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ABSTRACT. This paper provides bounds for the ropelength of a link in terms of the crossing num-
bers of its prime components. As in earlier papers, the bounds grow with the square of the crossing
number; however, the constant involved is a substantial improvement on previous results. The proof
depends essentially on writing links in terms of their arc-presentations, and has as a key ingredient
Bae and Park’s theorem that ann-crossing link has an arc-presentation with less than or equal to
n + 2 arcs.

1. INTRODUCTION

Theropelengthof a space curve is defined to be the quotient of its length by itsthickness, where
thickness is the radius of the largest embedded tubular neighborhood around the curve. For a knot
or link typeL, we define the ropelengthRop(L) to be the minimum ropelength of all curves with
the given link type. This minimum ropelength is a link invariant which measures the topological
complexity of the link, much like crossing number, or bridge number, in classical knot theory.

It has been shown that every link type contains at least oneC1,1 tight representative which
achieves this minimum ropelength [3, 8]. Much effort has been invested in the project of finding
lower bounds for the ropelength of various link types in terms of classical topological invariants,
such as the crossing number [2, 3, 11].

In this paper, we are interested in a converse problem: given a link typeL of crossing number
c(L), can we guarantee the existence of a representative curve with ropelength less than some
function ofc(L)? That is, can we findupperbounds on ropelength in terms of crossing number?
Our main theorem states the following:

Theorem 1. If L is a non-split link, then

(1) Rop(L) ≤ 1.64 c(L)2 + 7.69 c(L) + 6.74.

In particular, this bound holds for prime links.

Our Theorem 2 gives similar bounds for composite links.
Other groups ([3, 10]) have attacked this problem by finding upper bounds on the number of

edges required to embed a given linkL in the unit lattice (thelattice numberk(L) of the link), and
then observing thatRop(L) < 2k(L) [5]. Both proofs rely on laying out a diagram of the knot as
a graph in a planar grid and then adding bridges to form overcrossings. In this context, it has been
observed that constructing a particular diagram of a link with crossing numberc(L) may require
ropelengthO(c(L)2) [10]. These authors have obtained the weaker boundsRop(L) < 24 c(L)2

[3], andRop(L) < 25 c(L)2 [10]. Johnston’s algorithm, like ours, produces an explicit realization
of the knot in space, while the approach of [3] is less constructive. By contrast, our methods are
more three-dimensional and are not based on grid or lattice embeddings. Instead of using a planar
diagram of a knot, we base our construction on Peter Cromwell’s idea ofarc-presentations[4].
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Diao, Ernst, and Yu have recently used an improved lattice embedding method to establish
O(c(L)3/2) upper bounds for ropelength. They obtain the inequality

(2) Rop(L) ≤ 34 c(L)3/2 + 42 c(L) + 22 c(L)1/2 + 22,

for links which have a minimal crossing number diagram containing a Hamiltonian cycle (which
they callminimally Hamiltonian), and the general inequality

(3) Rop(L) ≤ 272 c(L)3/2 + 168 c(L) + 44 c(L)1/2 + 22

for all (non-split) links ([6], Theorem 5.4). Comparing these bounds with those of Theorem 1, we
see that our bound is preferable for knots with crossing number less than470 in the special case,
and27, 700 in general.

2. THE DEFINITION OF ROPELENGTH

The ropelength of a curve is defined to be the quotient of length by the radius of the largest
embedded tubular neighborhood around the curve. This radius is called thethicknessof the curve.
For C2 curves, this radius is locally controlled by curvature and globally controlled by distances
of self-approach between various regions of the curve. Formally, we write

Definition 1. Thethicknessof aC2 curvec is given by

(4) τ [c] := min

{
min

s

1

κ(s)
,
dcsd(c)

2

}
,

whereκ(s) is the curvature ofc at s, anddcsd(c) is the shortestdoubly-critical self-distanceof c;
that is, the length of the shortest chord ofc which is perpendicular to the tangent vectorc′ at both
endpoints.

We can extend this definition toC1,1 curves by adjusting our idea of the radius of curvature as
follows (c.f. [3]):

Definition 2. Lets be a point on aC1,1 curve. Consider a decreasing sequence of open neighbor-
hoodsUn of s. Theinfimal radius of curvatureat s is given by

(5) inf
Un

{
inf

t∈Un

1

κ(t)

}
,

where the inner infimum is restricted tot in Un such thatκ(t) exists.

Figure 1 shows examples of curves where thickness is controlled by curvature and by the doubly-
critical self-distance.

Gonzalez and Maddocks have given another definition of thickness which looks somewhat less
natural, but is often more useful. (See [9] for details). Another useful way to look at thickness
comes from Federer’s notion ofreach, which agrees with the thickness for curves [7].

Definition 3. Thereachof a setS insideRn is the greatest non-negativer so that each point within
distancer of S has a unique nearest neighbor inS.

2



FIGURE 1. These are two curves of unit thickness in the plane with their largest
embedded tubular neighborhoods. In the left curve, thickness is controlled by cur-
vature while in the right curve, thickness is controlled by the length of the doubly-
critical chord shown.

3. ARC-PRESENTATIONS

We start with a definition:

Definition 4. An arc-presentationof a linkL is an embedding ofL in a finite collection ofα open
half-planes arrayed around a common axis, or binding, so that the intersection ofL with each
half-plane is a single simple arc. The number of half-planesα is called thearc-indexof the arc-
presentation. The minimal arc-index over all arc-presentations of a linkL is an invariant of the
link type.

By isotopy, we can arrange thatL intersects the axis only at the points1, . . . , α. We call these
thelevelsof the arc-presentation. Such an arc-presentation is then specified by combinatorial data:
a collection ofα triples in the form(xi, yi, θi), where each denotes an arc from levelxi to levelyi

on the half-plane at angleθi around the axis.
Figure 2 shows an arc-presentation for the trefoil and the corresponding set of triples.

We will assemble our ropelength bounds from two ingredients. First, we define a notion of the
total distance travelled by the arcs in an arc-presentation:

Definition 5. Thetotal skipof an arc-presentationA, denotedSkip(A), is

(6) Skip(A) =
α∑

i=1

|xi − yi|.

For a given arc-presentation we can construct a realization of the knot in space with ropelength
bounded in terms ofSkip(A) andα:

Proposition 1. An arc-presentationA with arc-indexα can be realized with ropelength smaller
than

(7)
2α

tan(π/α)
+ (π − 2)α + 2 Skip(A).

For the arc-presentation of the trefoil in Figure 2, we haveα = 5 and Skip(A) = 12; so
Proposition 1 yields an upper bound on the ropelength of the trefoil of about43.47. Numerical
experiments estimate the ropelength of the tight trefoil to be about32.66 [12], so the slack in
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Combinatorial Data
(1, 3, 2π

5
)

(3, 5, 6π
5

)
(5, 2, 0)
(2, 4, 4π

5
)

(4, 1, 8π
5

)

FIGURE 2. This figure shows an arc-presentation for a trefoil knot. The presenta-
tion has arc-index5. To the right we see the combinatorial data which describes this
arc-presentation:5 triples in the form(xi, yi, θi), each indicating an arc from level
xi to levelyi on pageθi of the “5-page book” shown on the left.

our estimate is about33% of the total value. Figure 3 shows the tubular neighborhoods of this
trefoil knot and an arc-presentation of the knot71 as realized by the algorithm in the proof of
Proposition 1.

Further, if we can boundSkip(A) in general, we will be able to draw conclusions about the
ropelength of an arbitrary link. A combinatorial argument yields:

Proposition 2. If an arc-presentationA has arc-indexα, then

(8) Skip(A) ≤

{
α2−1

2
if α is odd,

α2

2
if α is even.

This bound is sharp.

It is shown in [1] that any non-split linkL admits an arc-presentation withα ≤ c(L) + 2. This
result, when coupled with the previous two propositions, gives Theorem 1. We obtain an even
stronger statement for composite links:

Theorem 2. If L is a non-split composite link with prime componentsL1, L2, . . . , Ln, then

(9) Rop(L) ≤ 1.64
n∑

i=1

c(Li)
2 + 7.69

n∑
i=1

c(Li) + 6.74n.

4. PROOFS OF THE KEY PROPOSITIONS AND THEOREMS

Proof of Proposition 1.We would like to take an arc-presentationA for L as a template for con-
structing an embedding ofL with unit thickness. We will then bound the length of this embedding
in terms of the arc-index and the total skip ofA.
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FIGURE 3. Here we see a trefoil knot (top left) and a71 knot (bottom left) together
with the tubular neighborhoods around them constructed by the proof of Proposi-
tion 1. Our trefoil knot appears much tighter: its ropelength (43.47) is proportion-
ally closer to the minimum ropelength for its knot type (32.66) than the ropelength
of our71 knot (97.05) is to the minimum for its knot type (61.40 [12]).

We begin by constructing a right regular polygonal prismP × [0, 2α], whereP is a regular
polygon withα sides of length2. This prism will serve as the binding ofA; each vertical face
of the prism will correspond to an open half-plane in the arc-presentationA. We divide the prism
vertically into α floors, each a prism of height2, which will represent theα levelsof the arc-
presentationA.

We can now construct a link isotopic toL. First, represent the arcs ofA by α handles outside the
prism which join different floors on the same vertical face. We will refer to these handles asfins.
Next, addα circular sections inside the prism which join different vertical faces on the same floor.
These sections represent the junctions between arcs on the binding of the open book described
by A.

We must show that this construction can be accomplished with a unit thickness curve and then
compute the length of that curve.
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4.1. The Fins. Let us denote the finsF1, . . . ,Fα. Each fin consists of two quarter-circles of unit
radius, joined by a straight vertical segment. Each fin joins two points on a vertical face of the
prism and is contained in a2α × 2 × 2 rectangular box extending radially from a vertical face of
the prism.

Since theFi’s stay outside the prism and each is contained in a different box, the tubes around
the fins are pairwise disjoint, and disjoint from the tubes surrounding regions of the curve inside
the prism. Given that each fin has curvature bounded above by1 and no doubly-critical chords,
this means that the fins can be constructed with a unit-thickness curve.

Claim 1. If Rop(Fi) denotes the length of the segment of the curveFi, then

(10)
α∑

i=1

Rop(Fi) = (π − 2)α + 2 Skip(A).

Proof. Suppose thatFi travels from floorxi to floor yi of the prism. The total vertical distance
covered by the fin is2|xi − yi| (recall that each floor has height2). However, the quarter-circles
on each end of the fin cover a vertical distance of2 units. Thus, the straight segment has length
2|xi − yi| − 2, and the total length of the fin isπ − 2 + 2|xi − yi|. Summing overi = 1, . . . , α
and using Definition 5 proves the claim. �

4.2. The Binding Prism. We denote the sections of the curve inside each floor of the binding
prism byB1, . . . ,Bα. EachBi is a circular arc joining the midpoints of two edges of the regular
polygon which is the cross-section of the prism as shown in Figure 4.

FIGURE 4. The sections of our curveBi within the binding prism are circular arcs
joining the midpoints of edges of the cross-section of the prism. The plane of this
picture is located in the center of a floor of the prism.

Because the sides of the polygon have length2, each of these is an arc of a circle of radius at
least one; so each arc has curvature bounded above by one. Further, since each floor has height2
and only oneBi lies in each floor, the tubes around each of theBi are disjoint. Thus theseBi can
be constructed with a tube of unit thickness.

Claim 2. If Rop(Bi) denotes the length of the segment of the curveBi, then

(11)
α∑

i=1

Rop(Bi) ≤
2α

tan(π/α)
.

Proof. Each of these circular arcs is contained in a sector of the circle inscribed within the polygo-
nal cross-section of the prism as shown in Figure 5. Since each arc is convex, its length is bounded
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above by the diameter of the inscribed circle. This diameter is exactly2 cot(π/α). Summing over
i = 1, . . . , α proves the claim. �

FIGURE 5. Each of the pathsBi through the floors of the binding prism is a circular
arc connecting two sides of the polygon which is that prism’s cross-section. Here
we see that each of these arcs is contained within a sector of the circle inscribed
within that polygon. Since each arc is a convex curve, this means that its length is
bounded by the length of the two radii which bound the sector. That is, it is bounded
by the diameter of the inscribed circle.

Combining Claims 1 and 2 yields the statement of Proposition 1. �

Proof of Proposition 2.Our job is to find an upper bound forSkip(A) =
∑α

i=1 |xi − yi|. We first
observe that the difference|xi − yi| is one unit larger than the number of levels skipped over. For
example, jumping from level3 to level6, a difference of3 levels, skips the fourth and fifth levels.
Thus, we can rewrite the sum

(12) Skip(A) = α +
α∑

i=1

{number of levels skipped by the arc(xi, yi, θi)}.

Notice that any levelj contributes to the above sum exactly when it is skipped over. We can rewrite
our sum in terms ofj as

(13)

Skip(A) = α +
α∑

j=1

{number of times levelj is skipped}

= α +

bα/2c∑
j=1

{number of times levelj is skipped}

+

α−bα/2c−1∑
j=0

{number of times levelα− j is skipped},

where in the final equality we have split the second half of the sum off and letj 7→ α− j.
Now we bound the number of times levelj is skipped over. The only way to hop overj from a

higher level is to land on a lower level. There arej − 1 levels below thejth on which such a jump
can land. Further, each of these levels can act as a launch pad for a jump back up which crosses
thejth level again. This gives at most2(j − 1) skips over levelj. Similarly, the number of times
we can skip over theα− jth level is twice the number of levels above it, or2j.
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For evenα, these estimates are sharp (as we will see below). However, when levelα − j is
the central level of an arc-presentation with2k + 1 levels (j = k = α−1

2
), the situation is slightly

different. Here all of thej levels above the middle cannot be initial and terminal levels of arcs
which skip levelα − j. For if so, then no arcs land on levelα − j, and we could have eliminated
levelα− j from the original arc-presentation. Thus levelα− j is skipped at most2j − 1 = α− 2
times.

Inserting these bounds into Equation 13, we apply the sum formulae for arithmetic progressions.
Whenα is odd, we get

(14) Skip(A) ≤ α +

α−1
2∑

j=1

2(j − 1) +

α−3
2∑

j=0

2j + (α− 2) =
α2 − 1

2
.

If α is even, the proof is similar.
We now construct arc-presentations which show that these results are sharp. Consider the arc-

presentation with even arc-indexα = 2k described by the data

(α, α/2, θ1), (α/2, α−1, θ2), (α− 1, α/2− 1, θ3), (α/2− 1, α− 2, θ4),

. . . , (α/2 + 1, 1, θ2k−1), (1, α, θ2k).

If we add up the lengths of the jumps, we get

(15) Skip(A) = α2/2.

The same approach yields a realization ofA so thatSkip(A) = α2−1
2

for oddα.
�

Proof of Theorem 1.Taylor’s theorem gives the approximation1
tan(x)

≤ 1/x− x/3 for x > 0. Via
Propositions 1 and 2 we gather that

(16)
Rop(L) ≤ 2α

tan(π/α)
+ (π − 2)α + α2

≤ (2/π + 1)α2 + (π − 2)α− 2π/3.

By Bae and Park [1], for any non-split linkL there exists an arc-presentation withα ≤ c(L) + 2.
Inserting this into the above bound for ropelength yields

(17) Rop(L) ≤ (2/π + 1) c(L)2 + (8/π + 2 + π) c(L) + (8/π + 4π/3),

and each of these constants evaluates to something smaller than the approximations given in the
statement of the theorem. To gain the final remark in the theorem, we note that any prime linkL is
non-split (otherwise it would consist of split componentsL1 andL2 and would admit the nontrivial
factorsL1 andL2 union a split unknot). �

Proof of Theorem 2.The strategy for this proof is to arrange the prime components of our com-
posite link so that we can make use of the bounds given by Theorem 1. So suppose that we have
found arc-presentations with minimal arc-index for these components and embedded them as unit-
thickness curvesL1, . . . , Ln according to the algorithm of Proposition 1.

We will now prove that for any prime linksL1 andL2, we can construct an embedding of the
curveL1#L2 with ropelength less than the sum of the individual bounds given by Theorem 1. This
is all that is required to complete the proof of our Theorem since the bound in the statement is just
the sum of the bounds obtained for theLi by Theorem 1.
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We begin by preparingL1 andL2. The top floor ofL1 contains only a single horizontal circular
arc joining the centers of two sides of the binding prism. Since no fins jump over this level, we
may rotate these quarter-circles to face one another and replace the horizontal circular arc with a
horizontal line segment of shorter length without changing thickness or knot type. We do the same
for the bottom floor ofL2. This procedure is shown in Figure 6.

FIGURE 6. We look down on a knot of arc-index 5, whose binding prism is shown
by the small pentagon at right, preparing to be joined to a knot of arc-index 9, whose
binding prism is shown by the large nonagon at left. The leftmost pair of figures
shows the original position of the top and bottom arcs of these knots, while the
middle pair of figures shows these arcs “straightened” to prepare for the connect
sum. The rightmost pair of figures shows the two binding prisms in the correct
relative position for the connect sum.

We now arrangeL1 andL2 in space so that the horizontal segments are collinear and share an
endpoint. If we keep each oriented so that its floors are horizontal, the only overlap between the
tubes surrounding each curve occurs on the shared floor. At the shared endpoint, we may delete
two quarter-circles and replace them with a vertical line segment of length2. We could keep track
of this savings and get a slightly better constant term in the statement of Theorem 2. For each
prime component we add, we saveπ − 2 in length.

Handling the other endpoints of the curve will prove to be a little more work. We may assume
that both line segments lie along the x-axis with the shared endpoint at the origin. SupposeL2’s
segment has length̀2, while L1’s segment has the smaller length`1.

We now rotate the remaining vertical quarter-circle ofL1 to face the corresponding quarter-
circle of L2. If `1 ≤ `2 − 2, we may replace both horizontal line segments with a single, shorter
horizontal line segment joining the ends of these vertical quarter circles to obtain the desired curve.
See Figure 7.

If `1 > `2 − 2, we cannot simply connect the endpoints of the quarter-circles after rotating the
lower quarter-circle to face right. The resulting curve would have cusps on both ends. We solve
this problem by finding a line tangent to both circles and following the composite path shown in
Figure 8.

It is less obvious that these changes reduce length. To see that they do, we consider the diagonal
line tangent to both circles shown in Figure 8. Since both circles are also tangent to a horizontal
line, by symmetry this horizontal line cuts the diagonal line in half. Consider Figure 9. We need
only show that half of the diagonal line (labelledx in the Figure) is shorter than the portion of the
quarter-circle it replaces (twice the angleθ).

Since the lower quarter-circle has unit radius, this amounts to proving thattan θ ≤ 2θ for
0 ≤ θ ≤ π/4. This is shown by a simple computation.

Since the resulting curve remainsC1,1, is still of unit thickness, and has less length than the total
length of the initial curves, this completes the proof. �
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FIGURE 7. This figure shows the extreme arcs of the two components of the con-
nect sum, straightened, and aligned with one another on the left. On the right, we
see the new curve. Two quarter-circles on the left have been replaced with a straight
line segment; the lower quarter-circle has been rotated to face right; the lower hor-
izontal segment (of length̀1) has been deleted; and the upper horizontal segment
(of length`2) has been replaced by a horizontal segment of length`2−`1−2. Since
these changes all reduce length, the curve on the right is strictly shorter.

FIGURE 8. This figure shows the two extreme arcs of the components in the case
where`1 > `2 − 2. When we rotate the lower quarter-circle to face right, it cannot
be joined by a horizontal straight segment to the upper quarter-circle to create aC1,1

curve; instead we find the diagonal line tangent to both quarter-circles and follow
the composite path shown.

FIGURE 9. This detailed figure enlarges the right-hand side of Figure 8. Consider
the triangle with the following vertices: the point of tangency of the diagonal seg-
ment with the lower circle, the center of the lower circle, and the midpoint of the
diagonal segment. The portion of the lower quarter-circle replaced by this half of
the line segment has length2θ (again by symmetry). The length of this portion of
the line segment is given byx.

An example of this construction is shown in Figure 10.
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FIGURE 10. Here we see the results of the construction of Theorem 2. Two
mirror-image trefoil knots, generated by the method of Proposition 1 from the arc-
presentation given in Figure 2, have been joined by the methods of Theorem 2 to
obtain the composite knot31#31.
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