
Chapter 6

Fundamental Graphs

We will bound and derive the eigenvalues of the Laplacian matrices of some fundamental graphs,
including complete graphs, star graphs, ring graphs, path graphs, and products of these that yield
grids and hypercubes. As all these graphs are connected, they all have eigenvalue zero with
multiplicity one. We will have to do some work to compute the other eigenvalues.

We will see in Part IV that the Laplacian eigenvalues that reveal the most about a graph are the
smallest and largest ones. To interpret the smallest eigenvalues, we will exploit a relation between
�2 and the isoperimetric ratio of a graph that is derived in Chapter 20, and which we state here
for convenience:

For every S ⇢ V ,

✓(S) � �2(1� s),

where s = |S| / |V | and

✓(S)
def
=

|@(S)|

|S|

is the isoperimetric ratio of S.

6.1 The complete graph

The complete graph on n vertices, Kn, has edge set {(a, b) : a 6= b}.

Lemma 6.1.1. The Laplacian of Kn has eigenvalue 0 with multiplicity 1 and n with multiplicity
n� 1.

Proof. To compute the non-zero eigenvalues, let  be any non-zero vector orthogonal to the all-1s
vector, so X

a

 (a) = 0. (6.1)
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We now compute the first coordinate of LKn
 . Using (3.3), the expression for the action of the

Laplacian as an operator, we find

(LKn
 ) (1) =

X

v�2

( (1)� (b)) = (n� 1) (1)�
nX

v=2

 (b) = n (1), by (6.1).

As the choice of coordinate was arbitrary, we have L = n . So, every vector orthogonal to the
all-1s vector is an eigenvector of eigenvalue n.

Alternative approach. Observe that LKn
= nI � 11T .

We often think of the Laplacian of the complete graph as being a scaling of the identity. For
every x orthogonal to the all-1s vector, Lx = nx .

Now, let’s see how our bound on the isoperimetric ratio works out. Let S ⇢ [n]. Every vertex in S
has n� |S| edges connecting it to vertices not in S. So,

✓(S) =
|S| (n� |S|

|S|
= n� |S| = �2(LKn

)(1� s),

where s = |S| /n. Thus, Theorem 20.1.1 is sharp for the complete graph.

6.2 The star graphs

The star graph on n vertices Sn has edge set {(1, a) : 2  a  n}.

To determine the eigenvalues of Sn, we first observe that each vertex a � 2 has degree 1, and that
each of these degree-one vertices has the same neighbor. Whenever two degree-one vertices share
the same neighbor, they provide an eigenvector of eigenvalue 1.

Lemma 6.2.1. Let G = (V,E) be a graph, and let a and b be vertices of degree one that are both
connected to another vertex c. Then, the vector  = �a � �b is an eigenvector of LG of eigenvalue
1.

Proof. Just multiply LG by  , and check (using (3.3)) vertex-by-vertex that it equals  .

As eigenvectors of di↵erent eigenvalues are orthogonal, this implies that  (a) =  (b) for every
eigenvector with eigenvalue di↵erent from 1.

Lemma 6.2.2. The graph Sn has eigenvalue 0 with multiplicity 1, eigenvalue 1 with multiplicity
n� 2, and eigenvalue n with multiplicity 1.

Proof. Applying Lemma 6.2.1 to vertices i and i+ 1 for 2  i < n, we find n� 2 linearly
independent eigenvectors of the form �i � �i+1, all with eigenvalue 1. As 0 is also an eigenvalue,
only one eigenvalue remains to be determined.
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Recall that the trace of a matrix equals both the sum of its diagonal entries and the sum of its
eigenvalues. We know that the trace of LSn

is 2n� 2, and we have identified n� 1 eigenvalues
that sum to n� 2. So, the remaining eigenvalue must be n.

To determine the corresponding eigenvector, recall that it must be orthogonal to the other
eigenvectors we have identified. This tells us that it must have the same value at each of the
points of the star. Let this value be 1, and let x be the value at vertex 1. As the eigenvector is
orthogonal to the constant vectors, it must be that

(n� 1) + x = 0,

so x = �(n� 1).

6.3 Products of graphs

We now define a product on graphs. If we apply this product to two paths, we obtain a grid. If
we apply it repeatedly to one edge, we obtain a hypercube.

Definition 6.3.1. Let G = (V,E, v) and H = (W,F,w) be weighted graphs. Then G⇥H is the
graph with vertex set V ⇥W and edge set

✓
(a, b), (ba, b)

◆
with weight va,ba, where (a,ba) 2 E and

✓
(a, b), (a,bb)

◆
with weight wb,bb, where (b,bb) 2 F .

Figure 6.1: An m-by-n grid graph is the product of a path on m vertices with a path on n vertices.
This is a drawing of a 5-by-4 grid made using Hall’s algorithm.

Theorem 6.3.2. Let G = (V,E, v) and H = (W,F,w) be weighted graphs with Laplacian
eigenvalues �1, . . . ,�n and µ1, . . . , µm, and eigenvectors ↵1, . . . ,↵n and �1, . . . ,�m, respectively.
Then, for each 1  i  n and 1  j  m, G⇥H has an eigenvector �i,j of eigenvalue �i + µj

such that
�i,j(a, b) = ↵i(a)�j(b).
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Proof. Let ↵ be an eigenvector of LG of eigenvalue �, let � be an eigenvector of LH of eigenvalue
µ, and let � be defined as above.

To see that � is an eigenvector of eigenvalue �+ µ, we compute

(L�)(a, b) =
X

(a,ba)2E

va,ba (�(a, b)� �(ba, b)) + wb,bb

X

(b,bb)2F

⇣
�(a, b)� �(a,bb)

⌘

=
X

(a,ba)2E

va,ba (↵(a)�(b)�↵(ba)�(b)) +
X

(b,bb)2F

wb,bb

⇣
↵(a)�(b)�↵(a)�(bb)

⌘

=
X

(a,ba)2E

va,ba�(b) (↵(a)�↵(ba)) +
X

(b,bb)2F

wb,bb↵(a)
⇣
�(b)� �(bb)

⌘

=
X

(a,ba)2E

�(b)�↵(a) +
X

(b,bb)2F

↵(a)µ�(b)

= (�+ µ)(↵(a)�(b)).

An alternative approach to defining the graph product and proving Theorem 6.3.2 is via
Kronecker products. G⇥H is the graph with Laplacian matrix

(LG ⌦ IW ) + (I V ⌦ LH).

6.3.1 The Hypercube

The d-dimensional hypercube graph, Hd, is the graph with vertex set {0, 1}d, with edges between
vertices whose names di↵er in exactly one bit. The hypercube may also be expressed as the
product of the one-edge graph with itself d� 1 times.

Let H1 be the graph with vertex set {0, 1} and one edge between those vertices. It’s Laplacian
matrix has eigenvalues 0 and 2. As Hd = Hd�1 ⇥H1, we may use this to calculate the eigenvalues
and eigenvectors of Hd for every d.

The eigenvectors of H1 are ✓
1
1

◆
and

✓
1
�1

◆
,

with eigenvalues 0 and 2, respectively. Thus, if  is an eigenvector of Hd�1 with eigenvalue �, then
✓
 
 

◆
and

✓
 
� 

◆
,

are eigenvectors of Hd with eigenvalues � and �+ 2, respectively. This means that Hd has
eigenvalue 2i for each 0  i  d with multiplicity

�d
i

�
. Moreover, each eigenvector of Hd can be

identified with a vector y 2 {0, 1}d:

 y (x ) = (�1)y
T x ,
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where x 2 {0, 1}d ranges over the vertices of Hd. Each y 2 {0, 1}d�1 indexing an eigenvector of
Hd�1 leads to the eigenvectors of Hd indexed by (y , 0) and (y , 1).

Using Theorem 20.1.1 and the fact that �2(Hd) = 2, we can immediately prove the following
isoperimetric theorem for the hypercube.

Corollary 6.3.3.
✓Hd

� 1.

In particular, for every set of at most half the vertices of the hypercube, the number of edges on
the boundary of that set is at least the number of vertices in that set.

This result is tight, as you can see by considering one face of the hypercube, such as all the
vertices whose labels begin with 0. It is possible to prove this by more concrete combinatorial
means. In fact, very precise analyses of the isoperimetry of sets of vertices in the hypercube can
be obtained. See [Har76] or [Bol86].

6.4 Bounds on �2 by test vectors

If we can guess an approximation of  2, we can often plug it in to the Laplacian quadratic form
to obtain a good upper bound on �2. The Courant-Fischer Theorem tells us that every vector v
orthogonal to 1 provides an upper bound on �2:

�2 
vTLv

vTv
.

When we use a vector v in this way, we call it a test vector.

Let’s see what a test vector can tell us about �2 of a path graph on n vertices. I would like to use
the vector that assigns i to vertex a as a test vector, but it is not orthogonal to 1. So, we will use
the next best thing. Let x be the vector such that x (a) = (n+ 1)� 2a, for 1  a  n. This vector
satisfies x ? 1, so

�2(Pn) 

P
1a<n(x(a)� x(a+ 1))2

P
a x(a)

2

=

P
1a<n 2

2

P
a(n+ 1� 2a)2

=
4(n� 1)

(n+ 1)n(n� 1)/3
(clearly, the denominator is n3/c for some c)

=
12

n(n+ 1)
. (6.2)

We will soon see that this bound is of the right order of magnitude. Thus, Theorem 20.1.1 does
not provide a good bound on the isoperimetric ratio of the path graph. The isoperimetric ratio is
minimized by the set S = {1, . . . , n/2}, which has ✓(S) = 2/n. However, the upper bound


