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THE COMPLETE SET OF JITTERBUG TRANSFORMERS AND 
THE ANALYSIS OF THEIR MOTION 

H. F. VERHEYEN 

De Reep, 19, 2230 Schilde, Belgium 

A~traet--During many decades and in different locations people have been fascinated with the 
remarkable variety of ideas and inventions of Richard Buckminster Fuller. Some admire him 
highly for his versatility while others despise him for not having been a well-outlined architect, 
engineer or mathematician. And yet in any field his genius revealed itself in original concepts so 
many in number, that hardly any of these could have been fully worked out during his lifetime. 
Among these is the Jitterbug, by many considered merely as a geometrical gadget with no further 
use than performing an attractive transformation between some polyhedra. However, the Jitterbug 
inspired others to establish similar transformations between some more polyhedra, and there have 
been publications on these. In these transformations, one could observe Jitterbug-like structures, 
although they were not studied as sets on their own, but merely appearing while one polyhedron 
transforms into another one. Clearly there must exist a number of Jitterbug-like transformers 
and this number must be found when an appropriate definition is applied within the groups of 
symmetry. 

This opens a whole field of investigation one can compare with the study of uniform polyhedra during 
its history. Since the previous century many new discoveries had been made, but not until 1954 was this 
matter mathematically dealt with, and in a way that the entire number of uniform polyhedra has been 
established. 

A similar approach is handled in this article, in which the Jitterbug-like set is first defined with respect 
to its group of symmetries. Then, an enumeration is carried out, resulting in the existence of two infinite 
classes in the dihedral groups, and 20 types in the tetra-, octa- and icosahedral groups of symmetry. 
Consequently, the geometrical properties are outlined, and peculiarities explained. 

The article ends with an array of applications in architecture, engineering, art and mathematics, 
such as Fuller would have wanted it. Finally, since the Jitterbug-like transformer needs a new definition 
to complete the knowledge of its number and its full motion, a new name has been chosen here: 
dipolygonid. 

1. I N T R O D U C T I O N  

In  various publ ica t ions  and  lectures, Richard Buckminster  Ful ler  in t roduced a geometrical 
s tructure which he called the "J i t te rbug" ,  a set of  eight identical regular  triangles connected to one 
ano ther  by the vertices [Fig. l(a)]. 

The structure is able to perform a symmetrical  ex- and  impans ion  mot ion ,  i l lustrat ing a 
t r ans fo rmat ion  between the oc tahedron  and  cuboctahedron.  As Cl in ton  observed in his paper  on  
expanding  rigid structures [1], each triangle is subject to a t rans la t ion- ro ta t ion  a long its symmetry  
axis. W h e n  star t ing f rom the posi t ion in the octahedron,  these axes are the four t r iangular  
symmetry  axes of  the octahedron.  W h e n  describing cylinders abou t  the triangles a long the 
axes, each vertex c o m m o n  to two triangles moves a long the intersecting curve of  the two 
cylinders. 

Both C l in ton  and  Stuart  [2] extend the J i t terbug t rans format ion  by star t ing this process at  other  
Pla tonic  solids and  some Arch imedean  solids too, thus establishing a n u m b e r  of  Ji t terbug-like 
transformers.  The ques t ion arises now: how can these t ransformers  be geometrically defined 
result ing in a complete classification, and  what  is their number?  

2. M A T H E M A T I C A L  A P P R O A C H  

In  a t tempt ing  to create a geometrical  definit ion suitable for the F u l l e r - S t u a r t - C l i n t o n  transfor-  
mat ions  some pre l iminary  observat ions appear:  
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1. Each t ransformat ion  starts f rom a Platonic solidi" or  an Archimedean solid,:~ 
while certain rotat ional  symmetries o f  that  solid remain.§ 

2. The t ransformers are no t  symmetrical  with respect to reflections which leave the 
solid invariant.  

3. The structures are composed  o f  one or  two types o f  polygons,  all having equal 
edge length.¶ 

4. The mot ion  of  the vertices is along the intersecting curve o f  two circumscribed 
cylinders. t ' t  

The previous observat ions make  clear that  the t ransformers  have to be studied in connect ion with 
groups  o f  rotations.  Structures having a g roup  of  symmetries are usually best unders tood by 
extracting a fundamenta l  par t  in accordance to a generating subset whose number  o f  elements is 
minimal.:~:~ 

3. P O L Y G O N - D I P O L Y G O N - D I P O L Y G O N I D  

3.1. Polygon 

A polygon  can also be defined by a ro ta t ion and a point,  in an equivalent way  to the definitions 
o f  Gr i inbaum [4] and Coxeter  [5]. The advantage  here is the consistency in definitions when 
generating higher groups  o f  symmetries. Let .4 be a rota t ion and P a point. The image o f  the line 
segment a = [P, A(P) ]  over gen{A } (the cyclic group of  rotat ions generated by .4) is the regular 
po lygon  produced by A in P. 

I f  # gen{.4 } is finite, say s, the po lygon  is composed  o f  s vertices and s edges, all equal in length. 
I f  gen{A } is discrete, the po lygon  is an infinite regular polygon.  

Fo r  all points  P outside o f  rA, axis o f  A, the plane th rough  P and perpendicular  to rA intersects 
rA in M, whereas in the triangle A P, M, A (P)  the angle z~P, M, .4(P)  is invariant  and denoted by 
$,  and will be referred to as the central angle of  the rota t ion A. 

Obviously 0 ~ $ ~ n. 
Let  A be distinct f rom the identity. A m o n g  the rotat ions o f  gen{.4 }, R and R - ~ are those two 

whose central angle is the smallest besides the central angle 0 o f  the identity in the group.  I f  gen{A } 
is finite, the central  angle o f  R and R - I  is 2~/s. Then, clearly R an R -~ are generators o f  gen{.4 }. 
Let 

.4 =Rd(1  ~ d  < s ) ~ . 4  = ( R - t )  "-d. 

Let  the nota t ions  o f  R and R-1  be chosen such that  

. < s  
d <~ s - d-~ d ~.-~ 

d is called the density of  the polygon,  and m = s/d the polygonal value of  the ro ta t ion A. The 
nota t ion  for the po lygon  is {m}, and m/1> 2, for d ~ s / 2 ~ 2  <<. s /d.~ 

tClinton started a face-transformation from each of the five Platonic solids, although the octahedron provided the only 
coherent transformer: the Jitterbug. To be coherent, the remaining transformers had to be composed of coplanar pairs 
of polygons, as will be illustrated further. Even then, the tetrahedral transformer, composed of four coplanar pairs of 
triangles, would only be another appearance of the Jitterbug in one of its positions below the non-convex phase. 

:~Stuart started a transformation from a semi-regular solid: the cuboctahedron. The transformation from cuboctahedron 
to rhombicuboctahedron is nicely shown on a flipmovie by the pages. However, the motion is restricted to the convex 
phase. 

§Namely the rotations determined by those axes, along which the polygons transform. However, the transformers have all 
a symmetry group of rotations, e.g. Stuart's transformer of the cuboctahedron has the octahedral group of rotations 
($4) as its symmetry group, although the Jitterbug, which starts from the octahedron, has the tetrahedral group of 
rotations as its symmetry group (/14), and not the octahedral. This can be understood by considering the octahedron 
as the semi-regular polyhedron of the tctrahedral group of isometrics ($4A4), just like the cuboctahcdron is in the 
octahedral group of symmetries ($4 × 1). 

¶Even in Clinton's edge transformations of the five Platonic solids the edges are merely digons. 
i'l"Or at least part of it, since the Fuller-Stuart-Clinton transformers are only determined as being convex, i.e. the motion 

ceases when the faces start intersecting each other. 
l:~To be compared to the Coxeter-Wythoff construction of the polyhedral kaleidoscope, which represents a set of three 

reflections as generating the group of isometrics of a polyhedron. The kaleidoscope is associated with a fundarncntal 
region wherein the fundamental part of tim polyhedron is conceived [3]. 

~{rn} is the Coxcter notation given to a regular polygon [5], while the polygonal value [6] implies a definition for density 
of a polygon, conform to Coxeter's approach [5]. 
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Fig. l(a). The Jitterbug. 

Fig. l(b). Clinton's face-transformation can also be adapted to the icosidodecahedron, The transform- 
ation is illustrated in the (1) rhombieosidodecahedron, (2) snub dodecahedron and (3) icosidodecahedron. 

Hence, if m is a natural number > 2, {m} is the regular convex polygon composed of  
m edges and m vertices. If  m is rational, {m } is a regular star polygon of  order s and density 
s /m.  

Since A = R a, the central angle of  A can be calculated: 

2 n  2~  2 a  
~ = - - ' d  . . . .  . 

s s m 
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Fig. 2 

Figure 2 illustrates an example where A has a central angle of 4~/5, gen{A } = {E, A, A 2, A 3, A 4} 
and s = 5, d = 2 and R is the rotation of a central angle 2~r/5. 

If s = 1, the polygon {1} is a monogon, i.e. composed of 1 vertex and an edge of length 
0.t 

If s = 2, the polygon {2} is a digon, being composed of two collapsing edges and having two 
vertices P and A (P). Although degenerate, the digon will be considered as a real polygon, and will 
appear to be of great importance further on. When P ~ rA, axis of A, the degenerate polygon is 
composed of s collapsing edges of length 0, and contains s coinciding vertices P. 

From here on, the order of A will be supposed to be finite and > 1. The polygonal value of a 
rotation indicates that any polygon produced in any point is of type {m }. 

The whole process described here means no more than looking at a polygon from the point of 
view of rotational symmetry. Clearly A - ~ produces an identical polygon {m } in P. The definition 
determines a regular polygon as being a closed, broken line segment in a plane, perpendicular 
to r A. The polygon indicates a maximal bounded subset of the plane, which will be called the 
polygonal fat:c, or simply the face of the polygon. Polygonal faces will be used for constructing 
polyhedra [7]. 

3.2. Dipolygon 
Each group of rotations has a point of invariancy O, being the one point of intersection of all 

axes of the rotations. Hence, the next step in the construction of a solid definition is to consider 
two rotations A and B whose axes intersect in one point O. 

A produces {m } in P, and B produces {n } in P. This pair of polygons will be called a dipolygon, 
produced by the base {A, B} in P (Fig. 3). 

Consequently three more bases produce the same dipolygon in P: {A, B-~}, {A-~, B} and 
{A -1, B-I} (Fig. 4). 

Dipolygonal specifications. A has order s, polygonal value m; B has order t, polygonal value n. 
The dipolygonal angle 0: r~ and rn form in O the angles 0 and Ir - 0, where the choice for this 

tWhen A is the identity, E. 
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notation is such that: 

71:...+ 7g~ 
O ~ lr - O --* 20 << rr --* O ~ 2 0 < 0 ~ < ~ T t - 0 < r r  

{m } has center M 
{n} has center N. 

Also, the following properties exist: (a) the planes determined by the polygons {m } and {n }, are 
perpendicular to rA and rB resp., in the points M and N resp.; (b) the dihedral angle of these planes 
is 0 (or the suppl, rr - 0 ) .  

Now consider the circumscribed cylinders of {m } and {n }, These are simply defined by rA and 
P, and rs and P. When the radii of the cylinders have different length, the intersection will be 
composed of two distinct curves, which have central inverse symmetry in O [Fig. 5(a)]. P belongs 
to one of these curves. When the cylinders are equiradial (RA = RB), the two curves have two 
common points, altogether forming two intersecting ellipses that have a common smaller axis [Fig. 
5(b)]. Still here, the intersection can be considered as being composed of two centrally inverse curves 
[Fig. 5(c)]. 

When P moves along the curve to which it belongs, even in the case of equiradial cylinders, in 
each position a dipolygon can be produced by the base {A, B}. Such a dipolygon is a transformed 
image of the first dipolygon, by a translation rotation of {m } along rA, and of {n } along rB. This 
transformation will be called the uniform motion of the dipolygon. 

An equation for the intersection of  the cylinders is calculated when a left-oriented base (X, Y, Z)  
is chosen as in Fig. 6. A and B are chosen such that for the radii RA and RB of the cylinders: 

R A ~ R B ;  0 = & I O M ,  O N I ;  Ix = ~ I X + , O P ~ I .  

The equations of the cylinders are: 

C a ~ x  2 +y2  = R~ 

Cs ~ cos 2 0 • x 2 + y2 + sin 2 0 • z: - 2 sin 0 • cos 0 • xz  = R~. 

The parameter equation of Ca n Cs is: 

X = RA COS Ix 

y = RA sin Ix 

RA cos 0 • cos Ix + x/R~ - R~. sin 2 Ix 
Z =  

sin 0 

(o) 

i ira 
I 

l t0 ; ;  
/ i /  

(b) 

! 

/ 

(c) 

Fig. 5 
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¥ 

Fig. 6 

where [sin # [ ~< Rs/RA. Hence, the curve along which P moves is indicated by: 

Rn 
0~< [#[ ~ sin-I ~--~A = p~ , 

while the second curve of the intersection is given by 

#+z r .  

The curve along which P moves will be referred to as the path of the uniform motion. 
The sign ( + )  before the square root provides two values for z with each value for It, except when 

J/a[ = #c. The part of  the curve determined by ( + )  is called the upper half of  the path, and the 
( - )  part the lower half. 

The axes rA and rB determine a plane co. If  S denotes the reflection in co, S leaves both cylinders 
and the path invariant. Some special positions with respect to co will be observed. 

(a) Chiralpositions. The dipolygon produced by {A, B} in S (P)  is the reflected image of the one 
in P. These dipolygons are enantiomorphous positions of each other (dextro and laevo). Since A 
and A -i,  B and B -j are transformed operations by S(A -~ = SAS,  B -~ = SBS) ,  all the properties 
of  a dipolygon with respect to its base hold for the laevo position, provided the base is inverse& 
i.e. the rotations are inversed. 

(b) Extreme positions, if P ~ co, S (P )  = P. Such a position is self-enantiomorphous and co is a 
symmetry plane of  this position of the dipolygon. There are two such positions on the path, called 
the extreme positions. The plane co is perpendicular to {m } and {n }, while M, N, P, 0 e co. 

In an extreme position p = 0, and the coordinates of P become: 

(RA, 0, RA cot 0 + Rn cosec 0). 

The extreme position in the upper half is called the maximum position. Here 

g~ M, Pma~, N = ~ - 0 (right or obtuse). 

The extreme position in the lower half is called the minimum position. Here 

& M, emin,  N = 0 (right or sharp). 
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However, if 0 = ~/2, the plane 7 through r o and perpendicular to co is a symmetry plane for the 
two cylinders and hence for the path. Then, each of the extreme positions may represent the 
maximum or minimum position. 

From the equations follows: when the dipolygon moves along the path between two extreme 
positions, {n} describes a rotation over n. Halfway, when {n} has rotated over g/2,  the rotation 
of {m } has reached its maximal angle 

Iul =#c. 

The chiral positions in ~Uc and -/~c are called the central positions of the dipolygon. 
From the equations also follows: 

(a) The translation of {m } happens between the extreme positions, where the sense reverses; 
the translation of {n } happens between the extreme positions and the central positions. In each 
of these positions, the sense reverses. 

(b) The rotation of {m} happens between central positions, where the sense reverses; the 
rotation of {n} is in one sense all along the path. 

Hence, while passing a central position {m } keeps its sense of translation, but reverses its sense 
of rotation, while {n } reverses its sense of translation, but keeps its sense of rotation. 

When RA = Rn,/ac = ~/2. Then, in a central position M coincides with O and since PN and rn 
are perpendicular, also N coincides with M and O. The points of the path, in which the dipolygon 
is in a central position are the intersecting points of the upper and lower-half ellipses on their 
common smaller axis. If also the dipolygon is regular, i.e. being composed of two congruent 
polygons, two more planes of special interest can be observed: • and/~, bisector planes of rA and 
rn, chosen such that: 

emax ~ 0~, Pmin E ]~. 

Thus, • is a symmetry plane for the dipolygon in the upper half-ellipse, while ]~ is for the lower 
half-ellipse. 

3.3. Dipolygonid 
If G denotes the group of rotations generated by A and B, all the axes of the rotations of G 

intersect in O, point of invariancy of G. G may be discrete or finite. 
The image of the dipolygon over G is called the dipolygonid, produced by the base {A, B} in P 

(Fig. 8). 
By this construction the dipolygonid is invariant over G. Clearly the dipolygonid is also produced 

by the other three bases: 

{a-', B}, {a, B-'}, {A -', B-'} 
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Moreover, it can be produced in any vertex R(P), where R e G. The base {A, B} is then transformed 
by R into a set {RAR -~, RBR -~ } which act like a base for the transformed dipolygon in R(P). 

Since {RAR -~, RBR -1 } clearly is a generating set of G too, the dipolygonid is also produced 
in R(P) by the base {RAR -I, RBR-I). 

The smallest subset of the dipolygon in P whose image over G is the dipolygonid is the couple 
of  edges a and b (Fig. 10). This two-edge is the fundamental part of the dipolygonid with respect 
to G. 

, , / P - / ~ , .  / 

A(P) \\\\ i/ - RA(P) 

', / \~"~,..__~ ~ 
' ,_/ R~o~ "~ 

RB(P) 

Fig. 9 
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Each position of the dipolygon produced by {A, B} in P has its image over G, thus creating a 
dipolygonid. When the dipolygon describes its uniform motion along the path, all the transformed 
dipolygons in R(P) do simultaneously. This motion is called the uniform motion of the dipolygonid 
(Fig. 11). 

4. J I T T E R B U G  A N D  D I P O L Y G O N I D S  

It can easily be seen that this definition for a dipolygonid is appropriate to 
Fuller-Stuart-Clinton transformers, holding the following generalizations: 

--Since G may be discrete, so will the dipolygonid be composed of an infinite number 
of polygons, yet able to perform the transformations.f 

--The dipolygonid has not necessarily one edge length. Depending on the position 
of P, the dipolygonid may have two different edge lengths. 

--Along the path of uniform motion the dipolygonid becomes non-convex. In fact 
the uniform motion rather resembles a pulsating motion from maximum position 
over central-l, minimum, central-2 to maximum position. 

the 

5. F I N I T E  D I P O L Y G O N I D S  

Our next concern is the search for dipolygonids which are composed of a finite number of 
polygons and vertices. This will be the case if G is finite. Then, the question is brought back to 
the investigation of the finite groups of rotations, which are well established [5]. 

If G is finite, the order will be denoted by g. Then, the dipolygonid is composed of g vertices 
theoretically, and hence, of g dipolygons. 

G will be finite, only if A and B belong to one of the finite groups of rotations and generate a 
subgroup at least. This will solely depend of the orders of A and B, and the angle 0 formed by 
their axes in O. Since r~ and rB are distinct, however, the cyclic groups can be excluded. 

Table 1 classifies the remaining finite groups of rotations by their number of elements and 
the conjugate maximal cyclic subgroups. The latter numbers indicate the types of axes in 
Table 2. 

In Table 3, a summary is given of all the possible angles between axes of a group. An axis is 
represented by the order of the maximal cyclic subgroup of rotations, having this axis. 

tThe major part of Clinton's paper deals with transformations (face, edge and vertex) of flat tesselations. Those are 
composed of an infinite number of polygons. Such a transformer can be considered as a dipolygonid whose base {A, B} 
has its axes intersecting at infinity. Then, RA//RB and the dipolygonid will be planar, and G discrete. 
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Table 1 

GROUP 

Dihedral 

Octahed~l  

I c o ~ l  

ORDER 

2n 

12 

24 

60 

CONJUGATE CYCLIC 
SUBGROUPS 

number I order 

n 2 

1 n 

3 2 
4 3 

I 

6 2 

4 ] 3 

3 I 4 

15 2 
10 3 

6 5 

Table 2 

GROUP NUMBER OF AXES 

~-ahe~l 

I c o ~ l  

n + l  

7 

13 

31 

Out of Table 3 a summary can be realized of all possible pairs of rotations in the dihedral, 
tetra-, octa- and icosahedral groups with respect to the order of these rotations and the angle 
of their axes. Table 4 shows this summary, together with the groups that are generated by these 
pairs. 

In 6"5, the cyclic group of rotations of order 5, four elements occur of order 5, namely the 
rotations of polygonal value 5 and 5/2.t 

All other pairs of rotations besides those mentioned in Table 4 result as generators of discrete 
groups of rotations. Apart of the two classes of pairs generating the dihedral groups, there are two 
types of pairs in the tetrahedral, four in the octahedral, and 14 in the icosahedral group of rotations. 

Hence, there is a corresponding amount of dipolygonid types, when the pairs of generators 
represent a base. If g represents the order of G, s of A, and t of B, the number of the dipolygonid's 
elements is: vertices--g; polygons { m } - - g / s ;  polygons { n } - - g / t ;  edges--2g. 

The following notation will be used for a finite dipolygonid: 

g {m}+ g 

6. C L A S S I F I C A T I O N  O F  T H E  F I N I T E  D I P O L Y G O N I D S  

6,1. Dihedral (D,) 
Two infinite classes are associated to each of the infinite classes of bases: 

(A) n{2} +n{2}l k. 180o 
n 

where n = 2 and k = 1, or n > 2 and 0 < k < n/2 (and k and n are coprime). These dipolygonids 
have the shape of non-planar polygonal zigzag lines. If both sets of digons have equal length, they 
represent "Petrie-polygons" [3, 5]. 

(B) n{2} + 2{k},90°. 

These dipolygonids have the shape of rectangular {n /k }-prisms in extreme positions. 

?Namely the rotations over __+2n/5 (polygonal value 5) and over +_4n/5 (polygonal value 5)' 
Sin accordance to the notation of a uniform polyhedron by indicating the numbers of different types of polygons as a 

summation [8]. 

CAMWA 17-I13---0 
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Table 3 

GROUP I SYMBOL I AXES I ANGLE(SUPPLEMENT) 

DIHEDRAL 

(n=2,3,...) 

TETRAHEDRAL 

OCTAHEDRAL 

ICOSAHEDRAL As 

2 2 

2 n 

2 2 

2 3 

3 3 

2 2 

2 3 

2 4 

3 3 

3 4 

I | 

2 2 

2 3 

2 ~ 5  

3 ~, 3 

3~5 

5~5 

~ . 1 8 0  ° ,  k e N,  0 < k ~  

90 ° (90 ° ) 

90 ° (90 ° ) 

5 4 ° 4 4 ' 0 8 "  ( 1 2 5 " 1 5 ' 5 2 " )  

7 0 0 3 1 ' 4 4 "  ( 1 0 9 " 2 8 ' 1 6 " )  

60*  (120 ° ) 

90 ° (90 ° ) 

3 5 a 1 5 ' 5 2 "  ( 144044~08  " )  

90 ° (90 ° ) 

45 ° ( 1 3 5 " )  

90 "  ( 9 0 " )  

7 0 ° 3 1 ' 4 4 "  ( 1 0 9 ° 2 8 ' 1 6  " )  

5 4 " 4 4 ' 0 8 "  ( 1 2 5 " 1 5 ' 5 2  " )  

90 ° (90 ° ) 

36 ° (144 • ) 

60 ° (1200 )  

72 "  (108 ° ) 

90 ° (90 Q ) 

2 0 ° 5 4 ' 1 9 "  ( 1 5 9 " 0 5 ' 4 1 " )  

5 4 " 4 4 ' 0 8 "  ( 1 2 5 " 1 5 ' 5 2 " )  

6 9 " 0 5 ' 4 2 "  ( 1 1 0 ° 5 4 ' 1 8  " )  

90 ° (90 ° ) 

3 1 = 4 3 ' 0 3  " ( 1 4 8 ° 1 6 ' 5 7 "  ) 

5 8 ° 1 6 ' 5 7 "  ( 1 2 1 0 4 3 ' 0 3  '' ) 

90 ° ( 9 0 " )  

4 1 0 4 8 ' 3 7  °' ( 1 3 8 0 1 1 , 2 3  " ) 

7 0 ° 3 1 ' 4 4 "  ( 1 0 9 " 2 8 ' 1 6 " )  

3 7 ° 2 2 ' 3 9  " ( 1 4 2 ° 3 7 ' 2 1  " )  

7 9 " 1 1 ' 1 6 "  ( 1 0 0 " 4 8 ' 4 4 " )  

6 3 ° 2 6 ' 0 6 "  ( 1 1 6 ° 3 3 ' 5 4  " )  
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Table 4 

A ~ B 0 gen{A,B} 

I 

2 % 2 1  

2 ~ 3 20"54'19" 

35o15'52 " 

54o44,08 " 

69o05'42" 

2 ~ 4 4 5 *  

2 % 5 3 1 " 4 3 ' 0 3 "  

5 8 " 1 6 ' 5 7 "  

2 ~ n 9 0 "  

3 ~ 3 41"48'37" 

70*31'44" 

3 % 4 54o44'08 '' 

3 ~ 5 37°22'39" 

79*ii'16" 

4 ~ 4 90* 

5 ~ 5 63°26'06 " 

D n 

As 

$4 

A4 

A5 

--.180" 
n 

$4  

A5 

As 

D 
n 

A5 

A4 

$4  

A5 

As 

$4  

As 

tn 32: ifn = 2, k = 1; ifn ~> 3, 1 ~k  <n/2,k and n 
coprime. 
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The example 3{2} + 2{3} [90 ° in D 3 is illustrated in Fig. 12. 

6.2. Tetrahedral 

See Fig. 13; T~-T2. 

6.3. Octahedral 

See Fig. 14; Oi-O4. 

6.4. lcosahedral 

See Fig. 15; 11-114. 
Since the number of  polygons {m} is g/s, as is also the index of  the cyclic subgroup of  order s 
in G (the number of  s-fold axes in G), clearly the number of  polygons along one axis is known. 

For example, in /3, 12 pentagons occur along 6 five-fold axes. Hence, two pentagons have 
a common axis. The question rises: do these polygons occur on the same side or different sides 
of O? 

The answer is easily found by observing the two-fold rotation whose axis is perpendicular to ~o. 
If this rotation is in G, it maps the dipolygon within the dipolygonid on the opposite side of both 
axes of  the dipolygon's base. (See Diagram 1.) 
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I 

Fig. 12 

Fig. 13(a). T~--6{2}+4{3}154°44'08 ". Fig. 13(b). T2~4{3}+4{3}170°31'44 ". 
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(0~} 
Fig. 14(a). O,---, 12{2} + 8{3}135°15'52 ". 

(02} 
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Fig. 14(b). O2---*12{2}+6{4}r45 °. 

• . . i . .  Fig 14(c) O3-* 8{3} + 6{4} 154 44 08 

t 

(L} (z2} 
Fig. 15(a). I, ~30{2} + 20{3}120°54'19 ". Fig. ~5(b). I ~  30{2} + t2{5}131°43'03 ". 
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Fig. 15(i). I9---30{2} + 12{5}158°16'57 ". 

C 2"~o) 

Fig. 150). 11o--, 30{2} + 12{5/2}131°43'0Y. 

Fig. 15(k). I ,  --, 12{5} + 12{5/2}163°26'06 ". Fig. 15(1). It2--* 20{3} + 12{5}179°11'16". (In this illustra- 
tion two different dipolygons have been shaded.) 

(I131 C/14) 
Fig. 15(m). I~3---,20{3} + 12{5/2}137°22'39 ". Fig. 15(n). I~4--,20{3} +20{3}141048'37 ". 

(zg) 
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i I/I 

/ 1 1  ,' I / 

I(P) 

Diagram 1. The half-turn R is about an axis perpendicular to co. Then I = SR = RS. 

From Table 1 is found that the only exceptions for the two-fold rotation being in G are for the 
bases of type: 

,   n  coonme) 
2. In A4:3 ~ 3  170o31'44" 

which correspond to the dipolygonids of class A in the odd dihedral groups D,, and the dipolygonid 
T2. 

In the first case, the polygons of type {m } and {n }, sharing a common axis of order 2 are two 
digons of different edge length (although they may be equal too). 

In the second case, two triangles of different edge length (or equal) share a common three-fold 
axis. 

7. ASPECTS OF UNIFORM MOTION 

Together with the dipolygon in P, and all the dipolygons in the points R(P), where 
R e gen{A, B}, the dipolygonid describes its uniform motion. Special positions of the dipolygon 
have their equivalent special positions of the dipolygonid. 

7.1. Chiral positions 

Each step in the production of a dipolygonid in S(P)  by the laevo base {A -t, B-I} is the reflected 
operation under S of a step in the production of the dipolygonid in P by {A, B}. However, the 
dipolygonid in S(P)  is also produced by {A, B}. The set of both dipolygonids is also the image 
over G of the chiral dipolygons in P and S(P), which are reflected images by S. Then, the set of 
dipolygonids is invariant over Gs = gen{A, B, S}, an extended group of G [9]. 

The dipolygonids are reflected images of each other under any reflection of Gs, and therefore 
can be called enantiomorphous (dextro and laevo) too. 

7.2. Extreme positions 

Maximum and minimum positions of the dipolygonid correspond with those of the dipolygon. 

7.3. Central positions 

A central position of the dipolygonid is produced when the dipolygon is in a central position. 
Figure 16 illustrates 04 from the maximum to central position in steps. 
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Besides the two exceptions mentioned in Section 6, all the finite dipolygonids are composed of 
opposite polygons {rn} and {m)' along the s-fold axes, and {n} and {n)' along the t-fold axes 
of G = gen{A, B). 

Since the centers of the polygons, M and M' ,  and N and N '  each remain on equal distances 
of O during the uniform motion of the dipolygonid, the property holds for each position. During 
the uniform motion M or N may coincide with O. 

Since {n } reverses its sense of translation in a central position, N would only coincide with O 
when RA = R8 in both central positions. However, the sense of the translation of  {m } reverses in 
the extreme positions and hence, M may coincide with O, depending on R A and RB, or analogue, 
depending on the edge lengths of {m } and {n }. 

When Ra = Rs, M and N of the dipolygon coincide with O, and hence, so will all of the polygons 
have their center coinciding with O. 

Before going into more details of equiradial dipolygonids, some more understanding of the 
symmetries in extended groups of isometries is needed. 

8. EXTENDED GROUPS OF ISOMETRIES 

Besides the finite groups of rotations, the remaining groups of isometries are distinguished by 
their containing of the central inversion in O (denoted by I) or not [5]. 

(a)  Groups containing I. These groups all are the direct product of a finite group of rotations 
and the group {E, I}, which in Table 5 is denoted by the abbreviated symbol I. 

(b) Groups that  do not  contain I. These groups are called "mixed groups". If  G'  is a group of 
rotations of order 2n, containing a subgroup G of order n, the mixed group is G U (G' - G)I,  which 
in Table 5 is denoted by G'G.  

Each of these groups has an even order 2g, and contains a subgroup of rotations of order g. 
The number of rotatory inversions (products of a rotation of G and I) is also g. A rotatory inversion 
is either a rotatory reflection (a product of a rotation and a reflection) or a reflection. Such a 
reflection is then the product of a half-turn (a rotation of order 2) and L hence, the number of 
reflections in the extended group is the number of half-turns in G (case a) or the number of 
half-turns in the complement G ' - G  (case b). 

The remaining number is that of the rotatory reflections (see Table 6). 

Table 5 

SYMBOL ORDER 

Cn x I 

D x I 
n 

A~ x I 

S~ x I 

As x I 

C2nCn 

DnC n 

D2nD n 

S~A~ 

2n (n=I,2,..) 

4n (n=2,3,..) 

24 

48 

120 

2n (n=1,2,..) 

2n (n=1,2,..) 

4n (n=I,2,..) § 

24 

tDl ~- C2--,Di x l ~- C2 x l 
~DIC I is generated by one reflection. 
§D2D I has order 4, and is generated by two orthogonal 
reflections. 
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( 5 )  ( 6 )  

( 7 )  ( 8 )  ( 9 )  

(10) (11) (12) 

Fig. 16 (1-12) 
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(13) (14)  

@ 
(15) 

@ 
(16) 

@ 
(17) 

@ 
(18) 

@ 
(19) (20) 

@ 
(21) 

@ 

(22) 

@ 
(23)  

@ 
Fig. 16 (13-23) 
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8 . 1 .  Dipolygonal generators 

The sets of  isometrics: {A, B}; {A, B, S}; {A, B, I}, each are called dipolygonal generator sets 
of symmetry groups. The group 

F = gen{A, B, C}, 

where C e {S, I}, is either discrete, or one of  the classified finite groups of isometries containing 
G = g e n { A , B } .  If F is finite, it contains G as a subgroup of index 2. Then clearly 
F = G U G C = G U C G .  

(1). C = L F is clearly a group of type a, namely a direct product G x L 
(2). C = S. The groups in Table 5 have to be checked for their containing of  S, with respect to 

the choice of  {A, B}. This can be obtained from the information given in Table 3, by checking if 
the two-fold rotation whose axis is perpendicular to co belongs to G, G' - G or to none of both. 
It is then also found out whether F is a direct product or a mixed group. From Table 3 also can 
be seen which axes are perpendicular to the axis of  the two-fold rotation, and hence, which are 
lying in co. From Table 7 is seen how D2,D, (n is even) has no dipolygonal generators. It has no 
reflection plane containing more than one axis, and does not contain L The results are shown in 
Table 8. 

9. R E G U L A R  D I P O L Y G O N I D S  

In a regular dipolygon (Section 3.2), the polygonal values of A and B, m and n, are equal. 
The upper half-ellipse of the path lies in 0~, and v, the intersecting line of  0~ and co, is along the 
greater axis of  the ellipse. 

The reflection V in 0~ is a symmetry operation for the dipolygon in the upper half, since for 
any P: 

VB(P) = A(P) or VB(P) = A-'(P). 

Table 6 

GROUP ROTATIONS REFLECTIONS ROTATORY REFLECTIONS 

I 

C n ~ I i 

n even  ! 

n odd 

C2nC n 
. n e v e n  

n odd 

DnC n 

Dn x I 

n e v e n  

n odd 

D2nDn 
n e v e n  

n odd 

A~ × I 

S ~ A ~  

S ~  x I 

As x I 

2n 

2n 

2n  

2n 

12 

12 

2 4  

6O 

n ÷ l  

n 

n 

n÷1 

3 

6 

9 

15 

n - 1  

n 

n 

n - 1  

n-1 

n 

n 

n-1 

9 

B 

15 

45 
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Table 7 

GROUP SYMMETRY PLANES COPLANAR AXES (NUMBER) 

C n x I 

C2nC n 

DnC n 

Dn x I 

n even 

n odd 

D2nD n 
n even 

n odd 

A~ x I 

S~A~ 

S~ x I 

A~ x I 

0/1 

0/1 

n 

6 

3 

6 

15 

(o) 

(o) 

n (i) 

2 (n) 

2 (i), n (i) 

n (I) 

n (i) 

2 (n) 

2 (2), 

2 ( 2 )  

n (1) 

2 (i), 3 (2) 

2 ( 2 ) ,  4 ( 2 )  

2 (I), a (2), 4 (i) 

2 (2), a (2), s (2) 
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The choice of A and A- '  can be determined such that 

VB(P) = A (P) 

Then clearly, V is also a symmetry operation for the dipolygonid being the image of the dipolygon 
over G. Hence, the dipolygonid is invariant over 

gen{A, B, V}. 

Table 8 

GROUP ADDED GENERATOR EXTENDED GROUP 

S D n 

A4 

$ 4  

As 

D2nD n (n odd) 

D × I (n even) 
n 

D n × I 

84 A4 

A4 X I 

$4 x I 

$4 x T 

A5 x I 

As x I 
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Analogue, the reflection W in fl is a symmetry operation for the dipolygonid in the lower half, 
whose symmetry group is then: 

gen{A, B, W}. 

To determine these groups of isometrics when G is finite, one has to observe if these generated 
groups contain S and/or L or none of both. 

In the upper half: 

S egen{A, B, V},~SVegen{A,  B, V}, 

SV is the two-fold rotation along v, hence, SV ~ G. From Table 3 is found if this two-fold rotation 
is in G. If so, S is a symmetry operation for the dipolygonid, which means it is self-enan- 
tiomorphous, and composed of coplanar pairs of polygons {m}, each along one side at least, of 
an axis of order s. 

The dipolygonid's symmetry group in this half is gen{A, B, S}. Analogue, this property occurs 
in the lower half if, and only if SW ~ G. Then, 

S W e G  o S V W  = I~  gen{A, B, S}. 

9.1. Conclusions 

9.1.1. {SV, SW} ~ G. The symmetry group of the dipolygonid contains S and L Therefore, it has 
central inverse symmetry all over the uniform motion, where it is composed of coplanar pairs of 
polygons {m }, distributed along both sides of all the s-fold axes of G. 

The uniform motion can be analysed when two coplanar pairs forming chiral dipolygons in the 
upper half are denoted by: 

and on the opposite side: 

{m}, and {n}E/{m}2 and {n}, 

{m}i and {n};/{m}~ and {n}~. 

When the dipolygonid passes the central position, the polygons {m} and {m}' reverse their 
sense of rotation, and keep their sense of translation, while the polygons {n } and {n }' keep their 
sense of rotation, but reverse their sense of translation. 

In a central position, the following sets of polygons are coplanar: 

{{m}~, {m}~, {rn}2, {m}~} 

{{n}l, {n}'l, {n}2, {n}~}. 

Also, continuing over the lower half, the new coplanar pairs become: 

{m}l and {n};/{m}'2 and {n}z 

and opposite: 

{m}~ and {n}E/{m}2 and {n}~, 

which actually means the couples "have changed partners". 
9.1.2. SVE G, SWeG.  The dipolygonid's symmetry group in the upper half is gen{A, B, S}, 

which does not contain/,  hence, it is a mixed group. The dipolygonid is composed of coplanar 
pairs of polygons {m}, distributed along one of both sides of the s-fold axes of G. 

The symmetry group in the lower half, gen{A, B, W}, may or may not contain L In any case, 
the dipolygonid is composed of single polygons {m }, distributed along both sides of the s-fold axes 
of G. If I is not within the greater symmetry group, obviously the dipolygonid has no central inverse 
symmetry. If I is, the dipolygonid's symmetry group is gen{A, B, I}. 
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9.1.3. S V ¢  G, S W  E G. This is the analogue situation of  Section 9.1.2., when upper and lower 
halves are interchanged. 

9.1.4. SV  q~ G, S W  ~ G. The dipolygonid's symmetry groups in upper and lower halves do not 
contain S and hence, it is composed of  single polygons. 

When a regular dipolygonid has central inverse symmetry in one of  the halves of  the path of  
uniform motion, two opposite polygons rotate in the same sense. If  not, provided there are opposite 
polygons, they rotate in opposite senses. 

The uniform motion of  the regular dipolygonids in the finite groups of  rotations will now be 
separately analysed. The position of R~ and RB in co, together with the axes v and w, provided they 
belong to G, are shown in Figs 17, 19, 21, 22. These figures are obtained from Tables 3 and 7, and 
indicate one of  the four cases higher described. 

9.2. Dihedral 

The regular dipolygonids are of the type n{2} + n{2}lk/n • 180 ° in D,, where n >11 2, and k = 1 
(when n = 2), or 1 ~ k < n/2 where k and n are coprime. These are the Petrie-polygons (non-planar 
zigzag lines). The bisector line of  RA and Rs in the upper half is v, where the angle between v and 
Ra is given by: 

k 
_ _ .  180 ° 
2n 

According to Table 3, v represents a half-turn of D n only if k/2 is a natural number, specifying 
to the conditions given there. This will be, when k is even. 

The bisector line w in the lower half forms, together with RA, an angle 

n - k  
_ _ .  180 ° 

2n 

and will represent the axis of  a two-fold rotation of  Dn only when n - k is even. 
9.2.1. n is odd, k is odd. Then, n - k  is even, referring to case 9.1.3. 

Lower half-- the symmetry group is gen{A, B, S} = D~D, (Table 8). There are n coplanar pairs 
of  digons, each along one side of  the n two-fold axes of  D, [Diagram 2(a)]. 

Upper half-- the extended symmetry group not containing S is D, x L There are n pairs of  
centrally inverse digons along each side of  the n two-fold axes [Diagram 2(b)]. 

9.2.2. n is odd, k is even. This refers to case 9.1.2. 
The previous situation is found, provided upper and lower halves are interchanged. 
9.2.3. n is even. Since k and n are coprime, both k and n - k are odd, which refers to case 9.1.4. 
Since the symmetry group must not contain S, and D, x I contains both S and I (Table 8), it 

must be D2,D~ in both halves. 

Pa P 3 ~ / p  

I ,, I 

Pa P2 
Diagram 2(a). 3{2} + 3{2}160 ° in DrD3: a position in the Diagram 2(b). 3{2} + 3{2}160 ° in D3~X l: a position in the 

lower half, described within a triangular prism, upper half, described within a hexagonal prism. 
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{3) 

0 

~ (3) 

54o44'08 '' 

\ 
\ 

(2) 

Fig. 17 

Fig. 18. The convex part o f the motion of 4{ 3 } + 4{ 3 } 170° 31'44" in $4 A4 (the lower half) illustrated by 
a vinyl model in five steps. The minimum position is in (e). 
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i (21 / 
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/ 

900 4s/~/ (4} o"T x , 45 ° 

I %% %%%12t 
Fig. 19 

231 

Fig. 20. The convex par t  of the motion of 6{4} + 6{4} 190° in $4 x L in either lower or upper half, in five 
steps. The extreme position, illustrated by this cardboard model is in (e). 

CAMWA 17- I/3---P 
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(3) 

(2) (3) / ( 2 ) /  
(5) / // ~//// 

I / ,, 15) I / ~  

(2)  

Fig. 21 Fig. 22 

"~ (2) 

n pairs of opposite digons appear along both side of the n two-fold axes, each pair being invariant 
over the half-turn within the cyclic subgroup of order n in D,. 

One peculiar appearance of the regular dihedral dipolygonids occurs in the central positions: 
since all centers of the 2n digons coincide with O, all the digons collapse along the n-fold axis of 
D,, as this axis is the intersection of all the planes, perpendicular to the two-fold axes. 

9.3. Tetrahedral 

The regular dipolygonid in .44 is of the type 

4{3} + 4{3} 170°31'44 ". 

The position of the axes refers to case 9.1.3 (Fig. 17). 
Lower half--the symmetry group gen{.4, B, S} = $4.4 4 (Table 8). There are four coplanar pairs 

of triangles, each lying along one side of the four three-fold axes of A 4. (Fig. 18). 
Upper half--the extended group not containing S is A4 x / ,  which is the dipolygonid's 

symmetry group. There are four pairs of centrally inverse triangles, each along both sides of the 
four three-fold axes. The convex part of the uniform motion is FuUer's Jitterbug [Fig. l(a)]. 

In the central positions, the four coplanar pairs of triangles have their centers coinciding with 
O. Such a pair of centrally inverse triangles has its vertices sharing with a regular hexagon. One 
can picture such a position within the four hexagons found within the cuboctahedron. 

The symmetry group in a central position is the direct product of the groups $4A4 and A 4 × jr, 

which is $4 x / ,  the only group found in Table 5 containing both groups. 

9.4. Octahedral 

The regular dipolygonid in $4 is of the type 

6{4} + 6{4} 190 °. 

The position of the axes refers to case 9.1.1 (Fig. 19). 
The symmetry group of the dipolygonid containing both S an I (Table 8) is $4 x L 
In each position there are six coplanar pairs of squares distributed along both sides of the three 

four-fold axes. The set of squares can also be considered as containing six centrally inverse (hence: 
parallel) pairs. In a central position, PO _L co and opposite pairs collapse all four with one square. 
Like explained under case 1, here the "change partners" effect takes place. 

The central position can easily be pictured in the location of the three mutually perpendicular 
squares within the octahedron. 

Moreover, since 0 = 90 °, the positions in upper and lower halves are equivalent (Fig. 20). 

9.5. Icosahedral 

There are three types of regular dipolygonids in As. 
9.5.1. 12{5} 4-12[5}[63°26"06': The position of the axes refers to case 9.1.1 (Fig. 21). The 

symmetry group (Table 8) is A5 x I. 



Jitterbug transformers and the analysis of their motion 233 

In each position there are 12 coplanar pairs of pentagons distributed along both sides of  the six 
five-fold axes of As. 

Since the half-turn, whose axis is perpendicular to co, is in As, opposite pairs of pentagons 
are invariant over this half-turn, as well as over the central inversion. Hence, they are parallel 
pairs. 

In central positions, opposite parallel and centrally inverse pairs coincide with the two 
pentagons, sharing the 10 vertices of a regular decagon. Here, the "change partners" effect takes 
place. 

A central position can easily be pictured in the location of the six central decagons within an 
icosidodecahedron. 

9.5.2. 12{5/2}-/-12{5/2}/63°26"06". The dipolygonid shares its axes with the previous one. 
Hence, all the results hold when the pentagons are replaced by pentagrams. 

9.5.3. 20{3} -t- 20{3}141°48:37". The "Vampire". t  The position of  the axes refers to case 9.1. I 
(Fig. 22). The symmetry group is equally A5 x L 

In each position there are 20 coplanar pairs of  triangles distributed along both sides of the 10 
three-fold axes of.45. For the same reason as in (1) and (2), opposite pairs of  triangles are parallel, 
and centrally inverse. In central positions opposite pairs coincide with two triangles sharing the 
vertices of a regular hexagon. Also here, the "change partners" effect takes place, when passing 
that position. 

The situation of the triangles can be less easily, but nevertheless correctly, pictured in the location 
of the 10 central hexagons within the small dodecahemicosahedron [8]. 

10. E Q U I R A D I A L  DIPOLYGONIDS 

Besides the regular dipolygonids of the previous paragraph, for which RA = Ra, there is one more 
finite equiradial dipolygonid having a particular appearance: 

12{5}+ 12{~},63°26'06 ". 

The general dipolygonid of this type, where RA ~ RB is composed of  opposite pairs of pentagons 
and pentagrams sharing one five-fold axis. The pentagons and pentagrams are distributed at 
different distances of O. 

However, when RA = Rs, the distances are equal: since the half-turns SV and S W  are elements 
of As, the dipolygonid is composed of 12 coplanar pairs of pentagons-pentagrams. The uniform 
motion is analogue with the first regular dipolygonid in A5 (Section 9.5.1), when one pentagon in 
a pair is replaced by a pentagram. 

11. PAIRS OF C H I R A L  DIPOLYGONIDS 

Pairs of chiral dipolygonids have an extended symmetry group, namely gen{A, B, S}. In Section 
9 was established where the regular dipolygonids are self-enantiomorphous. The regular dipolygo- 
nid of  A4 is so in the lower half, but not in the upper half. A pair of chiral such dipolygonids in 
the upper half is composed of  eight pairs of coplanar triangles distributed along the opposite sides 
of each of the four three-fold axes, and its symmetry group is the direct product of A 4 × I and 
{S, E}, which, according to Table 5 is $4 x L Each chiral pair of dipolygonids is composed of 
coplanar polygons {m} - {m}' and {n} - {n}'. 

tI built the first model of this dipolygonid in 1979, when I was visiting Magnus J. Wenninger in the Benedictine Monastery 
in the Bahamas, where I was taught techniques of model making by him. When Wenninger saw the model, he 
spontaneously baptized it "Verheyen's Vampire" following the tradition among polyhedronists to give horror-names 
to their weirdest creations. (of. "Miller's Monster", a complicated non-convex snub polyhedron [3], and "Skilling's 
Spectre", the Great Disnub Dirhombidodecahedron [10]). 



Fig. 23. The convex part of the motion of 20{3} + 20{3} 141°48'37" in A 5 x I (upper half), illustrated by 
a metal model in six steps, where (g) had to show the 7th step, namely the maximum position. However, 
since the proper type of connector (Fig. 24) is replaced here by an ordinary ring, the rigid model looses 

its rigidity nearing the maximum position, and becomes completely floppy (g). 
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Fig. 25.2. 
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Fig. 25.4. 
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Fig. 25.6. 
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Fig. 25.7. 
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Fig. 25.9. 

Fig. 25. Set of stereographic, computer-generated drawings, illustrating the uniform motion of the 
Vampire from maximum to minimum position. ©: central position. 
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Fig. 26. Motion of a set of two chiral dipolygonids 4{3} +4{3}170031'44" ("Jitterbugs") in $4 × L 
restricted to the convex part, as illustrated here by a vinyl model. As in Fig. 23, the maximum position 

in (f) is entirely floppy. 

As an example,  the pair  o f  chiral 8{3} + 6{4} 154 °44,08" is $4 × I is composed  o f  eight cop lanar  
pairs  o f  triangles and  six cop lanar  pairs  o f  squares.  When  RA = Rs, clearly there is no "change  
pa r tne r s"  effect in a central  posit ion.  

12. T H E  U S E  OF D I P O L Y G O N I D S  

The  main  interest o f  the d ipolygonids  is found  in an easy to unders tand  visual app roach  to 
cons t ruc t  the complete  set o f  un i fo rm polyhedra ,  in total  75 [3] + l [10]. The  details are not  within 
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Fig. 27. Model of the two chiral dipolygonids 8{3} + 6{4}) 54°44'08" of equal edge length in cardboard. 
It illustrates the convex part of the uniform motion in the upper half, until it loses the rigidity in the 

maximum position. 

the realm of this paper, however, it can be stated that the convex and non-convex snub polyhedra 
come out in a natural way during the transformation from one position into another, caused by 
the uniform motion of triads of dipolygonids (Fig. 28). 

A . jJ 
I 
) i 

I 

0 

/ 

B(P) 

Fig. 28. Triad of dipolygonids. The rotation C = B A  -~ maps A(P) into B(P) and produces a 
polygon {k}. 
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Fig. 29. In the snub cube, three dipolygonids of a basic triad meet. 

There can be found 14 basic triads of dipolygonids in A4, $4 and A5 [6]. In a snub polyhedron, 
three dipolygonids of a triad meet. 

Other applications of dipolygonids can be found in the construction of transformable space 
frames that are basically space filling lightweight frames, like the impandable edge cube (ICU) and 
the impandable rhombic edge dodecahedron (IRODO) [11] (Figs 30 and 31). 

An example of a spherical variation of an impandable rhombic edge triacontahedron is found 
at the Space Research Center in Sydney, Australia, where it stands as a reminder of the conference 
cited in Ref. [12] (Fig. 33). 

Dipolygonid models can also be used as space fillers which transform into other space fillers in 
each position. 

Such examples are: 

(a) The regular 6{4} + 6{4}190 ° model in $4 × L as illustrated in Fig. 20. Twenty-seven of these 
are used to construct the space filling shown in Fig. 33. 

(b) The regular 4{3} + 4{3} 170o31'44 " of A4, used in: 

(1) the pair of chiral dipolygonids in the upper half, like the model in Fig. 26; 
(2) the dipolygonid in the lower half, like the model in Fig. 18. 

When the model (1) shares a pair of triangles of a model (2), the expandable 
pyramid can be constructed as shown in Fig. 34. 

Figure 35 is a variation of the ICU (Fig. 30) when triangular pyramids are replaced by 
sphere packings. And finally, 6{4} + 6{4} 190 ° in $4 x I stood model for a piece of furniture, a 
salon table that is able to transform into a glass and bottle closet, by a push on a button [13], 
(see Fig. 36). 
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Fig. 30. Model of ICU with wide middle part in wood. 

Fig. 31. Impansion of IRODO in four steps. This wooden structure is extremely rigid in all positions. 

CAMWA 17-]/3.--Q 
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Fig. 32. SPHEROTRAQ in Sydney (University of NSW): motorized model in wood and metal, illustrating 
a pulsating spherical construction of 120 hinges, rigid in each position. 

Fig. 33 
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Fig. 34. Expansion of the pyramid in Figs (a) and (b). (c): rotated view of (b). 

Fig. 35 
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Fig. 36 
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