Ridgerunner minimizations
 

Listed are knots through 10 crossings followed by links. Starting conformations are from the KnotPlot distribution. Linked images and labels have associated minimization movies available. This page is updated frequently as computations complete. The curves are scaled to fill the frame throughout evolution. Actual thickness is 1 for everything shown. Thanks to Nicholas Papciak for transcoding the videos into H.264 format in September 2022.
 


0_1

3_1

4_1

5_1

5_2

6_1

6_2

6_3

7_1

7_2

7_3

7_4

7_5

7_6

7_7

8_1

8_2

8_3

8_4

8_5

8_6

8_7

8_8

8_9

8_10

8_11

8_12

8_13

8_14

8_15

8_16

8_17

8_18

8_19

8_20

8_21

9_1

9_2

9_3

9_4

9_5

9_6

9_7

9_8

9_9

9_10

9_11

9_12

9_13

9_14

9_15

9_16

9_17

9_18

9_19

9_20

9_21

9_22

9_23

9_24

9_25

9_26

9_27

9_28

9_29

9_30

9_31

9_32

9_33

9_34

9_35

9_36

9_37

9_38

9_39

9_40

9_41

9_42

9_43

9_44

9_45

9_46

9_47

9_48

9_49

10_1

10_2

10_3

10_4

10_5

10_6

10_7

10_8

10_9

10_10

10_11

10_12

10_13

10_14

10_15

10_16

10_17

10_18

10_19

10_20

10_21

10_22

10_23

10_24

10_25

10_26

10_27

10_28

10_29

10_30

10_31

10_32

10_33

10_34

10_35

10_36

10_37

10_38

10_39

10_40

10_41

10_42

10_43

10_44

10_45

10_46

10_47

10_48

10_49

10_50

10_51

10_52

10_53

10_54

10_55

10_56

10_57

10_58

10_59

10_60

10_61

10_62

10_63

10_64

10_65

10_66

10_67

10_68

10_69

10_70

10_71

10_72

10_73

10_74

10_75

10_76

10_77

10_78

10_79

10_80

10_81

10_82

10_83

10_84

10_85

10_86

10_87

10_88

10_89

10_90

10_91

10_92

10_93

10_94

10_95

10_96

10_97

10_98

10_99

10_100

10_101

10_102

10_103

10_104

10_105

10_106

10_107

10_108

10_109

10_110

10_111

10_112

10_113

10_114

10_115

10_116

10_117

10_118

10_119

10_120

10_121

10_122

10_123

10_124

10_125

10_126

10_127

10_128

10_129

10_130

10_131

10_132

10_133

10_134

10_135

10_136

10_137

10_138

10_139

10_140

10_141

10_142

10_143

10_144

10_145

10_146

10_147

10_148

10_149

10_150

10_151

10_152

10_153

10_154

10_155

10_156

10_157

10_158

10_159

10_160

10_161

10_162

10_163

10_164

10_165

10_166

0_2_1

0_3_1

0_4_1

2_2_1

4_2_1

5_2_1

6_2_1

6_2_2

6_2_3

6_3_1

6_3_2

6_3_3

7_2_1

7_2_2

7_2_3

7_2_4

7_2_5

7_2_6

7_2_7

7_2_8

7_3_1

8_2_1

8_2_2

8_2_3

8_2_4

8_2_5

8_2_6

8_2_7

8_2_8

8_2_9

8_2_10

8_2_11

8_2_12

8_2_13

8_2_14

8_2_15

8_2_16

8_3_1

8_3_2

8_3_3

8_3_4

8_3_5

8_3_6

8_3_7

8_3_8

8_3_9

8_3_10

8_4_1

8_4_2

8_4_3

9_2_1

9_2_2

9_2_3

9_2_4

9_2_5

9_2_6

9_2_7

9_2_8

9_2_9

9_2_10

9_2_11

9_2_12

9_2_13

9_2_14

9_2_15

9_2_16

9_2_17

9_2_18

9_2_19

9_2_20

9_2_21

9_2_22

9_2_23

9_2_24

9_2_25

9_2_26

9_2_27

9_2_28

9_2_29

9_2_30

9_2_31

9_2_32

9_2_33

9_2_34

9_2_35

9_2_36

9_2_37

9_2_38

9_2_39

9_2_40

9_2_41

9_2_42

9_2_43

9_2_44

9_2_45

9_2_46

9_2_47

9_2_48

9_2_49

9_2_50

9_2_51

9_2_52

9_2_53

9_2_54

9_2_55

9_2_56

9_2_57

9_2_58

9_2_59

9_2_60

9_2_61

9_3_1

9_3_2

9_3_3

9_3_4

9_3_5

9_3_6

9_3_7

9_3_8

9_3_9

9_3_10

9_3_11

9_3_12

9_3_13

9_3_14

9_3_15

9_3_16

9_3_17

9_3_18

9_3_19

9_3_20

9_3_21

9_4_1