The second form and curvature

We now Know:

Sp:
$$T_pM \rightarrow T_pM$$
, $S_p = -D_q^2$
(where $\vec{q}: M \rightarrow S^2$ is the Gauss map)
taking each point $\vec{p} \in M$ to the normal vector \vec{n} at \vec{p} .

$$S_p(\vec{v}) = \begin{bmatrix} E & F \end{bmatrix} \begin{bmatrix} R & M \end{bmatrix} \begin{bmatrix} A \\ B \end{bmatrix}$$
if $\vec{v} = A \vec{v}_{u} + B \vec{v}_{v}$, and
$$R = -\langle \vec{n}_{u}, \vec{x}_{u} \rangle$$

$$N = -\langle \vec{n}_{v}, \vec{x}_{v} \rangle$$

$$N = -\langle \vec{n}_{v}, \vec{x}_{v} \rangle$$

$$N = -\langle \vec{n}_{v}, \vec{x}_{v} \rangle$$

$$S_p(\vec{v}) = \langle \vec{v}, \vec{v} \rangle_{T_p} = \langle$$

 $S_{p}(\vec{v})$ is self-adjoint wrt I_{p} , so $(\vec{v}, S_{p}(\vec{\omega}))_{I_{p}} = (S_{p}(\vec{v}), \vec{\omega})_{I_{p}}$.

 $S_p(t)$ has two orthogonal, unit eigenvectors $J_{12}J_{2}$ with real eigenvalues $X_1 > X_2$.

If $\vec{V} = \cos \Theta \vec{v}_1 + \sin \Theta \vec{v}_2$, then $(\vec{v}, \vec{v})_{T_p} = K_1 \cos \Theta \vec{v}_1 + K_2 \sin \Theta \vec{v}_2$

Goal: Show how to use this to compute and understand.

Proposition. We may compute IIp using the alternate formulas $l = \langle \vec{n}, \vec{x}_{uu} \rangle_{\mathbb{R}^3} m = \langle \vec{n}, \vec{x}_{uv} \rangle_{\mathbb{R}^3} n = \langle \vec{n}, \vec{x}_{vv} \rangle_{\mathbb{R}^3}$ Proof. We have already shown $m = \langle -\hat{\eta}_{u}, \vec{\chi}_{v} \rangle = \langle \hat{\eta}_{v}, \hat{\chi}_{uv} \rangle = \langle \hat{\eta}_{v}, \hat{\chi}_{vu} \rangle = \langle \hat{\eta}_{v},$ by taking of (n, xu) =0. Similarly, 〇= 記くた、えい>=くたいえい〉+くた、えいい

$$0 = \frac{2}{3u} \langle \hat{\tau}_{0}, \hat{\chi}_{uv} \rangle = \langle \hat{\tau}_{uv}, \hat{\chi}_{vv} \rangle + \langle \hat{\tau}_{0}, \hat{\chi}_{uv} \rangle$$

$$0 = \frac{2}{3v} \langle \hat{\tau}_{0}, \hat{\chi}_{v} \rangle = \langle \hat{\tau}_{0}, \hat{\chi}_{v} \rangle + \langle \hat{\tau}_{0}, \hat{\chi}_{uv} \rangle$$

Examples.

$$\vec{n}$$
 is constant
$$D\vec{g} = 0$$

$$S\vec{p} = 0$$

$$K_1 = K_2 = 0$$

$$\vec{V}_2, \vec{V}_2 \text{ or bitrary}$$

sphere of radius a (oriented inwards)

$$\hat{N} = -\frac{1}{a}\hat{X}$$

$$\hat{D}_{3} = -\frac{1}{a}\hat{I}$$

$$\hat{S}_{3} = +\frac{1}{a}\hat{I}$$

$$\hat{S}_{4} = \hat{K}_{2} = \frac{1}{a}$$
(slice cornes bending towards normal)

Sphere of radius a (oriented outwards)

If the signs bother you, recall that the "positive" parametrization of 52 as a graph has inward normal.

At
$$\vec{p} = \begin{bmatrix} 0 \\ -1 \end{bmatrix}$$
, $\vec{n} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$, and $\vec{v} = \begin{bmatrix} \cos \theta \\ \sin \theta \end{bmatrix}$
so the slice plane is parametrized
by $(x,y) \mapsto x\vec{v} + y\vec{n} + \vec{p}$

The slice curve satisfies $x^2+2^2=1$ which is an ellipse (unless $\Theta=\frac{\pi}{2}$).

We prove it by compating $X_1 = x \cos \theta \quad X_3 = y - 1$ So the equation $X_1^2 + X_3^2 = 1$ becomes $1 = \cos^2 \theta \times^2 + (y - 1)^2$ $= \frac{(x - 0)^2}{\sec^2 \theta} + \frac{(y - 1)^2}{1}$

We composted long ago that the signed curvature of $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ was

 $X_{\pm}(t) = \frac{ab}{(a^2 \sin^2 t + b^2 \cos^2 t)^{3/2}}$

In the ccw parametrization

$$\vec{x}(t) = \begin{bmatrix} a \cos t + x_0 \\ b \sin t + y_0 \end{bmatrix}$$

since we are evaluating at t = -T/2, with $\alpha = \sec \Theta$, b = 1, we get

$$X_{\pm}(\Theta) = \frac{\sec \Theta}{\sec^3 \Theta} = \cos^2 \Theta$$

Suppose that \vec{J}_1, \vec{J}_2 are principal directions. We know that if $\vec{J} = \cos\theta \vec{J}_1 + \sin\theta \vec{J}_2$ we have

$$X_{\pm}(\Theta) = X_{\Delta}\cos^2\Theta + X_{2}\sin^2\Theta$$

We conclude that

$$X_{1} = 1, \quad \vec{V}_{1} = \vec{e}_{1}$$
 $X_{2} = 0, \quad \vec{V}_{1} = \vec{e}_{2}$

Note: We can just recompute

$$\vec{\alpha}'(\varphi) = \begin{bmatrix} -a \sin \varphi \\ b \cos \varphi \end{bmatrix}$$
 $\vec{\alpha}''(\varphi) = \begin{bmatrix} -a \cos \varphi \\ -b \sin \varphi \end{bmatrix}$

$$X_{+}(\varphi) = \frac{\langle \vec{\alpha}''(\varphi), \vec{\alpha}'(\varphi)^{\perp} \rangle}{\langle \vec{\alpha}'(\varphi), \vec{\alpha}'(\varphi) \rangle^{3/2}}$$

$$= \frac{\langle \vec{\alpha}''(\varphi), \vec{\alpha}'(\varphi) \rangle^{3/2}}{\langle \vec{\alpha}'(\varphi), \vec{\alpha}'(\varphi) \rangle^{3/2}}$$

$$= \frac{\langle \vec{\alpha}''(\varphi), \vec{\alpha}'(\varphi), \vec{\alpha}'(\varphi) \rangle^{3/2}}{\langle \vec{\alpha}'(\varphi), \vec{\alpha}'(\varphi), \vec{\alpha}'(\varphi) \rangle^{3/2}}$$

$$(a^2 \sin^2 \varphi + b^2 \cos \varphi)^{3/2}$$

Example
$$\in \mathbb{R}^{\frac{1}{2}}$$
 $\int \overline{x}(u_N) = \begin{bmatrix} \cos u \\ \sin u \end{bmatrix}$
We compute

$$\overline{\chi}_{u} = (-\sin u, 0, \cos u)$$

$$\vec{X}_{v} = (0, 1, 0)$$

$$\vec{n} = (-\cos u, 0, -\sin u)$$

$$\vec{X}_{11} = (0,0,0)$$

$$E = \langle \vec{x}_{u}, \vec{x}_{u} \rangle = 1$$
 $E = \langle \vec{x}_{u}, \vec{x}_{u} \rangle = 1$
 $E = \langle \vec{x}_{u}, \vec{x}_{v} \rangle = 1$
 $M = \langle \vec{x}_{u}, \vec{n} \rangle = 0$
 $G = \langle \vec{x}_{v}, \vec{x}_{v} \rangle = 1$
 $M = \langle \vec{x}_{vv}, \vec{n} \rangle = 0$

Thus, at u = -T/2, v = 0, we have

$$S_{p} = I_{p}^{-1} I_{p} = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$$

It follows that the eigenvalues K_1, K_2 are 1,0 with eigenvectors

$$\vec{\nabla}_{\perp} = \begin{bmatrix} 2 \\ 0 \end{bmatrix} = \vec{X}_{u} + O\vec{X}_{v} = (1,0,0) = \vec{e}_{\perp}$$

$$\vec{\nabla}_{1} = \vec{\nabla}_{1} + \vec{\nabla}_{2} + \vec{\nabla}_{3} + \vec{\nabla}_{4} + \vec{\nabla}_{5} + \vec{\nabla}_{5}$$

$$\vec{V}_{z} = [0] = 0 \vec{x}_{u} + \vec{x}_{v} = (0,1,0) = \vec{e}_{z}$$

which agrees with our previous calculation.

We now introduce

Definition. The Gass convature

and the mean convature

$$H = \frac{1}{2} \text{ tr } S_P = \frac{1}{2} (K_1 + K_2)$$

Examples.

(a)
$$K = \frac{1}{\alpha^2}$$
, $H = \frac{1}{\alpha}$ (inward normal)
= $-\frac{1}{\alpha}$ (outward normal)

(1)
$$K = 0$$
, $H = \frac{1}{2}$ (in ward normal)

We note that

Proposition: If K<O, there are exactly two directions with $\langle \vec{v}, \vec{v} \rangle_{Tp} = 0$.

If K>O, there are no directions with $\langle \vec{v}, \vec{v} \rangle_{Tp} = 0$.

Proof. If $\vec{v} = \cos \theta \vec{v}_{\Delta} + \sin \theta \vec{v}_{Z}$, $\langle \vec{v}, \vec{v} \rangle = \chi_{\Delta} \cos^{2} \theta + \chi_{Z} \sin^{2} \theta$ $\sin^{2} \theta = -\frac{\chi_{\Delta}}{\chi_{Z}}$

or $\Theta = \operatorname{arctan}(\pm \sqrt{-K_1}/K_2).$

There are exactly two such Θ in $[-T/2, T/2] <=> -K_1/K_2 > 0$. Notice that $\tan(\Theta+\pi) = \tan\Theta$, so there are also two such Θ in [T/2, 3T/2]. \square

Definition. If $\langle \vec{v}, \vec{v} \rangle_{\text{IP}} = 0$, we say \vec{v} points in an asymptotic direction

asymptotic directions