The second form and curvature

We now know:

$$
S_{p}: T_{p} M \rightarrow T_{p} M, \quad S_{p}=-D \vec{g}
$$

$\left(\begin{array}{l}\text { Where } \vec{g}: M \rightarrow S^{2} \text { is the Gauss map } \\ \text { taking each point } \vec{p} \in M \text { to the } \\ \text { normal vector } \vec{n} \text { at } \vec{p} \text {. }\end{array}\right)$

$$
S_{p}(\vec{v})=\left[\begin{array}{ll}
E & F \\
F & G
\end{array}\right]^{-1}\left[\begin{array}{ll}
l & m \\
m & n
\end{array}\right]\left[\begin{array}{l}
a \\
b
\end{array}\right]
$$

if $\vec{v}=a \vec{x}_{u}+b \vec{x}_{v}$, and

$$
\begin{aligned}
& l=-\left\langle\vec{n}_{u}, \vec{x}_{u}\right\rangle \\
& m=-\left\langle\vec{n}_{u}, \vec{x}_{v}\right\rangle \\
& n=-\left\langle\vec{n}_{v}, \vec{x}_{v}\right\rangle \\
&\left\langle\vec{v}, S_{p}(\vec{v})\right\rangle_{I_{p}}=\left\langle\vec{v}_{v}\left[\begin{array}{l}
l m \\
n
\end{array}\right] \vec{v}\right\rangle_{\mathbb{R}^{2}} \\
&=\langle\vec{v}, \vec{v}\rangle_{\mathbb{I}_{p}}= \text { signed curvature of } \\
& \vec{v}, \vec{n} \text { slice curve. }
\end{aligned}
$$

$S_{p}(\vec{v})$ is self-adjoint wot I_{p},
So $\left\langle\vec{v}, S_{p}(\vec{w})\right\rangle_{I_{p}}=\left\langle S_{p}(\vec{v}), \vec{w}\right\rangle_{I_{p}}$.
$S_{p}(\vec{v})$ has two orthogonal, unit eigenvectors $\vec{v}_{11} \vec{v}_{2}$ with real eigenvalues $K_{1} \geqslant K_{2}$.
If $\vec{v}=\cos \theta \vec{v}_{1}+\sin \theta \vec{v}_{2}$, then

$$
\langle\vec{v}, \vec{v}\rangle_{I_{P}}=k_{1} \cos \theta \vec{v}_{1}+k_{2} \sin \theta \vec{v}_{2}
$$

Goal: Show how to use this to compote and understand.

Proposition. We may compute \mathbb{I}_{p} using the alternate formulas

$$
l=\left\langle\vec{n}, \vec{x}_{u u}\right\rangle_{\mathbb{R}^{3}} m=\left\langle\vec{n}, \vec{x}_{u v}\right\rangle_{\mathbb{R}^{3}} n=\left\langle\vec{n}, \vec{x}_{v v}\right\rangle_{\mathbb{R}^{3}}
$$

Proof We have already shown

$$
m=\left\langle-\vec{n}_{u}, \vec{x}_{v}\right\rangle=\left\langle\vec{n}, \vec{x}_{u v}\right\rangle=\left\langle\vec{n}, \vec{x}_{v u}\right\rangle=\left\langle\vec{n} v, \vec{x}_{u}\right\rangle
$$

by taking $\frac{\partial}{\partial v}$ of $\left\langle\vec{n}, \vec{x}_{u}\right\rangle \equiv 0$.
Similarly,

$$
\begin{aligned}
& 0=\frac{\partial}{\partial u}\left\langle\vec{n}_{,} \vec{x}_{u}\right\rangle=\left\langle\vec{n}_{u}, \vec{x}_{u}\right\rangle+\left\langle\vec{n}_{,} \vec{x}_{u u}\right\rangle \\
& 0=\frac{\partial}{\partial v}\left\langle\vec{n}_{,}, \vec{x}_{v}\right\rangle=\left\langle\vec{n}_{v}, \vec{x}_{v}\right\rangle+\left\langle\vec{n}_{,} \vec{x}_{w v}\right\rangle .
\end{aligned}
$$

Examples.
\vec{n} is constant

$$
\begin{aligned}
& D \vec{g} \equiv 0 \\
& S_{\vec{p}} \equiv 0 \\
& k_{1}=k_{2}=0
\end{aligned}
$$

\vec{V}_{1}, \vec{V}_{2} arbitrary

Sphere of radius a (oriented inwards)

$$
\begin{aligned}
& \vec{n}=-\frac{1}{a} \vec{x} \\
& D \vec{g} \equiv-\frac{1}{a} I \\
& S_{\vec{p}} \equiv+\frac{1}{a} I \\
& K_{1}=K_{2}=\frac{1}{a}
\end{aligned}
$$

(slice curves bending towards normal)

Sphere of radius a (oriented outwards)

$$
\begin{aligned}
& \vec{n}=\frac{1}{a} \vec{x} \\
& D \vec{g} \equiv \frac{1}{a} I \\
& S_{\vec{p}}=-\frac{1}{a} I \\
& K_{1}=K_{2}=-\frac{1}{a}
\end{aligned}
$$

(slice curves bending away from normal)

If the signs bother you, recall that the "positive" parametrization of S^{2} as a graph has inward normal.

Example.

At $\vec{p}=\left[\begin{array}{c}0 \\ 0 \\ -1\end{array}\right], \vec{n}=\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right]$, and $\vec{v}=\left[\begin{array}{c}\cos \theta \\ \sin \theta \\ 0\end{array}\right]$ so the slice plane is parametrized by $(x, y) \mapsto x \vec{v}+y \vec{n}+\vec{p}$

The slice curve satisfies $x^{2}+z^{2}=1$ which is an ellipse (unless $\theta=\pi / 2$).

We prove it by computing

$$
x_{1}=x \cos \theta \quad x_{3}=y-1
$$

so the equation $x_{1}^{2}+x_{3}^{2}=1$ becomes

$$
\begin{aligned}
1 & =\cos ^{2} \theta x^{2}+(y-1)^{2} \\
& =\frac{(x-0)^{2}}{\sec ^{2} \theta}+\frac{(y-1)^{2}}{1}
\end{aligned}
$$

We computed long ago that the signed curvature of $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ was

$$
K_{ \pm}(t)=\frac{a b}{\left(a^{2} \sin ^{2} t+b^{2} \cos ^{2} t\right)^{3 / 2}}
$$

in the ccu parametrization

$$
\vec{\alpha}(t)=\left[\begin{array}{l}
a \cos t+x_{0} \\
b \sin t+y_{0}
\end{array}\right]
$$

since we are evaluating at $t=-\pi / 2$, with $a=\sec \theta, b=1$, we get

$$
K_{ \pm}(\theta)=\frac{\sec \theta}{\sec ^{3} \theta}=\cos ^{2} \theta
$$

Suppose that \vec{v}_{1}, \vec{v}_{2} are principal directions. We know that if $\vec{v}=\cos \theta \vec{v}_{1}+\sin \theta \vec{v}_{2}$ we have

$$
K_{ \pm}(\theta)=K_{1} \cos ^{2} \theta+K_{2} \sin ^{2} \theta
$$

We conclude that

$$
\begin{aligned}
& X_{1}=1, \vec{v}_{1}=\vec{e}_{1} \\
& K_{2}=0, \vec{v}_{2}=\vec{e}_{2}
\end{aligned}
$$

Note: We can just recompute

$$
\begin{aligned}
\vec{\alpha}^{\prime}(\varphi)= & {\left[\begin{array}{c}
-a \sin \varphi \\
b \cos \varphi
\end{array}\right] \quad \vec{\alpha}^{\prime \prime}(\varphi)=\left[\begin{array}{c}
-a \cos \varphi \\
-b \sin \varphi
\end{array}\right] } \\
K_{ \pm}(\varphi) & =\frac{\left\langle\vec{\alpha}^{\prime \prime}(\varphi), \vec{\alpha}^{\prime}(\varphi)^{\prime}\right\rangle}{\left\langle\vec{\alpha}^{\prime}(\varphi), \vec{\alpha}^{\prime}(\varphi)\right\rangle^{3 / 2}} \\
& \left.=\frac{\left\langle\left[\begin{array}{l}
-a \cos \varphi \\
-b \sin \varphi
\end{array}\right],\left[\begin{array}{l}
-b \cos \varphi \\
-a \sin \varphi
\end{array}\right]\right\rangle}{\left\langle\left[\begin{array}{c}
-a \sin \varphi \\
b \cos \varphi
\end{array}\right]\right.}\left[\begin{array}{c}
-a \sin \varphi \\
b \cos \varphi
\end{array}\right]\right\rangle^{3 / 2} \\
& =\frac{a b}{\left(a^{2} \sin ^{2} \varphi+b^{2} \cos \varphi\right)^{3 / 2}}
\end{aligned}
$$

Example. $\quad \cdot \hat{\imath}^{2} \Rightarrow \vec{x}(u, v)=\left[\begin{array}{c}\cos u \\ v \\ \sin u\end{array}\right]$
We compute

$$
\begin{aligned}
& \vec{x}_{u}=(-\sin u, 0, \cos u) \\
& \vec{x}_{v}=(0,1,0) \\
& \vec{n}=(-\cos u, 0,-\sin u) \\
& \vec{x}_{u u}=(-\cos u, 0,-\sin u) \\
& \vec{x}_{u v}=(0,0,0) \\
& \vec{x}_{u v}=(0,0,0)
\end{aligned}
$$

so

$$
\begin{array}{ll}
E=\left\langle\vec{x}_{u}, \vec{x}_{u}\right\rangle=1 & l=\left\langle\vec{x}_{u u}, \vec{n}\right\rangle=1 \\
F=\left\langle\vec{x}_{u}, \vec{x}_{v}\right\rangle=0 & m=\left\langle\vec{x}_{u v}, \vec{n}\right\rangle=0 \\
G=\left\langle\vec{x}_{v}, \vec{x}_{v}\right\rangle=1 & n=\left\langle\vec{x}_{v v}, \vec{n}\right\rangle=0
\end{array}
$$

Thus, at $u=-\pi / 2, v=0$, we have

$$
S_{p}=I_{p}^{-1} I_{p}=\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right]
$$

If follows that the eigenvalues K_{1}, K_{2} are 1,0 with eigenvectors

$$
\begin{aligned}
& \vec{V}_{1}= {\left[\begin{array}{l}
1 \\
0
\end{array}\right]=\vec{x}_{u}+O \vec{x}_{v}=(1,0,0)=\vec{e}_{1} } \\
& \text { _in }_{\text {in }} \text { the } \vec{x}_{u s} \vec{x}_{v} \text { basis } \\
& \vec{V}_{2}=\left[\begin{array}{l}
0 \\
1
\end{array}\right]=O \vec{x}_{u}+\vec{x}_{v}=(0,1,0)=\vec{e}_{2}
\end{aligned}
$$

which agrees with our previous calculation.

We now introduce
Definition. The Gauss curvature

$$
K=\operatorname{det} S_{p}=x_{1} K_{2}
$$

and the mean curvature

$$
H=\frac{1}{2} \operatorname{tr} S_{p}=\frac{1}{2}\left(k_{1}+k_{2}\right)
$$

Examples.
(a)

$$
\begin{aligned}
K=\frac{1}{a^{2}}, \quad H & =\frac{1}{a} \text { (inward normal) } \\
& =-\frac{1}{a} \text { (outward nomal) } \\
K=0, \quad H & =0 \\
K=0, \quad H & =\frac{1}{2} \text { (inward normal) }
\end{aligned}
$$

$$
<K=0, H=0
$$

We note that
Proposition: If $K<0$, there are exactly two directions with $\langle\vec{v}, \vec{v}\rangle_{\mathbb{I}_{p}}=0$.
If $k>0$, there are no directions with $\langle\vec{v}, \vec{v}\rangle_{I_{p}}=0$.

Proof. If $\vec{v}=\cos \theta \vec{v}_{1}+\sin \theta \vec{v}_{2}$,

$$
\left\langle\vec{v}_{,} \vec{v}\right\rangle=x_{1} \cos ^{2} \theta+x_{2} \sin ^{2} \theta
$$

So $\langle\vec{v}, \vec{v}\rangle=0<>$

$$
\tan ^{2} \theta=-\frac{K_{1}}{K_{2}}
$$

or

$$
\theta=\arctan \left(\pm \sqrt{-k_{1} / k_{2}}\right) .
$$

There are exactly two such θ in $[-\pi / 2, \pi / 2] \Leftrightarrow-k_{1} / k_{2}>0$. Notice that $\tan (\theta+\pi)=\tan \theta$, so there are also two such θ in $[\pi / 2,3 \pi / 2]$.

Definition. If $\langle\vec{v}, \vec{v}\rangle_{I_{P}}=0$, we say \vec{V} points in an asymptotic direction.

asymptotic directions

