately clear what stress they need to have in a balanc-
ing measureµ: The struts fromIJ to R̂Ŝ , and those fromMR to Ĩ and fromRT
to ĨM̃ must be stressed exactly enough to balance the curvature force ofIJ and
of MRT . The conjugate clasp arcsIJ andRS exactly balance each other’s curva-
ture forces in this way.

The situation along the short circular arcJM is more complicated. The struts inward
to Ĩ need to balance not only the curvature force ofJM itself, but also the force acting
inward onJM from the struts fromŜT̂ . Remember that the measure needed on these
last struts is determined by the curvature ofŜT̂ ; this in turn determines the measure
needed on the inward struts fromJM . We will write this down explicitly below. The
final condition on our parameters then comes from a balance of forces atĨ , where a
whole family of struts converges.

Note that this configurationB0 of the Borromean rings is the first known example of a
ropelength-critical configuration in which this sort of transmitted force appears. Struts
impinge on the arcJM from the direction opposite its own curvature, and transmit
their force through that arc. Without this force transmitted through the (very) short
arc JM , the relatively long convex piecêRT̂ would exert too much inward force
on the relatively short concave pieceIJ . Instead, some of this inward force, when
transmitted throughJM , becomes forceoutward on the concave piecẽIJ̃ . This
transmitted force plays the same role in balancingB0 that the atomic force from̂T
throughM to Ĩ played in balancingB2 for the stiff problem. But here our strut
measure is absolutely continuous, with no atoms.

To write down the final balancing condition at̃I , we begin with an application of
Lemma 9.4: the total curvature force ofJMR and its mirror image across theyz -
plane acts oñI downward in they -direction, with magnitude

2
(
u(J)− u(R)

)
= 2

(√
1− σ2 − τ

)
.

But the struts fromJM carry extra transmitted force. To determine this, consider the
curvature force of an infinitesimal arc of̂ST̂ and its mirror image across thexy -plane.
Parametrizing them as usual byu, Lemma 9.4 tells us the net force, exerted in the
negativex direction, is2du. This horizontal force is exerted on an infinitesimal piece
of JM and its mirror image across thexz -plane. If we parametrizeJM by v = sinψ ,
then remembering that the force on this arc acts perpendicular to the arc, we see that
if its horizontal component isdu, then its vertical component isv du/

√
1− v2 . This
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force gets transmitted through tõI . Because of the symmetry across theyz -plane, of
course only the vertical component matters in the end. But this symmetry also doubles
that vertical force. (Four copies of the arĉST̂ act on Ĩ : the original, and reflections
across thexy - and yz -planes.) The resultant total transmitted force onĨ is upward
with magnitude

2
∫ τ−σ

u=0

2v√
1− v2

du.

Here the upper limit of integration isu(S) = τ−v(J) becauseJ andS are conjugate
points on theτ -clasp. To make this integral explicit, we need to give the relation
betweenu and v ; this comes from Lemma 9.3. AlongJM we havey -coordinate
2ρ− v , so the lemma gives

u2 = u(v)2 :=
1− (2ρ− v)2/v2

1− (2ρ− v)2
.

If one wanted, this could be solved to givev as the root of a quartic equation inρ
andu. Note thatu = 0 at v = ρ, as we expect forT andM . Plugging inu = τ − σ
andv = σ (at S andJ ) reproduces (10.2).

Summarizing, we can write the force-balancing condition atĨ as

0 = τ −
√

1− σ2 +
∫ v=σ

v=ρ

2v√
1− v2

du(v)
dv

dv (10.3)

and so we have proved

Theorem 10.2 Suppose ρ = ρ0 , σ = σ0 and τ = τ0 satisfy the three equations
(10.1), (10.2) and (10.3). Then the configuration B0 = B(ρ0, σ0, τ0) of the Bor-
romean rings, constructed as in Lemma 10.1, is strongly critical for link-ropelength.

It is easy to solve (10.1) forρ, or (10.2) forρ or τ , or (10.3) forτ , thereby eliminating
one of our three variables. Then we are left with two nonlinear integral equations in the
other two variables. While we have not proved formally that a solution to this system
exists, we have solved it numerically to high precision, both in Mathematica and using
QUADPACK/MINPACK [30, 26]. We obtain

ρ0 ≈ 0.4074218, σ0 ≈ 0.4177486, τ0 ≈ 0.7561107,

where again we follow the standard convention that the error is less than±1 in the last
digit shown. There is nothing delicate about this solution, since our expressions vanish
to first order at this point. Numerically it is also clear that this solution is unique.

Using these constants, we compute the length of our critical Borromean ringsB0

as29.0030. By comparison, the length of the piecewise circular Borromean ringsB2
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was 29.0263. Thus our critical configurationB0 beats the naive circular configura-
tion B2 by slightly less than one-tenth of one percent. For comparison, the best lower
bound known so far [4] for the length of the Borromean rings is6π .

Figure 20 shows an arclength plot of the struts in the Borromean rings. In Figure 21 we
plot the curvature of the critical Borromean ringsB0 as a function of arclength. Note
that it is discontinuous only atJ andS . Each component inB0 is built of 14 analytic
pieces, joined in aC1,1 fashion at the symmetric images of the pointsI , J , R andS .
The maximum curvature (at the intipsI ) is (1 − τ2

0 )−1/2 ≈ 1.528. ThereforeB0 is
also ropelength critical for the standard ropelength functional of [4], as we will show
in [2]. It is also critical for all the stiff ropelength functionals where the lower boundλ
on the diameter of curvature is less than2

√
1− τ2

0 ≈ 1.3.

We note that Starostin has described [34] a configurationBS of the Borromean rings
with ropelength intermediate between that of ourB2 andB0 ; his configuration re-
places the arcsIJ andRT of B2 by clasp arcs, but does not incorporate the other
features ofB0 . While BS can be balanced almost everywhere and Starostin appears
to assume that it is a critical configuration, in fact it is not balanced at the intips since
it does not satisfy the equivalent of (10.3). Thus by Corollary 6.3,BS is not critical.

11 Open problems and further directions

Our work in this paper has been motivated by a simple principle: that the ideas of
rigidity theory for finite frameworks of bars and struts can be extended to handle mech-
anisms built from continuous curves of constraints and contacts. In the simple case of
links critical for link-ropelength, this method has already yielded some strong results,
such as ourC1 -regularity theorem, as well as some surprises like the tight clasp and
the critical Borromean rings. Furthermore we expect that these methods in general,
and our Kuhn–Tucker Theorem 5.4 in particular, will prove to be useful tools, with
applications to a number of outstanding problems in the geometry and topology of
curves and surfaces.

We have mentioned our forthcoming extension of these results [2] to the classical ro-
pelength problem, where the presence of curvature constraints and self-contacts of
the tube around individual components makes the situation considerably more chal-
lenging. Our theory of generalized links and obstacles should also be applicable to
the study of packing problems for tubes and surfaces, as when thick rope is packed
into a box [18] (a problem of some interest in molecular biology: see [22, 21]), or
when the gray matter of the brain is folded and pressed against the skull. We should
also mention that while we have only considered minimizinglengthin this paper, our
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Figure 20: This picture shows a portion of the strut set of our Borromean rings, plotted as
pairs of arclength coordinates along components of the link. The horizontal axis represents
arclength along one quadrant of the horizontal component, fromI to T . On the vertical
axis, we plot arclength along quadrants of the other two components simultaneously. (This
plot accurately depicts the small arclength betweenM andJ , in contrast to Figure 19 where
this distance is exaggerated.) The horizontal segment at the bottom shows the struts from the
circular arcJMR to Ĩ ; it joins to arcs representing the families of struts fromRS to Ĩ J̃
and from ST to J̃M̃ . Symmetrically, the struts to the third component are shown at the
upper left: a vertical segment for the circlêJR̂ aroundI , and arcs for the struts fromIJM
to R̂ŜT̂ . Remembering that this square plot should be reflected across all of its sides to show
the complete strut set, we can easily read off the number of struts coming in to any point on
the curve: two alongIJ andRST , three alongJM and one alongMR .
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Figure 21: The curvatureκ of the Borromean ringsB0 , plotted as a function of arclengths
along one quarter of one component of this critical configuration. The curvature has its maxi-
mum (about1.533) at the intipI , at s = 0 in this plot, and then smoothly drops off to below1.
(This first part could have been plotted negatively, since this is the concave piece ofB0 , but
we have chosen to show the unsignedκ of a space curve.) After a jump atJ , we haveκ ≡ 1
along the circular arcJMR . Along the clasp arcRS , the curvature drops smoothly from1
and then rises slightly again, before jumping up above1 at S and then increasing to a local
maximum atT .
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framework should work equally well for other objective functionals, such as a general
theory of elastic rods with self-contact.

A finite-dimensional duality theorem akin to our Kuhn–Tucker theorem is one key
step in the proof of the Unfolding Theorem [8] of Connelly, Demaine, and Rote: Any
embedded, non-convex planar polygon admits a motion that preserves all edge lengths
and strictly increases the distance between any two points on the polygon not already
joined by a straight line of polygon edges.

Our theory allows us to complete part of the proof of the (conjectured) generalization
to smooth plane curves. Whether our methods can be made strong enough to overcome
the formidable difficulties involved in proving a smooth unfolding theorem remains to
be seen.

There are several specific open questions suggested by our work above.

Question What is the regularity of a critical curve for link-ropelength? Such curves
are at worstC1 and at bestC1,2/3 .

While we have demonstratedcritical configurations of the tight clasps and Borromean
rings, we have not attempted to prove that these configurations are minimal.

Question Are our tight clasps and Borromean rings length-minimal in their link-
homotopy types?

The Euclidean-cone methods of [4] seem to hold out some hope for reducing the clasp
problem to the case where both curves are planar, but we have not investigated this line
of attack.
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