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The solution of large, sparse constrained least-squares problems is a staple in scientific
and engineering applications. However, currently available codes for such problems are
proprietary or based on MATLAB. We announce a freely available C implementation of the
fast block pivoting algorithm of Portugal, Judice, and Vicente. Our version is several times
faster than Matstoms’ MATLAB implementation of the same algorithm. Further, our code
matches the accuracy of MATLAB’s built-in lsqnonneg function.
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1. INTRODUCTION

The authors were recently faced with the challenge of finding a fast solver for the sparse non-
negative least-squares problem (NNLS) to embed in a much larger scientific application. The
problem is given by

min
x

1

2
||Ax− b||22 with x ≥ 0 (1)

where A is an m × n matrix, x ∈ Rn, b ∈ Rm and m > n, and we assume A has full column
rank. This is a standard problem in numerical linear algebra ([1, 4]) which is handled by a number
of commercial libraries ([2, 9, 10]) and by the MATLAB-based Sparse Matrix Toolbox of [5].
While these methods work well, their users must incur the overhead of a large math package or
the expense and license restrictions of commercial libraries. There does not seem to be a freely
available solver for this problem without these disadvantages. This motivated the development of
tsnnls, a lightweight ANSI C implementation of the block principal pivoting algorithm of [7]
which matches the accuracy of the MATLAB-based codes and is considerably faster. The code can
be obtained at http://www.cs.duq.edu/˜piatek/tsnnls/ or http://ada.math.
uga.edu/research/software/tsnnls/. Users may redistribute the library under the
terms of the GNU GPL.
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2. ALGORITHMS

The following is a summary of our main algorithm as described in [7]. The fundamental obser-
vation underlying the block principal pivoting algorithm is that Equation 1 can be rewritten (using
the definition of the L2 norm) as a quadratic program:

min
x
−(AT b)T x +

1

2
xT ATAx, with x ≥ 0. (2)

Since A has full rank, ATA is positive-definite, and this is a convex program which can be rewritten
as a linear complementarity problem:

y = ATAx− AT b, y ≥ 0, x ≥ 0, 〈x, y〉 = 0. (3)

The last condition means that the nonzero entries of x and y occupy complementary variables: any
given position must vanish in x or y (or both). In fact, the nonzero entries in y represent variables
in x which would decrease the residual Ax − b still further by becoming negative, and so are set
to zero in the solution to the constrained problem.

Suppose we have a division of the n indices of the variables in x into complementary sets F
and G, and let xF and yG denote pairs of vectors with the indices of their nonzero entries in these
sets. Then we say that the pair (xF , yG) is a complementary basic solution of Equation 3 if xF is
a solution of the unconstrained least squares problem

min
xF∈R|F |

1

2
||AF xF − b||22, (4)

where AF is formed from A by selecting the columns indexed by F , and yG is obtained by

yG = AT
G (AF xF − b) . (5)

If xF ≥ 0 and yG ≥ 0, then the solution is feasible. Otherwise it is infeasible, and we refer to
the negative entries of xF and yG as infeasible variables. The idea of the algorithm is to pro-
ceed through infeasible complementary basic solutions of (3) to the unique feasible solution by
exchanging infeasible variables between F and G and updating xF and yG by (4) and (5). To
minimize the number of solutions of the least-squares problem in (4), it is desirable to exchange
variables in large groups if possible. In rare cases, this may cause the algorithm to cycle. There-
fore, we fall back on exchanging variables one at a time if no progress is made for a certain number
of iterations with the larger exchanges.

The original block-principal pivoting algorithm works very well for what we call “numerically
nondegenerate” problems, where each of the variables in F and G have values distinguishable
from zero by the unconstrained solver in the feasible solution. If this is not the case, a variable with
solution value close to zero may be passed back and forth between F and G, each time reported as
slightly negative due to error in the unconstrained solver. We work around this problem by zeroing
variables in the unconstrained solution that are within 10−12 of zero. Although this strategy works
well in practice, we have not developed its theoretical basis. Indeed, this seems to be an unexplored
area: [7] do not discuss the issue in their original development of the algorithm and Matstoms’
snnls implementation fails in this case.

The details are summarized below.
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Block principal pivoting algorithm (modified for numerically degenerate problems)

Let F = ∅, G = {1, . . . , n}, x = 0, y = −AT b, and p = 3.
Set N = ∞.
while (xF , yG) is an infeasible solution {

Set n to the number of negative entries in xF and yG.
if n < N (the number of infeasibles has decreased) {

Set N = n and p = 3.
Exchange all infeasible variables between F and G.

} else {
if p > 0 {

Set p = p− 1.
Exchange all infeasible variables between F and G.

} else {
Exchange only the infeasible variable with largest index.

}
}
Update xF and yG by Equations 4 and 5.
Set variables in xF < 10−12 and yG < 10−12 to zero.

}

The normal equations solver.
Solving Equation 4 requires an unconstrained least-squares solver. We will often be able to do

this by the method of normal equations. Since some of our software design choices depend on the
details of this standard method, we review them here. To solve a least-squares problem Ax = b
using the normal equations, one solves

ATAx = AT b (6)

using a Cholesky factorization of the symmetric matrix ATA. This is extremely fast. For an m×n
dense matrix A, the matrix multiplication required to form ATA requires n2m flops, which is more
expensive than the standard Cholesky algorithm which is known to take 1

3
n3 + O(n2) flops. For

our sparse matrix problems, we found a comparable relationship between the time required for a
sparse matrix-multiply and the TAUCS sparse Cholesky algorithm.

The numerical performance of this method can be a problem. The condition number of ATA
is the square of the condition number κ of A. For this reason, we must expect a relative error of
about cκ2ε, where ε is the machine epsilon ('10−16 in our double-precision code), and c is not
large. As [3] points out, the Cholesky decomposition may fail entirely when κ2ε ≥ 1, so we cannot
expect this method to handle matrices with κ > 108. Our tests indicate that this simple analysis
predicts the error in the normal equations solver very well (see Section 4), so we can anticipate the
accuracy of the solver by estimating the condition number of ATA.

3. SOFTWARE ARCHITECTURE

Our primary design goal in the development of tsnnls was to create the most efficient solver
which met the user’s accuracy requirements and did not depend on commercial software or re-
stricted libraries. It is clear that the heart of the algorithm is the solution of the least-squares
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problem in Equation 4 for the new xF . But the way these solutions are used is quite interesting. In
the intermediate stages of the calculation, we only use xF and yG to search for infeasible variables
to shift between F and G. So we need only calculate correct signs for all the variables— beyond
this the numerical quality of these solutions is unimportant. But the last solution of Equations 4
and 5 is the result of the algorithm, so this solution must meet the user’s full accuracy needs.
Our implementation takes advantage of this situation by using the method of normal equations for
the intermediate solutions of Equation 4 and then recomputing the final solution using the more
accurate LSQR solver of [6].

The method of normal equations is already fast. But two of our implementation ideas improve
its speed still further in our solver. As we mentioned in Section 2, computing ATA is the most
expensive step in the normal equations solver. A first observation is that we need not form AT

explicitly in order to perform this matrix multiplication, since ATAij is just the dot product of
the ith and j th columns of A. This provides some speedup. More importantly, we observe that
each least-squares problem in tsnnls is based on a submatrix AF of the same matrix A. Since
AT

FAF is a submatrix of ATA, we can precompute the full ATA and pass submatrices to the normal
equations solver as required. This is a significant speed increase. We make use of the TAUCS
library of [8] for highly optimized computation of the sparse Cholesky factorization needed for
the method of normal equations.

We can estimate the relative error κ2ε of each normal equations solution by computing the con-
dition number κ2 of AT

FAF with the LAPACK function dpocon. Since we have already computed
the Cholesky factorization of ATA as part of the solution, this takes very little additional time in
the computation. This is used to determine when a switch to a final step with LSQR is necessary
for error control.

In order to simplify its’ use in other applications, our library incorporates simplified forms of
the TAUCS and LSQR distributions. These are compiled directly into our library, so there is no
need for the user to obtain and link with these codes separately.

4. SOFTWARE TESTING

We tested our implementation using problems produced by the LSQR test generator which gen-
erates arbitrarily sized matrices with specified condition number and solution (see [6] for details
on how the generator works). We report on the relative error of our method with the problems
of type P (80, 70, 4, x), which were typical of our test results. Here 80 and 70 are the dimensions
of the matrix, each singular value is repeated 4 times, and x is a parameter which controls the
condition number of the problem. For these matrices the exact solution was known in advance, so
we could measure the relative error of our solutions as a function of condition number.

The results of this test are shown in Figure 1. The line of datapoints indicated by × shows the
error in tsnnls using only our normal equations solver. As expected, it fits very well to about
1
10

κ2ε where κ is the condition number of the matrix and ε is machine epsilon. The second set
of data points (denoted by .) shows that we usually improve our relative error by 2 or 3 orders of
magnitude by recomputing the final solution with LSQR. The third set of data points (denoted by b)
plots the error from the MATLAB function lsqnonneg on these problems. For condition numbers
up to 106, we see that tsnnls and lsqnonneg have comparable accuracy. But surprisingly, our
method seems to be more stable than lsqnonneg for very ill-conditioned problems.

We also tested the performance of our software against that of lsqnonneg and that of the
snnls code of [5]. All of our timing tests were performed on a dual 2.0 GHz Power Macintosh G5
running Mac OS X 10.3, compiling with gcc3.3 and -O3, and linking with Apple’s optimized
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FIG. 1: This plot shows the relative error in the solution of a selection of 80 × 70 test problems generated
by the LSQR test generator with inputs P (80, 70, 4, x) and condition numbers varying from 101 to 108.
The logarithm (base 10) of this error ε is plotted against the logarithm of condition number for three codes:
tsnnls restricted to use only the normal equations solver, the final version of tsnnls, which recomputes
the final solution with LSQR, and the MATLAB function lsqnonneg.

versions of LAPACK and BLAS. We ran snnls under MATLAB7 with argument -nojvm.
We were required to make two modifications to the snnls code to complete our tests. First,

the snnls code uses the column minimum degree permutation (colmmd) before performing
sparse Cholesky decompositions. However, as this ordering is deprecated in MATLAB7 in favor
of absolute minimum degree ordering, we tested against a modified snnls using colamd. This
was a strict performance improvement for our test cases. We also made the same workaround to
handle degenerate problems that we discussed for tsnnls in Section 2.

Our performance results are shown in Figure 2. We tested runtimes for randomly generated,
well-conditioned matrices from MATLAB’s sprandn function. The matrices were of size n ×
(n − 10). The plot shows runtime results for a set of density 1 matrices and a set of density 0.01
matrices, intended to represent general dense and sparse matrices. Each data point represents the
average runtime for 10 different matrices of the same size and density.

We can see that the runtime of our implementation is approximately proportional to that of
snnls, and that for dense problems it is several times faster. We were surprised to note that the
constant of proportionality decreases for sparse matrices and that our method is almost 10 times
faster than snnls for matrices of density 0.01.

The runtime of each code is controlled by three computations: the matrix-multiply used to
form ATA, the Cholesky decomposition of that matrix, and the final recalculation of the solution
(if performed). We expected to be several times faster than snnls since our caching strategy
for ATA eliminates a matrix-multiply operation for each pivot. The number of pivots, however,
does not seem to vary with the density of our random test matrices and so does not explain our
additional speed increase for sparse problems.

We explored this phenomenon by profiling both our code and snnls. For our random test
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FIG. 2: These log-log scaled plots show the runtime of tsnnls and snnls on density 1.0 (left) and 0.01
(right) matrices of size n × (n − 10) on a 2.0 Ghz Apple PowerMac G5. We can see that the runtime of
tsnnls is basically proportional to that of snnls, but that the constant of proportionality depends on the
density of the test matrices. This effect is explained below. All runtimes were calculated by repeating the
test problems until the total time measured was several seconds or more.

problems at density 0.01, the final unconstrained solution in snnls (computed using the the
MATLAB \ operation) consumes almost 50% of the total runtime. On the other hand, in tsnnls
the final unconstrained solution (using LSQR) consumes only 5% of runtime. Since the Cholesky
decompositions take comparable time, this would seem to explain the runtime disparity.

We did not show performance data for MATLAB’s built-in lsqnonneg because it was so much
slower than both tsnnls and snnls. For sparse matrices, this is in part because lsqnonneg
is a dense-matrix code. Yet, even on dense matrices, both methods outperformed lsqnonneg by
an overwhelming amount. For instance, for a 500 × 490 dense matrix, lsqrnonneg takes over
100 seconds to complete while snnls and tsnnls both finish in less than one second. We take
this as a confirmation of the suggestion in MathWorks’ documentation of lsqnonneg that it is
not appropriate for large problems.
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