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1. Introduction 

Determining the minimum Euclidean distance 
(MinD) between two segments of straight lines is a 
typical problem in robotics (e.g.,-for collision 
avoidance), image processing, CAD systems, VLSI 
design, and other areas of information processing 
dealing with geometrical data. 1 For straight lines 
of infinite length, there are simple formulae based 
on the computation of a common perpendicular 
between two lines [1]. 

However, in the case of segments of finite length, 
the classical formulae for distance cannot be ap- 
plied, and special algorithms are needed; more- 
over, since MinD computation is often a basic 
operation frequently used (e.g., in the robot colli- 
sion avoidance problem it may be repeated 
hundreds of times, in real time, for each point of 
the robot path, with few dozens of points per 
second), the algorithms have to be efficient. 

In the sequel, a line AB means a straight line of 
infinite length passing through points A and B; a 
segment AB means a segment of the line AB 

a For two-dimensional space, the problem of minimum dis- 
tance between two segments may be considered as a generali- 
zation of the problem of detection of pairs of intersecting 
segments extensively developed in the area of VLSI design 
algorithms (see, for example, [2]). 

connecting (and including) points A and B; and 
distance refers to a Euclidean distance. Global 
Mind is the minimum distance between two lines, 
and actual MinD is the minimum distance be- 
tween two segments defined as the minimum of 
distances between any of the points of one seg- 
ment and any of the points of the other segment. 
These are distinguished from other minimum dis- 
tances (e.g., between a segment and a line). In 
these terms, the problem in question is that of 
finding the actual MinD. Points on lines or seg- 
ments corresponding to a minimum distance are 
called points of minimum distance; the line passing 
through these points is called a line of minimum 
distance. A range interval [0, 1] used in the para- 
metric description of lines is assumed to be a 
closed interval (that is, the endpoints 0 and 1 are 
included). Instead of shorter vector notations, in- 
dividual coordinates are used throughout the text 
to make the computational aspects clearer. 

Examples in Fig. 1 show why the final length of 
straight line segments may complicate MinD com- 
putation. (Although points of the global MinD 
always coincide in the two-dimensional space, in 
the figure they are shown as two points, M and N, 
to consider the general case.) Note that, even in 
the case of two dimensions, the actual MinD is not 
necessarily zero. This depends on how the points 
of minimum distance are positioned relative to the 
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segments. They may lie inside the segments (points 
M and N, Fig. l (a))-- in which case classical for- 
mulae for the distance between two lines can be 
used. Or, they may correspond to an endpoint of 
one segment and some inside point of the other 
segment (distance AP and DQ, Fig. l(b), (c)). Or, 
they may correspond to the endpoints of both 
segments (distance BC, Fig. l(d)). If endpoints are 
involved, each of the four endpoints has to be 
tested. This involves a significant amount of com- 
putations. Interestingly, although all of the possi- 
ble cases are of practical interest, their variety is 
such that sometimes not all of them are consid- 
ered. For example, in [3], where methods of de- 
scriptive geometry are used to detect interference 
between two segments, the suggested methods only 
apply to those cases for which the line of mini- 
mum distance is perpendicular to at least one of 
the segments (as in Fig. l(a), (b), (c)); in other 
words, using these methods, one would obtain a 

wrong answer for the example of Fig. l(d). 
Assuming that input consists of coordinates ol 

four points representing the endpoints of botl: 
segments, a more or less straightforward algorithr~ 
would involve the following operations: 

Compute the global MinD and coordinates ol 
both points (bases) of the line of minimum dis. 
tance; if both bases lie inside the segments, th~ 
actual MinD is equal to the global MinD; other- 
wise, continue. Compute distances between th~ 
endpoints of both segments (a total of four dis- 
tances). Compute coordinates of the base points ol 
perpendiculars from the endpoints of one segmen~ 
onto the other segment; compute the lengths oJ 
those perpendiculars whose base points lie insi& 
the corresponding segments (up to four base point, 
and four distances). Out of the remaining dis. 
tances, the smallest is ihe sought actual MinD 
Altogether, this represents the computation of sb 
points and of nine distances. 
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The objective of the algorithm presented here is 
to minimize the amount of computations needed 
to find the actual MinD. In the suggested scheme, 
a parametric description of segments is used. Val- 
ues of the parameters automatically provide infor- 
mation on whether or not points of MinD are 
located inside the segments and, if not, where they 
are positioned relative to the segments. 

This information allows the algorithm to skip 
the computation of a number of distances and 
provides for a rapid convergence of the procedure 
to the set of points corresponding to the actual 
MinD. The description and the algorithm can be 
applied to any number of dimensions. 

2. Analys is  

Consider two segments, AB and CD. For a 
straight line passing through two points, A and B, 
with coordinates A(XlA, X2A, . . . ,X~)  and B(xaB, 
X2B,...,XnB) in an n-dimensional space of varia- 
bles xx, x2 , . . .  ,x n, the equation of the line may be 
written in a symmetric form [1]: 

X 1 - -  X 1 A  = X 2 - -  X 2 A  ~ .  . . . .~ -  X n -- X~A . (1) 
X1B -- X1A X2B --  X2A XnB - -  XnA 

By setting 

X i --  XiA 

XiB --  XiA 
- t, i =  1 , . . . , n  (2) 

a parameter t is introduced, and (1) is rewritten in 
a parametric form as 

xi = X i a ( 1 -  t ) + x m t ,  i =  1 , . . . , n .  (3) 

Values 0 ~< t ~< 1 correspond to points inside seg- 
ment AB, values t < 0 correspond to points on line 
AB located ' to  the left' of the segment (that is, to 
points that are closer to A than to B), and t > 1 
corresponds to points ' to  the right' of the segment 
(see Fig. 2). The value of t provides, therefore, a 
sense of direction for a point on line AB relative to 

t< 0 O~ t~ i t >i 
• . .  . . . . . . . .  

Fig. 2. 

fixed points A and B. This feature will be used in 
the algorithm to quickly find points of 'the actual 
MinD. Similarly, parametric form equations for 
segment CD are introduced using parameter u: 

X i = Xic(1 - u) + XiD u, i =  1 . . . . .  n. (4) 

Instead of the distance d(X, Y) between two points 
X and Y, its square D D  = d2(X, Y) ('distance') 
will be used throughout. For a point X(Xlx, X2x, 
. . . ,Xnx ) of line AB and a point Y(Xlv, X2y, 
. . . .  X,v) of line CD, DD is computed as 

I1 

D D =  E ( X i x - - X i y )  2 ( 5 )  
i = l  

or, by substituting (3) and (4) into (5), 
n 

D D =  E [ ( X i B - -  XiA)t--(XiD-- Xic)U 
i=1 

- (X ic -  XiAI] 2 • (61 

Using notation, 

XiB --  XiA = d i l ,  XiD --  XiC = d i2 ,  

Xic  - XiA = d i l 2 ,  

rewrite (6) as 
n 

D D =  E ( d i l t -  d i 2 u -  d i l 2 )  2" ( 7 )  
i = l  

Below, all the sums are assumed to be over 
i - 1  . . . . .  n (as in (7)). Values of t and u corre- 
sponding to the points of the global MinD be- 
tween lines AB and CD may be computed by 
minimizing (7) over t and u. To do that, equate 
to zero the partial derivatives, a D D / a t  = o, 
a D D / S u  = 0. If expanded, these become 

ODD 
8t = 2 ~ ( d n  t -  di2 u -  di12)dil = 0, 

a D D  (8) 
au  = - 2 Y ' ~ ( d n t -  d i 2 u -  di12)di2 = 0, 

o r  

t E di 2 - u E dndi2 = E dndn2, 

t E dnd i2 -  u E di 2 = E di2dn2- 
(9) 

From these, expressing one parameter in terms of 
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the other, we obtain 

uR + S~ t R -  S 2 
t = u = - -  (10) 

D1 ' D2 

or, finding t and u from (9) explicitly: 

S1D 2 -- S2R - (S2D 1 - S1R ) 
t =  u =  (11) 

D1D 2 - R  2 ' D 1 D 2 _ R  2 ' 

where 

R = E dildi2, 

S 1 = E d i l d i l 2 ,  S2 = Edi2di l2 ,  
d 2 D1 = E d i  2 ,  D2 ~-- E i2; 

note that D 1 and D 2 are squares of the lengths of 
segments AB and CD. Using the same five terms 
R, S 1, S 2, D 1, D 2 in the steps of the algorithm 
below helps to shorten the computations. 

These t and u correspond to the global MinD 
and to some points on lines AB and CD which 
may or may not fie within segments AB and CD. 
Now we will analyze three major cases which 
include all possible situations that may take place 
depending on the values of t and u. 

Case 1. The values of both parameters are in 
the range 0 ~ t ~ 1, 0 ~< u ~ 1. This means that the 
points of MinD are located within the segments; 
for two-dimensional space, such an example is 
shown in Fig. l(a). Here, the sought MinD corre- 
sponds to the global MinD and may be computed 
directly using (7). 

Case 2. The value of at least one of the parame- 
ters t and u is outside the range [0, 1] (as' in 
examples in Fig. l(b), (c), (d)). A number of 
different situations falls into this case. Consider 
two fines AB and CD, with points M and N being 
their points of the global MinD (see Fig. l(d)). 

Lemma 1. For a line AB, if the value of its parame- 
ter t is not in the range [0, 1], then the minimum 
distance between segment AB and some line CD 
corresponds to one of the segment AB endpoints--in 
particular, to the endpoint closest to the point of the 
global M i n d  of line AB (to line CD). 

Proof. Consider a specific case--say,  t > 1. 
According to (3), this means that point M (on line 

AB) of the global MinD between two fines is 
closer to point B than to A (Fig. l(d)). Take a 
variable point X on line AB and move it continu- 
ously, starting at point M, in the direction of 
segment AB. Because AB and CD are straight 
lines, the distance between X and fine CD will 
increase monotonically. The first point on segment 
AB that X will meet is B; if X keeps moving along 
AB, its distance to CD will increase. Therefore, 
point B is the point of MinD between segment AB 
and line CD. Similarly, if t < 0, point A of seg- 
ment  AB is a point of MinD between segment AB 
and line CD. [] 

Lemma 1 provides justification and a method 
for choosing an endpoint of a segment as a point 
of MinD between a segment and a fine, if the 
lemma conditions are satisfied. For the distance 
between two segments, first consider the case when 
one of the parameters t, u is in the range [0, 1] and 
the other is outside this range. 

Lemma 2. I f  the parameter of a line (say, t of AB) 
is outside the range [0, 1] while the parameter of the 
other line, CD, is inside this range, then one of the 
endpoints of segment AB is the point of the actual 
MinD- - in  particular, this is the endpoint of seg- 
ment AB closest to the point of the global MinD 
between lines AB and CD. 

Proof. Consider a specific case--say,  t < 0, 0 ~< u 
~< 1 (Fig. l(b)). According to (3), for line AB, its 
point M of the global MinD (to line CD) is closer 
to point A than to B. Take a variable point X on 
line AB and move it continuously, starting at point 
M, in the direction of segment AB. For any point 
X, there is a point Y on line CD corresponding to 
the minimum distance from X to line CD; this is 
the base of the perpendicular from X onto line 
CD. While point X is moving along fine AB to- 
ward point B, point Y moves continuously, start- 
ing at point N inside segment CD, toward one end 
of segment CD (say, D, as in Fig. l(b)). Because 
AB and CD are straight lines, the distance be- 
tween X and line CD will increase monotonically. 
Now, one of two cases takes place. 

(1) X meets A before Y meets D (Fig. l(b)); 
then point X = A and the corresponding point Y 
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inside segment CD are points of the actual MinD. 
(2) Y meets D before X meets A; in this case, if 

X keeps moving toward A, the point (on segment 
CD) of minimum distance from X to segment CD 
must be D (this is because, according to Lemma 1, 
D is the closest point of segment CD to the 
perpendicular from X onto line CD). 

In both cases, the first point of segment AB 
that X meets is A; if X kept moving along AB, its 
distance to segment CD would increase. Therefore, 
point A of segment AB is the point of the actual 
MinD between segments AB and CD. Similarly, if 
t > 1, then point B of segment AB is a point of the 
actual MinD. [] 

Lemma 2 provides justification for choosing an 
endpoint of a segment (actually, the value 0 or 1 of 
its parameter) every time its parameter value falls 
outside (and the value of the other segment param- 
eter falls inside) the range [0, 1], as a point of the 
actual MinD. 

In general, if t is outside the range [0, 1], then 
one of the endpoints of segment AB does not 
necessarily correspond to the actual MinD be- 
tween two segments. This is demonstrated in Fig. 
l(c); although, for segment AB, point B is closest 
to line CD, not B but point Q (which is the base 
point of the perpendicular from an endpoint of 
segment CD onto segment AB) is the point of the 
actual MinD of segment AB. What disqualifies 
point B is the fact that the perpendicular BP from 
B onto line CD, although it is shorter than DQ, 
has its base outside segment CD. This implies that, 
in order to check which of the two candidate 
perpendiculars (if any) corresponds to the actual 
MinD, the algorithm has to use Lemma 2 twice. If 
the base points of both perpendiculars fall outside 

the opposite segments, then it follows from Lemma 
2 that the endpoints themselves are the points of 
the actual MinD (Fig. l(d)). 

Case 3. This case includes special situations 
when one or both parameters t and u are unde- 
fined because the denominator in (11) is equal to 
zero; note that when this occurs, the numerators in 
both equations (11) are also zero. This occurs 
when either one or both segments degenerate into 
a point, or when the segments are parallel. These 
situations are handled at the early stage of the 
algorithm, so that no computational difficulties 
arise because of division by zero in (10) or (11). 
Parallelism of the segments means either that 
points of the actual MinD are necessarily segment 
endpoints, or that many segment points, including 
at least some segment endpoints, may be chosen as 
the points of the actual MinD (see Fig. 3(a), (b)). 
Therefore, in case of parallel segments, segment 
endpoints are to be analyzed; this brings us to the 
situations considered in Case 2. Another special 
situation relates to cotlinear segments (with or 
without overlap). Again, any segment endpoint 
may be chosen as the first candidate for the actual 
MinD point, with subsequent analysis as in Case 
2. 

As the above analysis shows, parameters t and 
u have to be modified frequently to make them 
correspond to the segment endpoints. Such modifi- 
cation is equivalent to moving a point lying in line 
AB (or CD) outside segment AB (CD), to the 
closest endpoint of segment AB (CD), which is 
represented by the rules 

if t < 0  t h e n t = 0 ,  
if t > l  t h e n t = l ,  (12) 
if u < 0  t h e n u = 0 ,  
if u > l  t h e n u = l .  

A B A 
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Fig. 3. 

59 



Volume 21, Number 2 INFORMATION PROCESSING LETTERS 16 August 1985 

3. Algorithm 

The input consists of coordinates of the end- 
points of the two segments. The algorithm includes 
the following steps. 

Step 1. Check for special cases; compute D a, D2, 
and the denominator in (11): 
(a) If one of the two seg, q?ents degenerates 

into a point, assume that this segment 
corresponds to the parameter u, take 
u = 0, and go to Step 4. 

(b) If both segments degenerate into 
points, take t = u = 0, and go to Step 
5. 

(c) If neither of two segments degenerates 
into a point and the denominator in 
(11) is zero (the segments are parallel), 
take t = 0 and go to Step 3. 

(d) If none of (a), (b), (c) takes place, go to 
Step 2. 

Step 2. Using (11) compute t. If t is not in the 
range [0, 1], modify t using (12). 

Step 3. Using (10) compute u. If u is not in the 
range [0, 1], modify u using (12); other- 
wise, go to Step 5. 

Step 4. Using (10) compute t. If t is not in the 
range [0, 1], modify t using (12). 

Step 5. With current values of t and u, compute 
the actual MinD using (7). 

The rationale behind the algorithm is as fol- 
lows. Distances are not computed directly until the 
very end; instead, the corresponding values of 
parameters t and u are found and used to choose 
the direction for the following steps. The al- 
gorithm manipulates the values of the parameters 
until those values that correspond to the actual 
MinD are found; then, the distance computation 
is done only once. In each of the intermediate 
steps, only one endpoint of a candidate line of 
minimum distance is implicitly tested; if this end- 
point does not satisfy the conditions for being the 
actual MinD, its partner on the line of minimum 
distance is never tested. 

First, special cases are tested (see Step 1). 
Specifically, the segments are checked for paralle- 
lism. If they are parallel, then the points of the 

global MinD are undefined, and one of the seg- 
ment endpoints is taken (e.g., by setting t = 0) 
arbitrarily, to define the distance from the other 
line (segment). If the segments are not parallel 
(follow, for example, Fig. 1(c)), then in Step 2 the 
point of the global MinD (actually, its t value) for 
one of the segments (here, AB) is found. If it is in 
the range [0, 1] and if (in Step 3) the value of u 
also falls within [0, 1], then the global MinD coin- 
cides with the actual MinD, and that is computed 
by immediately going to Step 5. If the point of the 
global MinD found in Step 2 is outside the range 
[0, 1] (as in Fig. l(c), t > 1, point M), then, accord- 
ing to Lemma 1, an endpoint of segment AB 
closest to line CD (here, point B) is found by 
setting the value of t according to the rules (12) 
(here, t = 1). Now, if the base P of a perpendicular 
from B onto line CD falls within segment CD, 
then, according to Lemma 2, BP represents the 
sought actual MinD. This is checked in Step 3. If u 
is outside the range [0, 1] (as in Fig. l(c), u > 1), 
then, according to Lemma 1, point D (u = 1) is 
another candidate for being the point of the actual 
MinD. 

At this stage, point D must be one of the points 
of the actual MinD, and the only remaining thing 
is to find a partner for point D. This is done in 
Step 4: if the value of t corresponding to the 
current value of u falls within the range [0, 1], then 
Q is the second point of the actual MinD (as in 
Fig. l(c), 0 < t < 1); conversely, if t falls outside 
the range [0, 1], then an endpoint of segment AB 
found from (12) is the second point of the actual 
MinD. At this stage, the points of the actual MinD 
are defined for any possible case, and the value of 
the actual MinD is computed (Step 5). 

To compute the distance between two segments 
in n-dimensional space, the algorithm requires 
5n + 12 multiplications/divisions and 8n + 1 ad- 
ditions (for details, see [4]). For example, in case 
of three-dimensional space, this amounts to 27 
multiplications and 25 additions. The straightfor- 
ward algorithm sketched in Section 1 requires 
about five times as many operations. 

As to its computational characteristics, the 
algorithm is robust and rather insensitive to 
round-off errors. Those values of the parameters t 
and u that fall outside the range [0, 1] do not have 
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to be very accurate because immediate ly  after 
computa t ion  they are changed to values 0 or 1 
according to rule (12). Division by zero is avoided 
by  separate handling of special cases in Step 1 of 
the algorithm. Possible division by  small numbers  
in (10) and (11) is not  a real problem because, 
first, not  more  than three divisions per  problem 
are executed and not  more  than two of them 
require normal  accuracy, and, second, small 
denominators  in (10) and (11) always correspond 
to small numerators.  Simple thresholds on the 
min imum values of  those denominators  (to define 
numerical ly  the notion of a special case) assure 
numerical  Stability. 

4 .  E x a m p l e  

A three-dimensional  case is considered (see Fig. 
4); coordinates of  the segment endpoints  are: 
A(0, 0, 0), B(1, 2, 1), C(1, 0, 0), D(2, 1, 0). The in- 
termediate  results of" the algori thm steps are as 
follows: 

Step 1: None  of the special cases takes place. 
Step 2: t = -0 .333  (this corresponds to the first 

point  of  the global M i n D - - p o i n t  M on 
line AB); modif ied to t - 0  (point A). 
(Note that the second point  of  the global 

MinD,  point  N on line CD, which, accord- 
ing to (10), corresponds to u = - 1, is never 
considered.)  

Step 3 : u - - 0 . 5  (point P); modified to u = 0  
(point C). 

Step 4: t = 0.167 (point Q). 
Step 5: Using current  t = 0.167 and u = 0 (points 

Q and C), compute  DD = 0.8333. 

Acknowledgment 

The author  wishes to thank Charles Fiduccia, 
Boris Yamrom,  and  Hai-Ping Ko for valuable 
discussions. 

R e f e r e n c e s  

[1] G.A. Korn and T.M. Korn, Mathematical Handbook (Mc- 
Graw-Hill, New York, 1968). 

[2] M.I. Shamos and D.J. Hoey, Geometric intersection prob- 
lems, in: Proc. 17th Ann. Conf. on Foundations of Com- 
puter Science, 1976. 

[3] S.E. Rusinoff, Practical Descriptive Geometry (American 
Technical Society, 1947). 

[4] V.J. Lumelsky, Fast algorithm for computation of the 
minimum distance between segments of straight lines, Tech. 
Rept. No. 84CRD206, General Electric Corporate Research 
Center, Computer Science Branch, 1984. 

61 


